

SoftTree
SQL Assistant™ 12.4

User's Guide

 Supported database systems:

Oracle 11g - 21c

Microsoft SQL Server 2008 - 2022

Windows Azure SQL Database 11.x, 12.x (formerly SQL Azure)

Apache Cassandra 3.x - 4.x

Apache Hive 2.x - 3.x

Apache SparkSQL 2.x, 3.x

MySQL 5.x, 8.x

MariaDB 5.x, 10.x

DB2 UDB for LUW 7.x - 11.x

DB2 UDB for iSeries 5.x - 7.x

SAP Sybase Adaptive Server Enterprise 12.x - 16.x

SAP Sybase SQL Anywhere 9.x - 17.x (formerly Adaptive Server Anywhere)

PostgreSQL 8.4 - 15.x

Amazon Redshift 1.x

Teradata 14.x - 17.x

IBM Netezza 7.x

Pivotal Greenplum 4.3.x - 6.x

Microsoft Access 2003 to Office 365 (11.x - 16.x)

SQLite 2.x - 3.x

MongoDB via Connector for BI 2.x

Snowflake 6.x, 7.x

Contents

 -2-

Contents

About This Guide ..23
Intended Audience ..23
Conventions Used in This Document..23
Abbreviations and Product Reference Terms ...24
Trademarks ...25

CHAPTER 1, Overview of the SoftTree SQL Assistant ..27
Introduction..27
Key Benefits ..27
32-bit and 64-bit Versions ...28
Licensing and Editions ..28

CHAPTER 2, Connecting to Your Database ..29
Overview ...29

Ad-hoc and Remembered Connections ...33
Reordering, and Filtering Connections by Name ...33
Organizing Connections...34
Common Connection Properties and Database Driver Specific Properties ...35

Oracle Database Connections and Settings ...36
SQL Server Database Connections and Settings...36
Apache Hive Connections and Settings..37
Apache SparkSQL Connections and Settings ..37
MySQL Database Connections and Settings..38
MariaDB Database Connections and Settings..38
DB2 Database Connections and Settings...39
Netezza Database Connections and Settings ..39
Sybase Database Connections and Settings..39
PostgreSQL Database Connections and Settings ..40
Redshift Database Connections and Settings ..40
Greenplum Connections and Settings ..41
Teradata Database Connections and Settings ...41
Microsoft Access Database Connections and Settings ..41
SQLite Database Connections and Settings...42
MongoDB Database Connections and Settings..42
Apache Cassandra Database Connections and Settings ...43
Snowflake Database Connections and Settings ...43
Database Connection Settings and Security...43
Shared, Automatic, and Interactive Database Connections ...44

Shared Connections ..44
Automatic and Interactive Database Connections ...44

Custom Connection Parameters ...46

Contents

 -3-

Automatic Recovery of a Broken Database Connection...47

CHAPTER 3, Code Assistants and SQL Intellisense..49
Starting and Stopping SQL Assistant..49
Temporarily Pausing SQL Assistant ...49
SQL Intellisense ..50
SQL Assistant Windows and Appearance ..52

Manually Invoking SQL Assistant Popups Using Keyboard Hot Keys ...54
Manually Invoking SQL Assistant Popups Using Context and Top-level Menus..55
Manually Invoking SQL Assistant Popups from the System Tray ..56
Viewing SQL Assistant Usage Statistics from the System Tray...56

Understanding and Using SQL Assistant's Usage Statistics ..57
Types of Statistics Collected..57
Disabling and Enabling Statistics Collection ..58
Resetting Statistics ..58

How to Build Advanced SQL Commands With Only a Few Keystrokes...59
Example 1: Building complete SELECT statement starting with column names...59
Example 2: Building complete SELECT statement starting with joins...61
Example 3: Creating multi-line comments with 4 keys ..64
Example 4: Generating complete-cursor logic with 7 keys and 1 click..65

Using Object Name Code Completion Features...65
Object Name Aliases ...67
Using Object, Schema, and Database Name Auto-Completion...68

Using Variable Name Auto-Completion ..68
Using Column and Parameter Names Completion Features..69

Enabling Display of Key Columns and Indexed Columns ..69
Using JOIN Clause Completion Features ..71
Using Multiple Columns Selection in DML Statements...73
Using Context-based Suggestions Based on Historical Coding Patterns...74
Using Function Argument Hints Features ...76
Using Advanced Oracle Package and Object Type Attribute Completion Features...........................77
Using Keywords Completion and Syntax Hints Features ...78
Using Local and Global Variable Names Completion Features..79
Using Package Variable Names and Type Names Completion Features ..81
Using User/Role Names Completion Features ...81
Using Code Auto-Expansion and Auto-Generation Features ...81

Automatic Generation of DML Statements...81
Automatic Generation of Variable Declarations ...82
Advanced Interactive Code Snippets...83

Advanced Code Expansion for * and Object Columns and Arguments..84
Advanced Code Expansion and Reference for DDL Commands ...85
Working with SQL Assistant Popups...87

Navigation Keys...87
Selection Keys ...88
Scrolling Content ...88
Resizing Content ...88
Resizing Individual Columns..88

Contents

 -4-

Moving Content..89
Refreshing Content ..89

Using Mouse-over Hints ..89
Using Data Preview and Code Preview Hyperlinks in Mouse-over Hints...91
Using the Column and Variable Data-type Hints Feature ..91

Using the Keyword Capitalization and Formatting Feature...92
Using the Automatic Tab-Replacement Feature...93
Using the Smart Auto-Indent Feature ...93
Using the Smart Undo Feature ...94
Using the Smart Text Navigation Feature ...94
Highlighting of Trailing White-space Characters...94
Highlighting of Matching Column/Value Pairs in INSERT Statements ...95
Highlighting of Current SQL Statement with a Single Keypress ...96
One-Click Actions for Specially Formatted Comments ...96
Converting SQL Queries to Application Code...97

CHAPTER 4, Code Structure View and Bird's Eye View ..98
Overview of Code Structure View ...98
Working with the Code Structure View Interface ..99

Code Navigation ..99
Expanding / Collapsing Multiple Levels..99
Grouping Similar Commands...99
Filtering Content by Schema Object References ...99
Scrolling Content ...100
Resizing Content ...100
Persisting Code Structure View ...100

Overview of Bird's Eye View ...101
Using Partial Code Display vs. Full Code Display..101

Working with the Bird's Eye View Interface...102
Code Navigation ..102
Refreshing Content ..102
Scaling the View ..102
Scrolling Content ...103
Resizing Content ...103
Persisting Bird's Eye View ...103

CHAPTER 5, Code Formatter and Beautifier...105
Overview ...105

Applying Formatting Styles to Code...105
Formatting Styles, Rules and Options...107

General Options...108
Spacing, Line Breaks, and Text-Wrapping Options ...108
Commas and Logical Operators Formatting Options...111
Keywords ...111

Statement-level Formatting Patterns...111
Special Formatting Rules ..112
Testing Code Formatter Effective Settings ...114
Commenting and Uncommenting Code Blocks ..114

Contents

 -5-

Formatting SQLCMD Scripts...115
Command Line Interface...115

Using DOS Batch Processing to Format Multiple SQL Files..116

CHAPTER 6, Database Explorer ...117
Overview ...117

Persisting Database Explorer Pane ...118
Content Filtering and Sorting ...118
Using Context Menus...119
Using Drag-and-Drop...120

Managing Database and Schema Objects..120
Source Code Control Integration...121
Database and Schema Scope Aggregated Statistics ...121
Updating Table and Index Statistics..122
Refactoring Existing Schema Objects...123
Using Table Information Reports ..123
Performing Database and Schema Scope Backup and Restore..123

CHAPTER 7, Code Entry Automation using Code Snippets ...125
Overview ...125

Auto-formatting Generated Code...129
Macro-variables and Dynamic Code Generation ..129

Using Passive Macro-Variables ...129
Using Active Macro-Variables..130
Macro-variables Execution...134
Using Macro-variables with Text Prefixes and Text Suffixes ...134
Escaping $ Symbols in Snippet Codes ..135

Custom Interractive Prompts...135
Special Cases for Column/Variable and Argument/Value Pairs ...138
Code Snippet Execution Modes..139
Advanced Code Entry Automation ..139

Advanced Snippet Programming ...139
$$…$$ Macro ..140
$OBJECT(…)$ Macro..145
$COLUMNS(…)$ Macro ..147
$ARGS(…)$ Macro..148
Other Special Macros ..149
$CURRENT(…)$ Macro ..150

CHAPTER 8, Smart Database Refactoring ..154
Overview ...154
Code Refactoring Macros..155
Refactoring Wizard Dialog ..156
Code Dependencies Analyzer...159
Code References Analyzer ...161
Extract View ..163
Extract Procedure..163

Contents

 -6-

Rename Table or View..164
Rename Table or View Column ..166
Rename Procedure or Function ..168
Rename Procedure or Function Parameter ..169
Rename Local Variable ...170
Add Table Column...170
Drop Table Column ...172
Add Procedure or Function Parameter ...174
Drop Procedure or Function Parameter ..176
Drop Procedure or Function..178
Drop Table or View..180
Qualify Object Names ...182
Reformat and Beautify Database Code ..183

CHAPTER 9, Interactive SQL Reference System..185
Overview ...185
Invoking the SQL Reference System..185
Using the SQL Reference Index and Table of Contents...186

Persisting SQL Reference Table of Contents ..186
Searching Contents ...186
Resizing Table of Contents..187

Using SQL Command Syntax and Functions Lookup...187
Working with the Visual SQL Command Builder Interface..188

Scrolling Content ...190
Resizing the Visual SQL Command Builder window..190
Moving the Visual SQL Command Builder window..190
Navigating Recently Visited Topics..190

CHAPTER 10, One-click DDL Code View...191
Overview ...191
Working with the Code View Interface ..193

Navigating Code Views..193
Scrolling Content ...193
Resizing Content ...193
Copying Code ..193
Comparing Code Between Code View and Editor ...194
Comparing Code Between Code View and a File..194
Customizing DDL Code Reverse-Engineering for Code View ...194

CHAPTER 11, Data Display and Editing ..196
Overview ...196
Working with Data Grid Interface ..197

NULL Values..197
Long and Multi-line Text Values...197
Expanded Cell View...198
Scrolling Content ...198
Resizing Content ...198
Copying Data to the Clipboard...199

Contents

 -7-

Copying Data to a New Excel Worksheet ..199
Saving Data to Files...200
Printing Data and Saving it as Reports ..200
Scripting Data as SQL INSERT Commands ..201
Loading All Records...202
Sorting Content..202
Filtering Content ..203
Finding Data Values ..204
Finding Columns..206
Freezing Grid Columns ..207

Changing Data ..207
Activating Edit Mode ..207
Cell Value Manipulations ...208
Row Manipulations ..208
Undoing Changes ..208
Saving and Scripting Changes...208

Customizing Fonts...209
Customizing Data Display Formats...209

Column Specific Formats...209
Data-type Specific Formats..210

Conditional Formatting ..211
Applying Conditional Formatting Rules ..211
Highlighting Cells with Unique or Duplicate Values ...212
Clearing Rules ...212
Using "Stop if True" Option ..212
Managing Rules...213
Saving and Reusing Rules...213

Data Grid Limitations...213

CHAPTER 12, Working with Workspace Database...214
Overview ...214
Saving Query Results to Workspace Database..214
Executing Queries and Reports Against Saved Data ...214
Attaching CSV Files as External Tables ...214
Exporting Data from Workspace Database...215
Backing Up and Restoring Workspace Database...215

Offline Database Backup ...215
Online Database Backup ...215
Database Restore..215

CHAPTER 13, Scripting, Exporting, and Importing Data ...216
Overview ...216
Exporting Table Data to Flat Files, Excel Files, and Apache Parquet Files......................................216
Exporting Multiple Tables in a Schema or Database ..216
Exporting Query Results to Flat Files..217
Exporting Query Results to Excel ...217
Exporting Data to Other Programs Using Clipboard ...218
Exporting Tables, Schemas, and Databases to XML and JSON Files ...219

Contents

 -8-

Overview..219
Export to Flattened 3-Level XML or JSON Data Schema ..219
Export to Multi-Level Hierarchical XML or JSON Data Schema with Nested Tables221

Scripting out Table Data..224
Handling Date and Time Values ..225
Handling Special Symbols in Text-based Values...227
Handling Binary Data Values ...227

Importing Data from Excel and Flat Files ..227
Import Excel Data Dialog Usage and Controls...228

Importing Data from Apache Parquet Files ...231
Importing Tables, Schemas, and Databases from XML and JSON Files ...232

Overview..232
Importing XML Data Schema...232
XML and JSON Import/Export Options ..236

Bulk Loading Data into Schemas and Databases...237
Overview..237

Copying Data Between Database Servers..238
Overview..238
Method 1 – Using Data Transfer Utility ..238
Method 2 – Using Data Factory ...242
Method 3 – Using Data Scripting ...242
Method 3 – Using Data Export and Import Utilities ..242

Loading Data Concurrently into Multiple Database Servers ...243
Method 1 – Using the ETL Orchestrator ..243
Method 2 – Using Scripted Datasets ...243
Method 3 – Using Command Line Interface...243

Scheduling Automated Data Import, Export, and Transfer Operations ..243
Managing Scheduled Tasks...244

CHAPTER 14, Executing SQL Scripts..245
Overview ...245
Handling of Batch Delimiters...245
Working with the SQL Code Execution Interface..246

Invoking the SQL Code Execution Function for the Current Connection ...246
Reading and Understanding Code Execution Output ..247

Messages..247
Query Results ...247

Working with Query Results...248
Enabling and Reading Oracle's DBMS_OUTPUT Output..248
Scrolling Content ...248
Locating Errors ..249
Resizing Content ...249
Limitations..249

Using Code Execution History ..249
Overview..249
Filtering SQL Execution History ...250
SQL History Retention Period and Other Options..251
Query Execution Statistics ...251

Using SQL Preprocessor for Advanced Code Execution..251

Contents

 -9-

CHAPTER 15, Executing SQL Scripts on Multiple Servers ...255
Overview ...255
Running Scripts on Multiple Servers ...255

Code Execution and Output Options ...256
Managing Connection Groups and Connection Settings ...257

CHAPTER 16, Scheduling SQL Script Execution ...259
Overview ...259
Scheduling SQL Scripts ..259
Scheduled Task Properties ...261
Modifying Scheduled SQL Scripts...264

CHAPTER 17, Generating SQL Procedures and Automating Database Management Operations266
Overview ...266
Code Generator Macros..267
Creating and Customizing Code Templates and Template Groups ...267

Adding, Deleting and Disabling Templates ..268
Practical Example – Creating a New Template for Data Retrieval with Paging ...270
Advanced Methods for Programming Code Generator Templates ..272

Generating SQL Code...272

CHAPTER 18, Generating Test Data ..274
Overview ...274
Working With Test Data Generator ...275

Common Concepts ..275
Opening and Saving Projects ..275
Adding Tables to a Project...276
Removing Tables from a Project..276
Modifying Table Data Generation Options ...276
Scrolling Content ...277
Resizing Content ...277
Populating Tables with Test Data ..278
Previewing and Comparing Results ...278
Creating Seeded Test Data ...279
Loading Data Samples from Another Database Server or Database...280

Data Generation Options...280
Project Scope Options ...280
Table Scope Options ...281
Column Scope Options ..281
Specifying Lookup Table for Column Data Source Values ..284
Specifying the Data Library File for Column Data Source Values..285
Handling Date and Time Values ..285
Handling Numeric Values ..285
Handling Binary Values..286
Using Regular Expressions..286

Data Libraries ..287
Predefined Data Library Files ..288
Managing Data Library Files ..295
Managing Data Library Queries ...296

Contents

 -10-

Command Line Interface...297

CHAPTER 19, Unit-testing Database Code..299
Overview ...299
Working With the Unit Testing Framework..300

Common Concepts ..300
Opening and Saving Projects ..301
Adding New Unit Tests ..302
Adding Generic Test Cases to Units ..303
Adding New Test Case and Unit Versions ...303
Removing Test Cases and Units ...303
Disabling and Enabling Test Cases and Units ...303
Modifying Test Cases and Units ..304
Modifying Project Properties ..304
Testing Individual Test Cases and Units..305
Running Unit Test Projects ..305
Scheduling Unit Test Project Runs ..305
Testing in Stress-test Mode ...307
Scrolling Content ...307
Resizing Content ...307

Project Scope Options...308
Unit Test Scope Options ...309
Test Case Scope Options ...310

Initialization ..310
Execution ...310
Cleanup ...311
Status and Performance Checking ..312
Custom Validation Using SQL Code..314
Custom Validation Using Scripting Interfaces ..315

Using Custom Templates for Generation of Test Cases ..316
Customizing Test Case Templates ...317

Adding and Removing Unit Test Types..317
Adding and Removing Test Case Templates...319
Modifying Templates..319

Command Line Interface...320

CHAPTER 20, SQL Syntax Checker ...321
Overview ...321
Automatic Mode ..321
Manual Mode...322
Special Considerations..322
Working with SQL Syntax Checker Automatic Interface...324

Starting the SQL Syntax Checker ..324
Controlling Syntax Check Frequency...324
Turning off Automatic Syntax Checking Mode ...324

Working with SQL Syntax Checker Manual Interface ...325
Starting the SQL Syntax Checker ..325
Scrolling Syntax Check Content ..325
Locating Syntax Errors...325

Contents

 -11-

Resizing Content ...325

CHAPTER 21, SQL Performance Monitoring and Tuning..327
Overview of Performance Tools..327
Authorization Requirements..327
Performance Dashboards ...328

Requirements ..328
Overview of SQL Performance Analyzer and Execution Plans ..329

Performance Evaluation Rules ..329
SQL Execution Plans and Query Tuning ..330

Overview of Query Tuning ...330
Query Execution Plans ..330
Reading and Understanding Execution Plans..333
Query Plan Types, Estimated vs. Actual..334
Locating Performance Impacting Operations for Query Tuning ...335
Comparing Execution Plans of Different Query Versions...336
Reviewing and Comparing Historical Execution Plans ..336
SQL Server Query Store Explorer and Reports ...336
Oracle Active Session History Explorer ...338
Oracle Automatic Workload Repository Explorer and Reports ..338

SQL Server SQL Profiler ...339
Oracle SQL Profiler ...340
PostgreSQL SQL Profiler ..341
Identifying Long Running and Resource Intensive Recurring SQL Queries.....................................343

CHAPTER 22, Spell Checker...344
Overview ...344
Using On-demand Spell Checker..344
Using Real-time Spell Checker ...346
Choosing Spell Check Language..347

CHAPTER 23, Database Source Code Control Interface ...348
Overview ...348

Concepts and Source Code System Differences...348
Prerequisites ...348
Repository ...349
Workspace ..349

Creating a Workspace ...349
Multiple workspaces...350

Connecting to SVN Repository Server..350
Connection parameters:...350

Connecting to TFS Repository Server ..351
Connection parameters:...351

Connecting to Git Repository Server...352
Connection parameters:...352

Connecting to Perforce Repository Server..353
Connection parameters:...353

Basic Database to Workspace to Repository Comparison ...354

Contents

 -12-

Advanced 3-Way Code Comparison and Synchronization ...354
Configuring Multiple Source Code Control Projects..355

Managing SCS Projects...355
Repository Browser ...356

Repository Browser Menus..357
Icon Overlays and Item Colors...357
Content Filtering ..358

Target Editor Context Menus ..358
Database Explorer Integration ..358
Choosing Project Path in Repository ..358
Getting Source Code from Source Control Repository Server ...359
Getting Source Code from Database Server ..359
Submitting Changes to Source Control Repository Server...359
Submiting Changes to Database Server...360
Editing Schema Object Code ..361
Database Object Change History..361
Additional Workspace and Repository Management Commands ..361

Lock and Unlock ..361
Cleanup ...362
Undo ..362
Create Folder...362

Automating Source Control Repository Updates ..362
Automating Database Updates from Source Control Repository ...364
Scheduling Automated Source Control Operations ..364

CHAPTER 24, Reporting, Data Pivot and Analytics ...367
Overview ...367
Standalone Reports...367

Predefined Reports ..369
Working with Report Designer ...370

Overview ...370
Keyboard and Mouse Controls..370
Report Variables ...371
Report Objects ..372
Report Bands ..373
Text Objects ..373
Expressions...375
Groups ..376
Aggregate Functions ...377
Page and Report Totals ..380
Conditional Highlighting...380
Multi-page Reports ..380
Nested Reports (Subreports) ..381
Report Scripts ...382

Running Reports, Printing, Saving to PDF files ...382
Adding Reports to Database Explorer ...383

Data Grids Integrated Reporting ...383
Changing Column Sizes ..385

Contents

 -13-

Data Pivot and Advanced Analytics ..385
Overview..385
Pivot-grid User-Interface ..386
Quick Tutorial...387
Dimensions and Measures ..389
Totals ...391
Drill-Down/Up and Drill-Through ..391
Partial Rotation and Full Transposition ..392
Grouping ..393
Sorting ...394
Filtering ..394
Conditional and Continuous Data Highlighting...395
Saving Data-Pivot for Continued Data Analysis...397
Printing Data-Pivot and Saving it ...398

Charts ..398
Basic Chart Operations..399
Data Source Selection ...400
Customizing Visual Properties ...400

CHAPTER 25, Code Compare Utility ..402
Overview ...402

Using External File Compare Tools ...403
Using Code Compare Dialog ..403

Color Highlighting ..403
Dialog Controls: ...404
Selecting Text Files for Comparison ..405
Selecting Window Targets For Comparison...405
Using Synchronized and Independent Content Scrolling ...405
Navigating Content ..406
Resizing Content ...406

Visualizing Code Differences ..407

CHAPTER 26, Data Compare Utility ...409
Overview ...409
The Data Compare Dialog...409

Comparison Scope and Options ..410
Selecting Databases, Schemas, and Tables for Comparison ..411
Matching Tables and Columns ..412
Matching Differently Named Tables...413
Defining and Matching Key Columns...413
Data-Types Handling and Compatibility...414
Data Comparison Results ..414
Color Coding..416
Reducing the Clutter, Hiding Columns without Differences..416
Printing Comparison Results Summary Report and Exporting it to Excel and PDF.....................................416
Saving Complete Comparison Results to External Files..417
Copying Sample Comparison Results to Clipboard ...418
Synchronizing Data in Destination Tables ...418
Resizing Content ...418
Opening and Saving Projects ..418

Scheduling Automated Data Comparisons ...419

Contents

 -14-

Command Line Interface...419

CHAPTER 27, Schema Compare Utility ...421
Overview ...421

How Schema Comparison Engine Works ..422
The Schema Compare Dialog...424

Navigation..424
Comparison Scope and Options ..425
Selecting Servers, Databases, Schemas, and Objects for Comparison ..427
Opening and Saving Projects ..428
Schema Comparison Results ..429

Color Coding ...430
Action Legend ...430
Resizing Content ...430

Visual Comparison Results for Procedural Objects ...430
Filtering Comparison Results...430

Category Filters...431
Name and Attribute Filters...431
Custom Filter Expressions ..431
Functions Supported in Custom Filter Expressions...432
Saving, Reusing, and Managing Filters...433

Printing Comparison Report, and Exporting it to Excel and PDF ...433
Schema Synchronization ...434

Extending and Customizing Schema Compare Functions..436
Comparison Rules ...436
Adding, Copying, Deleting and Disabling Comparison Rules ..436
Customizing Default Comparison Options ...438
The Anatomy of Queries ..441

Query Properties ...442
Attribute Value Modifiers ...444
Using Macros in Queries ...446

The Anatomy of Templates..446
Template Properties ..446
Using Macros in Templates...448
Use of SQL Assistant's Standard Macros ...449
Use of Comparison Engine-specific Macros..449
Use of Macros Returning Schema Object Attributes ...450
Use of Text Prefixes and Suffixes with Macros, and Default Values ...450
Additional Modifiers for Macro-variables ...451
Calling Nested Template ...451

Extending Schema Comparison, a Practical Example...452
Scheduling Automated Data Comparisons ...456
Command Line Interface...456

CHAPTER 28, Job Compare Utility...458
Overview ...458

How Job Comparison Engine Works ...458
The Job Compare Dialog ..458

Navigation..458
Comparison Options ..459
Selecting Servers for Comparison ...459

Contents

 -15-

Job Comparison Results..460
Color Coding ...461
Action Legend ...461
Resizing Content ...461

Printing Comparison Report, and Exporting it to Excel and PDF ...461
Job Synchronization...462

CHAPTER 29, Code Search & Replace in Files...464
Overview ...464
Supported File Search Options ...464
Working With Search Results ...466

CHAPTER 30, Code Search & Replace in Databases...468
Overview ...468
Running Fast Single-Server Code Search ..468
Searching Code Across Multiple Servers..469
Replacing Code Across Multiple Servers..470

Multi-server Code Search and Replace dialog...472
Using Context SQL Search ...474

CHAPTER 31, Data Search & Replace ...475
Overview ...475
Searching Data Across Multiple Servers...475
Replacing Data Across Multiple Servers...477
Working with Data Search Results Interface...479

NULL Values..479
Long and Multi-line Text Values...480
Expanded Cell View...480
Scrolling Content ...481
Resizing Content ...481

CHAPTER 32, Visual Bookmarks ...482
Overview ...482

Bookmarks Enumeration..484
To-Do Tasks, and Other Special Tags...484

Working with Visual Bookmarks..485
Creating Bookmarks ..485
Removing Bookmarks..486
Jumping to Bookmarked Line ..486
Loading Saved Bookmarks from Comments..487

CHAPTER 33, To-Do Tasks and Reminders..488
Overview ...488
Options ..489
Working with Tasks and Reminders Interface ..490

Navigation..490
Opening Source Files and Navigating to Bookmarked Lines ...490
Filtering the Tasks and Reminders List..490
Scrolling Content ...490
Resizing Content ...490

Contents

 -16-

Refreshing and Clearing the Tasks and Reminders List ..491

CHAPTER 34, Integrated Development Environments ..492
Overview ...492
Standard SQL Editor ...493

Connecting to Databases...493
Working with Databases ..493

Professional SQL Editor IDE...494
PDB and Edition Views of Your Oracle Database Server ..494
Tabbed and MDI Layouts...494

Tab Management Functions..494
Text Change Map ..495
Search and Replace Functions..495

Search and Replace Options ..495
Using Regular Expressions ...496
Simple matches...496
Escape sequences..497
Character classes..497
Metacharacters ...498
Metacharacters - line separators...498
Metacharacters - predefined classes...499
Metacharacters - word boundaries ..500
Metacharacters - iterators ...500
Metacharacters - alternatives ..501
Metacharacters - sub-expressions ..501
Metacharacters - back-references...502
Modifiers..502
Perl extensions..503
Inline Comments ...503

Matching Words Navigation ...503
Advanced Text Processor..503

Running the Advanced Text Processor ...504
Configuring Text Processing Rules ...505
Text Processing Rule Group Properties ..506
Text Processing Rule Properties...506

Fast Synchronous Renaming of Multiple Identifiers...507
Code Views, Code Folding, and Code Navigation ...509

Zoom...509
Word Wrap, Ruler, Column Markers ...509
Incremental Search ...509
Matching Identifier Navigation ...509
Line Jumps..509
Bookmarks ..509
Code Regions, Folding, and Outlining...510
Code Outlining ..511
Line Numbering...511
Hyperlinks ...512
Code Structure and Code Page Views for Fast Code Navigation ...512

Split Screen for Synchronous Off-line Code Editing ..512
File Operations, Formats, and Encoding..513
Printing and Documenting Your Code ...513

Printing ..513

Contents

 -17-

Saving Code for Documentation Purposes ...514
Connecting to Databases...514
Working with Databases ..514
Running SQL Queries..514
Using Source Code Control ...515
Recording Editor Macros for Repetitive Text Operations ...515

Macro Commands...517
Customizing SQL Editor Options and Behavior ...523
Customizing Syntax Highlighting ...525

CHAPTER 35, Document Manager and Code History Add-on...527
Overview ...527

Enabling and Customizing Document Management Interface ...527
Restoring Tabs, Connections, Bookmarks, Edit Positions..528
Code Change History ..529
Reopening Recently Opened Files and Unnamed Scripts..530
Comparing Script Versions ...532

Method 1..532
Method 2..532

Saving Tabs, Bookmarks, Edit Positions ..532

CHAPTER 36, Testing Database Performance..534
Overview ...534

Common Concepts ..535
Worker Processes and Threads ..535
Benchmark and Workload Templates ..535
Using Database Benchmark in Conjunction with Test Data Generator..536

Scalability ..536
Working with Database Benchmark ..537

Opening and Saving Projects ..537
Adding Worker Processes to a Project ..537
Removing Worker Processes from a Project ...538
Disabling and Enabling Worker Processes ..538
Modifying Database Workload Generation Options ...538
Saving and Analyzing Load Test Results...539
Scrolling Content ...540
Resizing Content ...540

Running Database Load Test ...540
Scheduling Database Benchmark Project Runs ..541

Database Benchmark Options ..543
Project Scope Options ...543
Worker Process Scope Options...546

Command Line Interface...547

CHAPTER 37, Improving Code Reusability ...549
Overview ...549
FTS Code Repository..549

Managing FTS Code Repository..550
The Light Bulb ...552

Contents

 -18-

Advanced Context-based SQL Search ...553
Automatic search ...553
Manual search ...554

Tuning Code Context Behavior ...555

CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows557
Overview ...557

ER Diagrams ...557
Code Dependencies Diagrams ..558
Data Flow Diagrams ..558

The Database Model Workspace..560
Main Components and Controls ..560

Working with Diagrams ...561
Single Object and Multi-Object Operations ..561
Selecting Objects...561
Grouping and Ungrouping Objects ..561
Moving, Rotating, and Resizing Objects ..562
Adjusting Connector Lines ...562
Appearance ...563
Customizing and Creating Themes..564
Navigation..565

Pan Mode..565
Zoom...565
Search...565
Bird's Eye View ...565

Auto-layout...565
Working with Layers ..565
Adding Schema Objects ..566
Adding Relations and Dependencies...567
Using Notes ...567
Using Images...568
Using Stock Icons ..568
Printing Diagrams ..568
Saving Diagrams to Images and PDF Files ...568

Working with Model ...569
Creating Blank Model...569
Reverse-engineering Existing Database Schemas..569
Adding Existing Schema Objects to Model ..569
Generating and Executing Database Update Scripts...570
Refreshing Model from Database ..570
Saving and Reopening Models ..570

CHAPTER 39, SQL Code Visualizer and Database Documenter...571
Overview ...571
SQL Code Visualizer ...571
Visual Database Documenter ...572

CHAPTER 40, Sanitizing and Obfuscating Database Data ..574
Overview ...574
Working with Data Sanitizer ..574

Opening and Saving Projects ..575

Contents

 -19-

Scheduling Data Sanitization During Quiet Hours ..575

CHAPTER 41, Cloning Databases, Schemas, and Schema Objects...576
Overview ...576
Working with Clon It ..577

CHAPTER 42, Tab Manager, Task Manager, and Database Session Monitor..................................581
Overview ...581
Tab Manager ...581
Task Manager ...582
Session Monitor...583

Session Monitor Capabilities and Customizations ...584

CHAPTER 43, Command Selector..586
Overview ...586
Configuration ...587

CHAPTER 44, Visual Database Management..588
Overview ...588
Usage ..589

Creating New Objects ..590
Updating Existing Objects..591
Database Management Operations ...592
Database Change Preview and Manual Corrections ...593
Error Handling..593
Smart Schema Refactoring..593
Scheduling Database Changes ...593

CHAPTER 45, Analyzing Application Data Lineage ...594
Overview ...594
Quick Start...595

Preparing for Data Lineage Analysis ...595
Running Data Lineage Analysis...595

Application Log Files ...598
Enabling ODBC Tracing..599
Centralized Log Management Systems ..600
Creating, Customizing, and Testing Parsing Rules ..600

About Parsing Rules ..600
Creating and Customing Parsing Rules ...601
Parsers for Text-based Application Logs ...601
Parsers for JSON-based Application Logs...602
Parsers for ODBC and Driver-trace Logs...605
Parsers for XML-Files ..605
Parsers for Application Source Files..605

Working with Data Lineage Diagrams...606
Main Components and Controls ..606
Multi-tabbed Multi-document Interface...607
Single Object and Multi-Object Operations ..607
Selecting Objects...607
Grouping and Ungrouping Objects ..608

Contents

 -20-

Moving, Rotating, and Resizing Objects ..608
Connector Lines and Mouse-over Hints...608
Diagram Appearance, Navigation, Pan Mode, Zoom, and Search ..609
Using Notes ...609
Printing Diagrams ..609
Saving Diagrams to Images and PDF Files ...610

CHAPTER 46, Automating ETL Operations and Other Processes ...611
Overview ...611
Designing Automation Processes ...612

Control Flow...612
Linear task dependencies ...612
One-to-many task dependencies ..613
Many-to-one task dependencies ...613

Adding Tasks ...613
Modifying Tasks...613
Deleting Tasks ...614
Disabling Tasks ...614
Connecting Tasks ..614
Changing Task Connection Types...615
Tasks Execution Groups..615
Common Edit and File Operations...615
Changing Database Connections ..616
Adding Annotations and Images ..616

Running and Debugging..616
Progress Reporting..616
Running Single Task..617
Running Entire Project ...617
Pausing Project Execution ...617
Aborting Project Run..617
Project Execution with Breakpoints..617

Scheduling Unattended Runs ...618

CHAPTER 47, Querying and Manipulating CSV Files ..619
Overview ...619
The Data File Query Utility ..619
The Data File Transformation Utility..620

CHAPTER 48, Customizing SQL Assistant's Behavior ..622
Overview ...622
Customizing Functional Hot Keys ...623
Customizing Code Snippet Activation Keys..625
Managing SQL Assistant Load Methods...626

Target Editor Monitoring and Integration..626
Native Add-ons ..627
Add-on Installations ...627

Customizing SQL Assistant Menus...628
Custom Menu Items in the Main Menu ..629
Custom Menu Items in Right-click Context Menus ..630

Customizing Target Editor Menu Integration...632

Contents

 -21-

Additional Menus in SQL Server Management Studio Grid Controls...633
Managing Plugins for SQL Assistant...633
Customizing Settings for Eclipse-based Target Editors..634
Customizing SQL Assistance Types ...635
Customizing Database Catalog Queries ...638

Two Queries for Retrieving Table Column Information ..640
Special Macro Variables Allowed in Database Catalog Queries..641

Using Advanced Filtering for Fast Database Catalog Data Access..641
Using Object Type Filtering...642
Changing the Order of Objects in Common Object Names Popup ..643
Changing the Order of Tables in Context Popups ..643
Changing the Appearance of JOIN Suggestions ..645
Customizing Performance Analysis Options...647
Managing Database Connections ...648
Customizing Brackets and SQL Code Matching and Navigation..650

Matching Brackets and Matching Block Delimiters ..650
Matching Names Highlighting ..652

Customizing Existing and Creating New Code Snippets ..653
Customizing Keywords Used With Keyword Prompts and the Capitalization Feature654
Customizing List of Preferred Keywords in Keyword Prompts..656
Customizing Symbols Triggering Column Name Popups ...657
Customizing Handling of Object and Column Names in Case of Keyword Name Conflicts.............658
Customizing Code Auto-completion Options ..659
Customizing Code Formatting Patterns ..664
Customizing Bookmark Handling Options...666
Customizing Error Handling Options...667
Customizing Data Type Mapping for Data Transformations ...668

CHAPTER 49, Registering and Configuring Targets for SQL Assistance669
Overwiew of Target Editor Registration Modes ..669
Installing and Enabling SQL Assistant Add-ons..669
Registering New Targets for SQL Assistance...671
Unregistering Previously Registered and Preconfigured Targets...673
Disabling Targets Without Deleting Their Registrations ...673
Troubleshooting Application Conflicts ...673
Configuring Eclipse-based Target Editors...674
Configuring IBM Data Studio Targets ...676
Configuring Native Tools Provided with SQL Server 2000 and SQL Server 2005677
Configuring Native Tools Provided with SQL Server 2008 ...678
Configuring Native Tools Provided with SQL Server 2012, 2014, 2016, 17.x, 18.x679
Configuring Toad Targets..679
Configuring UltraEdit Targets..680
Configuring Visual Studio .NET, 2003, 2005 and 2008 Targets ...681

Contents

 -22-

Configuring Visual Studio 2010, 2012, 2013, 2015, 2017, and 2019 Targets682
Configuring DB Tools for Oracle Targets ..683
Configuring Oracle SQL Developer Targets ...683
Configuring Oracle JDeveloper Targets..684
Other Target Environments...684

Most Common Compatibility Issues and How to Resolve Them..684
Resolving Keyboard Hotkey Conflicts ...685

CHAPTER 50, Managing Scheduled Tasks ...686
Overview ...686
Using Scheduled Tasks Dialog ...687

CHAPTER 51, Backing Up and Sharing SQL Assistant Settings..688
Overview ...688
Backing up SQL Assistant Settings Using the File System ..688
Backing up SQL Assistant Settings Using the Import/Export Utilities...688

Command Line Backup to XML Files...690
Restoring SQL Assistant Settings from a Backup File..690
Restoring SQL Assistant Settings Using the Import/Export Utilities ...690
Sharing SQL Assistant Settings Between Team Members...691
Automating Distribution and Sharing of SQL Assistant Settings ..691
Customizing Add-on Behavior...692

CHAPTER 52, Installation and Uninstallation ...694
Installation ...694
Uninstallation...694
Checking and Installing Updates...694

Manual Mode ...694
Automatic Mode...695

APPENDIX A, Hardware and Software Requirements..696

APPENDIX B, License Agreement..698

About This Guide

 -23-

About This Guide

This manual describes the features of the SoftTree SQL Assistant product, including how to:

 Use the graphical user interface

 Register target editors for SQL assistance

 Use code completion features, SQL Intellisense SQL reference functions, and database integration
options

 How to execute SQL code, check SQL syntax, bulk-generate SQL procedures, and generate test data

 How to use many other built-in features.

Unless otherwise noted, the features and how-to instructions described in this manual apply to all supported
database management systems running on any supported platform.

Intended Audience

This document is for Database Developers and Database Administrators.

Conventions Used in This Document

This section describes the style conventions used in this document.

Italic

An italic font is used for filenames, URLs, emphasized text, and the first usage of technical terms.

Monospace

A monospaced font is used for code fragments and data elements.

Bold

A bold font is used for important messages, names of options, names of controls and menu items, and keys.

User Input

Keys are rendered in bold to stand out from other text. Key combinations that are meant to be typed
simultaneously are rendered with "+" sign between the keys, such as:

Ctrl+F

Keys that are meant to be typed in sequence will be separated with commas, for example:

About This Guide

 -24-

Alt+S, H

This would mean that the user is expected to type the Alt and S keys simultaneously and then to type the H
key.

Graphical symbols

 - This symbol is used to indicate DBMS specific options and issues and to mark useful auditing tips.

 - This symbol is used to indicate important notes.

Abbreviations and Product Reference Terms

DBMS – Database Management System

Oracle – This refers to all supported Oracle® database servers

SQL Server – This refers to all versions of Microsoft® SQL Server™ database servers.

DB2 for LUW– This refers to all versions of IBM® DB2® UDB database servers on all supported Linux Unix and
Windows platforms, unless platform and version are specially mentioned in the text.

DB2 for iSeries – This refers to all versions of IBM® DB2® UDB database servers on i5/OS platform (formerly
AS/400 midrange mainframe servers), unless platform and version are specially mentioned in the text.

MySQL – This refers to all versions of MySQL™ database servers starting with version 5.0.

PostgreSQL – This refers to all versions of PostgreSQL™ database servers starting with version 8.0.

Amazon Redshift – This refers to all versions of Amazon Redshift database servers.

Sybase ASE, and ASE – This refers to all versions of Sybase® Adaptive Server Enterprise™ database
servers.

Sybase ASA, and ASA – This refers to all versions of Sybase® Adaptive Server Anywhere™ and Sybase®

SQL Anywhere™ database servers.

Access – This refers to Microsoft® Access™ databases versions 2003, 2007, and 2010.

Greenplum – This refers to Pivotal Greenplum ® database servers.

Netezza – This refers to IBM Netezza ® database servers starting with version 7.0.

Teradata – This refers to all supported Teradata® database servers.

SQLite – This refers to SQLite database servers starting with version 3,0 and later.

About This Guide

 -25-

Trademarks

SoftTree SQL Assistant, DB Audit, DB Mail, 24x7 Automation Suite, 24x7 Scheduler, 24x7 Event Server, DB
Tools for Oracle are trademarks of SoftTree Technologies, Inc.

Windows 2000, Windows 2003, Windows 2008, Windows XP, Windows 7, Visual Studio, IntelliSense are
registered trademarks of Microsoft Corporation.

Microsoft SQL Server and SQL Azure are registered trademarks of Microsoft Corporation.

Oracle and MySQL are registered trademark of Oracle Corporation.

IBM and DB2 are registered trademarks of IBM Corporation.

Teradata is registered trademark of Teradata Corporation

PostgreSQL is registered trademark of The PostgreSQL Global Development Group.

Sybase Adaptive Server Anywhere, Adaptive Server Enterprise, SQL Anywhere are registered trademarks of
Sybase Inc an SAP company or its subsidiaries.

Toad for Oracle, Toad for SQL Server, Toad for DB2 and Toad for MySQL are trademarks of Dell Software.

All other trademarks appearing in this document are trademarks of their respective owners. All rights reserved.

(this page is intentionally left blank)

CHAPTER 1, Overview of SQL Assistant

 -27-

CHAPTER 1, Overview of the SoftTree SQL
Assistant

Introduction

SoftTree SQL Assistant enables database developers and DBAs to realize amazing improvements in code
quality and accuracy. It integrates with many widely used database editors, database management and
development environments, as well as DBMS native utilities, transforming them to RAD database development
tools. SQL Assistant delivers unparalleled support for code typing, automatic code completion, syntax
references and validations, and database object and attributes browsing. It is quite simply the ultimate SQL
code assistance solution available.

SQL Assistant is fast and can be used with both small and very large database systems. It is very flexible and
can easily be customized by users to match individual coding habits and project requirements.

Key Benefits

 Dramatically increases database coding productivity, providing superior SQL Intellisense and type-
ahead functionality.

 Improves code quality and accuracy. Supports best in class advanced SQL code formatting and layout
functions.

 Provides fast code navigation and real-time code syntax checking functions.

 Provides real-time code performance analysis and suggestions.

 Supports 9 of the most popular database systems.

 Integrates with many SQL and non-SQL editors.

 Provides interactive SQL help and code assistance system.

 Provides a full set of functions for SQL editing, code execution, data viewing, and SQL scheduling.
These functions can be used with all supported environments including all registered non-SQL editors.

 Provides data import and export facilities available for all registered SQL and non-SQL editors.

 Provides a full-featured, database source code control interface.

 Provides an advanced database schema and database data comparison tools with fully customizable
comparison rules and schema change synchronization templates.

 Provides an advanced set of tools for code generation and deployment to multiple database servers.

 Is fast and has small disk and memory footprints.

 Can be installed easily and quickly without interrupting existing processes and settings; ready for
immediate use.

CHAPTER 1, Overview of SQL Assistant

 -28-

32-bit and 64-bit Versions

SQL Assistant provides dual interface for 32-bit and 64-bit Windows versions. It supports both 32-bit and 64-bit
target editors and also 32-bit and 64-bit database drivers. The following table describes support by the
environment type

 Windows 32-bit Windows 64-bit

32-bit target editors Yes Yes

64-bit target editors N/A Yes

32-bit native database drivers (OCI,
LibMySQL, LibPQ, SQLite) editors

Yes Yes

64-bit native database drivers (OCI,
LibMySQL, LibPQ, SQLite) editors

N/A Yes

ADO.NET drivers (environment agnostic) Yes Yes

32-bit ODBC drivers (Unicode) Yes Yes

64-bit ODBC drivers (Unicode) N/A Yes

 Important Notes:

 Unless you are using ADO.NET database connectivity, for your database connections you must
choose database driver having the same 32-bit or 64-bit architecture as the target editor. For
example, if you run SQL Assistant within 32-bit Visual Studio on 64-bit Windows platform, you can use
32-bit database drivers only.

 The SQL Assistant Standard Edition includes Simple SQL Editor which is a 32-bit application. You can
use 32-bit database drivers and ADO.NET with that target editor. You can also use SQL Assistant
Standard Edition with 64-bit target editors like Dell's Toad ® which you can use with 64-bit database
drivers.

Licensing and Editions

The SQL Assistant software is available in two editions: Standard and Professional. The binary code is the
same in both editions but their feature coverage is not. The Standard Edition provides only the basic features
required for database development. The Professional Edition provides all the features available in the SQL
Assistant software. Both Editions support common set of databases and target editors with the exception of
SQL Editor Professional Edition.

For a detailed list of the differences between Standard and Professional Editions see
http://www.softtreetech.com/sqlassist/compare_editions.htm

For the End-user License Agreement (EULA) see APPENDIX B at the end of this manual.

http://www.softtreetech.com/sqlassist/compare_editions.htm�

CHAPTER 2, Connecting to Your Database

 -29-

CHAPTER 2, Connecting to Your Database

Overview

SoftTree SQL Assistant connects to database servers using any of the following connectivity interfaces:

1. ODBC interface – Can be used with any supported database system. The appropriate ODBC
database driver must be preinstalled.

2. ADO.NET interface – Can be used with any supported database system. The appropriate
ADO.NET database driver must be preinstalled.

3. Native database interfaces such as
Oracle OCI – Oracle Call Interface (OCI) can be used with any Oracle database server version
8.1 or later. Oracle OCI is part of Oracle Instant Client software. It can be licensed for free from
Oracle Corporation. Visit https://www.oracle.com/database/technologies/instant-client.html for
more details.
LibPQ - can be used with any PostgreSQL databases version 8.0 and later as well as will Pivotal
Greenplum databases version 4.0 or later, and Amazon Redshift databases. LibPQ is preinstalled
with SQL Assistant and available for both 32-bit and 64-bit environments.
LibMysqDB - can be used with any MySQL and MariaDB database server version 5.0 or later.
LibMySQLDB is part of MySQL Connector and it can be licensed for free from Oracle Corporation.
Visit https://www.mysql.com/products/connector/ for more details.
LibMariaDB - can be used with any MariaDB database server version 5.0 or later. It can be also
used with most MySQL versions. LibMariaDB is preinstalled with SQL Assistant software and
available for both 32-bit and 64-bit environments..
SQLite Wire Protocol Driver – can be used with SQLite databases versions 3.0 and later,
supports extended set of functions. The Wire Driver is preinstalled with SQL Assistant and
available for both 32-bit and 64-bit environments.
Cassandra Wire Protocol Driver – can be used with Apache Cassandra databases versions 3.0
and later as well as DataStax Enterprise and DataStax Astra cloud based databases. It supports
extended set of functions for Cassandra based database servers. The Wire Driver is preinstalled
with SQL Assistant and available for both 32-bit and 64-bit environments.
SMO – SQL Server Management Objects interface can be used SQL Server databases version
2005 and later. SMO is preinstalled with SQL Assistant.

When used with pre-configured editors maintaining persistent connections to the database, SQL Assistant
automatically intercepts and shares the existing connection. If a connection cannot be shared, SQL Assistant
displays the SQL Assistant - Connect dialog, which you can use to enter the appropriate database connection
properties. Connection properties can be saved for future use so the next time you need that database
connection, you can quickly pull it by name from the saved connections list.

When choosing connectivity interface and database driver for the connection, make sure to select 32-
bit driver if your SQL editor is 32-bit application, and choose 64-bit driver if your SQL Editor is 64-bit
application.

 Important Notes:
 The appearance of the SQL Assistant - Connect dialog differs for different types of databases and

connectivity interfaces. Different options are provided depending on selected database type and
connectivity interface.

 The SQL Assistant - Connect dialog will not appear if the Auto-connect option is set for the target.
In this case, the SQL Assistant will automatically connect to the database server you selected last time
to Auto-connect. However, If the automatic connection fails, the SQL Assistant will display the

https://www.oracle.com/database/technologies/instant-client.html�
https://www.mysql.com/products/connector/�

CHAPTER 2, Connecting to Your Database

 -30-

Connect dialog and prompt you for the correct connection parameters.

 For ODBC-based connections, SQL Assistant allows using both DSN and DSN-less connections.
“DSN” is a common acronym for "data source name."

For DSN-less connections, the DSN / Driver property specifies the driver name; for example,
"Driver={SQL Server}" (without double-quotes). The driver name must be entered exactly as it appears
on the Drivers tab in the Windows ODBC Administrator program.

For preconfigured DSN connections, the DSN / Driver property specifies the ODBC DSN name as it
appears in the ODBC Administrator program on either the File DSN or System DSN tab; for example,
"DSN={MyDSN}" (without double-quotes).

When using a DSN-less connection, you must specify all required connection parameters, including
the server name, port, user, and other parameters required for the specific database server type and
connection method.

When using a DSN connection, you do not need to enter any additional parameters unless database
side user authentication is required. In this case, you must specify a valid user name and password.

The following options and parameters may appear on the SQL Assistant - Connect dialog:

DB Type – The type of database management system (DBMS). This parameter is defined in SQL
Assistant options for each target and cannot be changed directly on the connection
dialog.

Connection Type – The type of client connection that SQL Assistant uses to communicate with the
database server. The available choices depend on the chosen DB Type parameter
and could be different for different database types.

TNS Name – This is an Oracle specific parameter used with OCI and ADO.NET-based connections.
Enter the Oracle server connection name as specified in your TNSNAMES.ORA file on
the local computer.

Server Name – For SQL Server connections using DSN-less ODBC connections or ADO.NET
connections, this is the name or IP address of the database server computer or, in
case of connection to a named SQL Server instance name, the instance name in
standard server/instance format.

For MySQL connections using DSN-less ODBC connections, ADO.NET or MySQL
Native, this is the name or IP address of the database server computer.

For Sybase ASE connections using DSN-less ODBC connections or ADO.NET, this is
the name of the Sybase server profile defined in the Sybase client settings SQL.INI file
on the local computer.

For DB2 ADO.NET-based connections, this is the DB2 database alias defined in the
DB2 client settings on the local computer.

This parameter is ignored for all other databases and connection types.

Hostname – For DB2 connections using DSN-less ODBC connections or ADO.NET, this is the name or
IP address of the database server computer.

This parameter is ignored for all other databases and connection types.

Connect As – This is an Oracle specific parameter used with OCI and ADO.NET-based connections.
Enter one of the following: Normal, SYSDBA or SYSOPER.

CHAPTER 2, Connecting to Your Database

 -31-

Server Port – Specify this parameter only if establishing a TCP/IP-based connection when your
database server is using a non-default port number to listen for new network
connections.

This parameter is ignored with ODBC DSN-based connections. It is also not used
with Microsoft Access connections.

Database – For SQL Server, Sybase ASE, Sybase ASA, MySQL and DB2, enter default database
used for the initial connection.

For Microsoft Access and for SQLite connections enter the full name of the database
file to connect to.

This parameter is not used with ODBC DSN-based connections.

Data Provider – Specifies the database connection provider used with ADO.NET-based connections.
Enter the provider name, for example, "System.Data.SqlClient" (without double-
quotes). Note that some data providers are pre-installed with the .NET framework,
while others are installed with your database client software. Typically, multiple types
of database providers can be used to establish a connection to the database server,
yet they all require that the database client software be installed on the local computer.
For example, both Microsoft's data provider for Oracle, System.Data.OracleClient, and
Oracle's data provider, Oracle.DataAccess.Client, can be used to establish an
ADO.NET-based connection to an Oracle database, yet both software products
internally use the Oracle client software to connect to an Oracle database. The same
Oracle client software can be used by SQL Assistant directly with the OCI interface,
bypassing the middleware ADO.NET database interface.

DSN / Driver– Specifies either the name of the ODBC driver used with ODBC-based connections or an
ODBC Connection Profile name. You can enter the driver name in the Driver={Driver}
format for DSN-less connections, if such connections are supported by the specified
driver, or you can use name of an existing DSN profile in the DSN=Profile format.

The screenshots below show the difference between a DSN less and a DSN-based
ODBC connection, and demonstrates how to enter a driver or DSN profile name.

ODBC DSN-less connection
(DB2 for LUW specific example,

won't work with DB2 iSeries)

ODBC DSN-based connection
(DB2 specific example, should work
for DB2 LUW and for DB2 iSeries)

CHAPTER 2, Connecting to Your Database

 -32-

OCI DLL – This is Oracle specific parameter used with OCI-based connections. Enter the full path for
the OCI.DLL file.

MySQL DLL – This is MySQL and also MariaDB specific parameter used with MySQL native library
connections. Enter the full path for the LIBMYSQL.DLL file. You can also use the
preinstalled LIBMARIADB.DLL that can be found in [SQL Assistant installation
folder]\bin\MariaDB or [SQL Assistant installation folder]\bin64\MariaDB.

LIBPQ.DLL – This parameter is specific to PostgreSQL family of database servers including
PostgreSQL, Amazon Redshift, Pivotal Greenplum. The LibPQ library is provided with
SQL Assistant software. Normally no changes are required for customizing option. In
case you want to use a different specific version of LIBPQ.DLL, enter the full path for
the LIBPQ.DLL file. The preinstalled DLL file can be found in [SQL Assistant
installation folder]\bin\PG or [SQL Assistant installation folder]\bin64\PG.

Authentication – This parameter can be used with ODBC DSN-less, ADO.NET and Cassandra wire
driver connections only if supported by your database system.

For SQL Server, enter "Windows Authentication" or "SQL Server Authentication"
(without double quotes). If you choose "Windows Authentication," you do not need to
specify the User Name and User Password parameters.

For DB2, Sybase ASE or Sybase ASA connections, enter either "DB Authentication" or
"OS Authentication" (without double quotes). Note that "OS Authentication" can only be
used if your database server is configured to rely on client-side user authentication.

For DataStax Astra database select Astra if you Astra specific authentication method
enabled. For Apache Cassandra select Server Authentication or No Authentication
depending on how your Cassandra authentication is configured.

This parameter is not used with Microsoft Access connections.

User Name – Enter the user name for the database connection. This parameter is required only for
database-side user authentications.

User Password – Enter the password for the database connection. This parameter is required only for
database-side user authentications.

Connection Timeout – This parameter controls how many seconds to wait before canceling a
connection attempt and reporting that the server as unreachable. This value can only
be used if it is supported by the chosen database connection method and database
driver. If the driver or the database does not support this parameter, the parameter
value is ignored.

Command Timeout – This parameter controls how many seconds to wait before canceling an internal
SQL command execute method call and generating an error. This value is supported
only if it is supported by the chosen database connection method and database driver.
If the driver or the database does not support this parameter, the parameter value is
ignored.

Encrypt Connection – This parameter controls whether or not to use an encrypted communication
protocol for a SQL Server database connection. This value can be used with SQL
Server connections only if it is supported by the selected database connection method.

CHAPTER 2, Connecting to Your Database

 -33-

Use Compression – This parameter controls whether or not to use an encrypted and compressed
communication protocol for a MySQL database connection. This value can be used
only with MySQL connections if it is supported by the selected database connection
method.

Save Connection Data – If checked, this option causes SQL Assistant to save the specified connection
parameters in its configuration file. The connection can be reused later by selecting its
name from the Server Name or TNS Name drop-down lists.

Show/Hide Raw Connection String – Click on this hyperlink to show or hide connection string. The
connection string contains relevant parameters specified in other options. The format
of the string differs for different connection types and methods.

 Important Notes: If necessary, you can specify additional custom connection
parameters in the raw connection string. If Save Connection Data option is checked,
these additional parameters will be saved along with the standard parameters and will
be reused for future connections. When entering additional parameters using raw
connection string, you must ensure that the additional parameters are supported by the
database driver and client software. Consult your database driver and client software
documentation for a list of supported parameters and their formats.

Ad-hoc and Remembered Connections

By default, SQL Assistant remembers entered connection parameters and saves them for future use. This
behavior is controlled by Save Connection Data option on the Connect to Database dialog. If this option is
selected SQL Assistant saves the specified connection parameters in its configuration file. The connection can
be reused later by selecting its name from the Server Name or TNS Name drop-down lists.

Connection Settings for new connections can be also added to the DB Options tab in SQL Assistant's Options
dialog. See the “Managing Database Connections” topic in CHAPTER 48 for more information. Just as all other
settings they can imported from previously saved SQL Assistant's configuration files and shared between team
members, using the built-in Settings Export/Import feature. See the Sharing SQL Assistant Settings Between
Team Members topic in CHAPTER 48 for more details.

Reordering, and Filtering Connections by Name

The Filter combo box and Database Type drop-down list at the top of the Connections dialog can be used to
search and filter connections by their name and type. The Filter list serves both as a search and filter for the
connections shown in the list below it. It is important to note that only connections with the type selected in the
Database Type drop-down list are shown by default. To show all database connections available ignoring their
database type, select the "All database types" checkbox in the right-bottom corner of the dialog. The filter
strings you enter into the Filter box will be remembered so that you can quickly reuse them if you need them
again.

CHAPTER 2, Connecting to Your Database

 -34-

By default, most recently added connections appear at the top of the Server Name list. You can optimize the
connection order for your environment using SQL Assistant's Options dialog. Activate DB Options tab then
expand DB Connections section on the left. Use the Arrow Up and Down icons at the top of the
connections list to rearrange connection order. You can also use drag-and-drop to quickly move connections in
the list.

Organizing Connections

The Connections Organizer utility is provided to you to help you organize your connections in folders and
subfolders and simplify working with many databases. The Connection Organizer can help to organize
database connections by environments, by use cases, customers, data centers, or any other folder based
organization of your choice. It also supports fast single double-click opening of an editor tab connected to a
selected database which saves a few clicks and seconds required by other methods.

The Connection Organizer is available in SQL Assistant SQL Editor Professional Edition. To open the
organizer, select File -> Connections … menu.

Connection Organizer Controls:

 You can use either right-click menu or toolbar buttons at the top of the organizer pane to add and

CHAPTER 2, Connecting to Your Database

 -35-

delete folders and connections.

 Existing connections not yet associated with a folder or subfolder initially appear in the special Others
folder. The Others folder cannot be deleted or renamed. It is used as a catch-all folder for all
connections not yet associated with a user-defined folder.

 Use drag-and-drop to move connections between folders. If the target folder is noti visible on the
screen, you can use the right menu and select Move to… command. Then select the required folder
in the next level menu.

 Double-click a database connection item in the organizer pane to open a new editor tab connected to
that database server.

 To make the Connection Organizer pane sticky and automatically reopen after IDE restarts, click the
pushpin icon in the right-top corner of the Connection Organizer. To hide the pane in the current
session, close the pane. To remove stickiness, unpin the pane using pushpin icon.

Common Connection Properties and Database Driver Specific Properties

The following settings are supported with all database types and interfaces:

Connection Name – this property is provided for you to enter a descriptive identifier for the connection. If not
entered, SQL Assistant will construct default name including several parts based on the database interface
selected, typically database server or alias name followed by the selected database driver type, like ADO,
ODBC, etc…

Connection Type – using this property you can choose one of the supported connection methods and drivers,
for Oracle LibMySQL, OCI, ADO, ODBC, and so on. Different connectivity methods are supported for different
database types. The connection methods and types are database type specific. First of all the Connection
Type property enables you to choose the driver that you may already have installed on your system and so no
additional software installations are required for connecting to your databases. But that's not all. If you have
multiple types of drivers installed, you should choose carefully which one to use. All database drivers have their
own functional differences and constraints, as well as defects (no software is bug free). You may need to
choose different driver for different types of processing.

Connection Timeout (sec) – this property defines the maximum number of seconds that SQL Assistant will
wait while attempting to open a connection to a database server. The default value for this property is 10
seconds. The property is used with most database interfaces and drivers.

Command Timeout (sec) - The number of seconds to wait while attempting to execute a SQL query, before
cancelling the attempt and generating an error. The default is zero, which means the default timeout used by
the selected database driver. This is typically "forever". However you shouldn't make any assumptions. Consult
with the documentation supplied with the driver by the driver vendor for specific details.

Code Page – The Code Page property is used for selecting which character encoding to use when sending
and retrieving data from the database server. For some types of database servers such as Oracle, MySQL,
MariaDB, SQLite, it is important to choose the code page that matches your database server settings in order
to render correctly all multinational characters.

Connection Color – This property is specific to SQL Editor Professional Edition installed with the SQL
Assistant software Professional Edition license. It makes it easier to visually see to which server an editor tab
in the SQL Editor is connected to. The background of the status bar section with the server name section is
painted using the selected color. For example, you can use it to paint connections to development or test
servers in green, while connections to production servers in orange or red.

CHAPTER 2, Connecting to Your Database

 -36-

Oracle Database Connections and Settings

Before you can connect to an Oracle database server, you must have Oracle client software installed on the
computer running SQL Assistant. The client software must be properly installed and configured. Its network
configuration files must include connection settings for any Oracle servers that SQL Assistant will connect to.
These files must be located in the ORACLE_HOME directory whose name is referenced by the
ORACLE_HOME variable in the system registry. This variable is stored under the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE.

If you have several versions of Oracle clients installed on your computer, you can choose which one you want
to use with SQL Assistant. On the SQL Assistant - Connect dialog, click the Options >> button and then
select the appropriate ORACLE_HOME from the Oracle homes drop-down list. Make sure the configuration
files for the client you select contain all required Oracle server connection settings. You can verify connection
settings in TNSNAMES.ORA, which is usually located in the [ORACLE_HOME]/NETWORK/ADMIN directory.

SQL Assistant supports both regular user connections and connections for users with SYSDBA privileges. You
must choose SYSDBA type when connecting as a SYS user. The Connect As option on the SQL Assistant -
Connect dialog allows you to choose a database connection type. Please note that for SYSDBA connections,
the assigned schema is SYS. For SYSOPER, the assigned schema is PUBLIC, regardless of the actual Oracle
username supplied.

 Important Note: When working with pre-configured targets for Oracle such as SQL*Plus, SQL Assistant
silently intercepts the existing connection and uses that connection to access Oracle catalog tables and views.
When working with user-defined targets, SQL Assistant opens a new connection to the database server that is
not shared with the target application. This secondary connection can be opened using the same or different
user credentials. The secondary connection is closed automatically in the event the target editor or SQL
Assistant is closed.

SQL Server Database Connections and Settings

When connecting to a SQL Server database server, SQL Assistant uses either the Microsoft SQL Server ODBC
driver that is by default pre-installed on all Windows systems or the SQL Server ADO.NET SQL Server provider
which is typically installed with SQL Server Management Tools such as Microsoft SQL Server Management
Studio or Microsoft Visual Studio. The connectivity method depends on the method used by the target editor.

SQL Assistant supports 2 types of user authentication for SQL Server connections:

 Windows Authentication - in this case, SQL Assistant does not prompt for user credentials. Instead, it uses
an access token assigned at the time the user logged on using a Windows account. SQL Assistant only
prompts for the name of the target SQL Server instance at the time the connection is attempted.

 Database Authentication -- in this case, SQL Assistant requires a user to specify login name, password
and the name of the target SQL Server instance at the time the connection is attempted.

 Important Notes:

When working with certain pre-configured targets for SQL Server that use ODBC connections, such as SQL
Query Analyzer, SQL Assistant silently intercepts the existing connection and uses that connection to access
SQL Server catalog tables and views.

When working with SQL Server Management Studio or SQL Server Management Studio Express that use
ADO.NET connections, SQL Assistant silently intercepts the existing connection and uses that connection to
access SQL Server catalog tables and views.

When working with user-defined targets and targets that don't use known connection types, SQL Assistant

CHAPTER 2, Connecting to Your Database

 -37-

opens a new connection to the database server that is not shared with the target application. This secondary
connection can be opened using the same or different user credentials. The secondary connection is closed
automatically in the event the target editor or SQL Assistant is closed.

 Important Notes for SQL Azure users:

For certain internal operations involving reverse-engineering of database schema objects SQL Assistant
depends on Server Management Objects (SMO) installed with Microsoft SQL Server Management Studio
(SSMS) and with Microsoft SQL Server Management Studio Express (SSMSE). The Cumulative Update
Package 7 or later is required for supporting SQL Azure databases. If you are using an older versions of SSMS
or SSMSE, please take the following actions:

If you use SSMSE 2008 R2 or an older version, download and install the latest version from
http://go.microsoft.com/fwlink/p/?LinkId=220170.

If you use an edition of SSMS 2008 R2 other than Express, either install Cumulative Update Package 7 for SQL
Server 2008 R2 http://support.microsoft.com/kb/2507770 or install Service Pack 1 http://www.microsoft.com/en-
us/download/details.aspx?id=26727.

Apache Hive Connections and Settings

SQL Assistant supports Apache Hive versions 2.x and later. It uses ODBC connectivity to communicate with a
Hive system. ODBC connectivity requires that Apache Thrift server be installed on the Hive cluster master
node.

Hive ODBC drivers are available from a number of vendors including Microsoft, Amazon AWS, HortonWorks
Cloudera, and others. In theory ADO.NET interface can be also used for the connections. However at the time
of the publishing of this user's guide SQL Assistant has not been formally tested with Hive ADO.NET
connections.

Here are references to ODBC drivers available at the time of SQL Assistant version 11.0 release:

Amazon AWS EMR ODBC driver: https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-bi-
tools.html
Microsoft Hive ODBC driver: https://www.microsoft.com/en-us/download/details.aspx?id=40886
Cloudera, Inc: https://www.cloudera.com/downloads/connectors/hive/odbc/2-6-1.html

Apache SparkSQL Connections and Settings

SQL Assistant supports Apache SparkSQL versions 2.2 and later. It uses ODBC connectivity to communicate
with a Apache Spark system. ODBC connectivity requires that Apache Thrift server be installed on the Spark
cluster master node.

Spark ODBC drivers are available from a number of vendors including Microsoft, HortonWorks Cloudera, and
others. In theory ADO.NET interface can be also used for the connections. However at the time of the
publishing of this user's guide SQL Assistant has not been formally tested with Spark ADO.NET connections.

Here are references to ODBC drivers available at the time of SQL Assistant version 11.0 release

http://go.microsoft.com/fwlink/p/?LinkId=220170�
http://support.microsoft.com/kb/2507770�
http://www.microsoft.com/en-us/download/details.aspx?id=26727�
http://www.microsoft.com/en-us/download/details.aspx?id=26727�
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-bi-tools.html�
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-bi-tools.html�
https://www.microsoft.com/en-us/download/details.aspx?id=40886�
https://www.cloudera.com/downloads/connectors/hive/odbc/2-6-1.html�

CHAPTER 2, Connecting to Your Database

 -38-

Microsoft SparkSQL ODBC driver: https://www.microsoft.com/en-us/download/details.aspx?id=49883
Simba Technologies, Inc: https://www.simba.com/drivers/spark-jdbc-odbc/
Databricks, Inc.: https://databricks.com/spark/odbc-driver-download

MySQL Database Connections and Settings

SQL Assistant presently supports MySQL database server versions 5.1 and up. To connect to a MySQL
database server, SQL Assistant uses either the MySQL native client interface, if available, or the MySQL ODBC
or ADO.NET driver. These MySQL drivers are not part of SQL Assistant. The connector and/or driver must be
preinstalled before you can use SQL Assistant with MySQL targets. MySQL client and ODBC driver can be
obtained from Oracle Corporation http://www.mysql.com.

 Important Notes:

For ODBC-based connections, SQL Assistant requires the MySQL ODBC driver version 3.5. Please note
that MySQL ODBC driver v5.0, which is available as a beta version download at the time this manual was
produced, is not fully ODBC compliant and does not support certain standard ODBC features required by SQL
Assistant.

When working with pre-configured targets for MySQL, such as MySQL Query Browser, SQL Assistant silently
intercepts the existing connection and uses that connection to access MySQL catalog tables and views. When
working with user-defined targets, SQL Assistant opens a new connection to the database server using an
ODBC driver or native libmysql client. This secondary connection is not shared with the target application. It
can be opened using the same or different user credentials. The secondary connection is closed automatically
if the target editor or SQL Assistant is closed.

MariaDB Database Connections and Settings

SQL Assistant presently supports MariaDB database server versions 5.5 and up. To connect to a MariaDB
database server, SQL Assistant uses either the MariaDB native client interface, if available, or the MySQL or
MariaDB ODBC or ADO.NET driver. These drivers are not part of SQL Assistant. The connector and/or driver
must be preinstalled before you can use SQL Assistant with MariaDB targets. MariaDB client and ODBC driver
can be obtained from MariaDB Foundation http://www.mariadb.org/.

 Important Notes:

For ODBC-based connections, SQL Assistant requires the MySQL ODBC driver version 3.5.

When working with pre-configured or user-defined targets for MariaDB, targets, SQL Assistant opens a new
connection to the database server using an ODBC driver or native libmariadb client. This secondary
connection is not shared with the target application. It can be opened using the same or different user
credentials. The secondary connection is closed automatically if the target editor or SQL Assistant is closed.

https://www.microsoft.com/en-us/download/details.aspx?id=49883�
https://www.simba.com/drivers/spark-jdbc-odbc/�
https://databricks.com/spark/odbc-driver-download�
http://www.mysql.com/�
http://www.mariadb.org/�

CHAPTER 2, Connecting to Your Database

 -39-

DB2 Database Connections and Settings

SQL Assistant presently supports DB2 UDB for Linux, Unix and Windows versions 7 and up, and DB2 for
iSeries. It can be also used with DB2 for zSeries, but the latter requires that minor adjustments be made to the
database catalog queries provided in SQL Assistant settings. To connect to a DB2 database server, SQL
Assistant can use either the DB2 ODBC driver or the DB2 ADO.NET client, neither of which is part of SQL
Assistant. One of these drivers must be preinstalled before you can use SQL Assistant with DB2 targets. DB2
drivers are typically installed with DB2 client software and are part of your DB2 license. The drivers can be
obtained from IBM Corporation http://www.ibm.com.

 Important Notes:

When working with user-defined targets for DB2, SQL Assistant opens a new connection to the database
server that is not shared with the target application. This secondary connection can be opened using the same
or different user credentials. The secondary connection is closed automatically in the event the target editor or
SQL Assistant is closed.

Netezza Database Connections and Settings

SQL Assistant presently supports IBM Netezza versions 7,0 and up. Older versions are not supported. To
connect to a Netezza database server, SQL Assistant can use Netezza ODBC driver, which is not part of SQL
Assistant. The ODBC driver must be preinstalled before you can use SQL Assistant with Netezza targets.
Netezza drivers are typically installed with Netezza client software and are part of your Netezza license. They
are not publicly available, you need to contact Netezza's support to download their ODBC driver.

 Important Notes:

When working with user-defined targets for Netezza, SQL Assistant opens a new connection to the database
server that is not shared with the target application. This secondary connection can be opened using the same
or different user credentials. The secondary connection is closed automatically in the event the target editor or
SQL Assistant is closed.

Sybase Database Connections and Settings

SQL Assistant presently provides support for Sybase Adaptive Server Enterprise versions 12.5 and up as well
as for Sybase Adaptive Server Anywhere v9.0 and up (also known as Sybase SQL Anywhere). In order to
connect to a Sybase database server, SQL Assistant uses the Sybase ODBC driver which is not part of SQL
Assistant. The driver must be preinstalled before you can use SQL Assistant with Sybase targets. Sybase
ODBC drivers are typically installed either with Sybase client software or separately. They are part of your
Sybase license. The drivers for ASE and ASA can be obtained from Sybase Corporation
http://www.sybase.com.

 Important Notes:

When working with Sybase targets, SQL Assistant opens a new connection to the database server that is not
shared with the target application. This secondary connection can be opened using the same or different user
credentials. The secondary connection is closed automatically in the event the target editor or SQL Assistant is
closed.

http://www.ibm.com/�
http://www.sybase.com/�

CHAPTER 2, Connecting to Your Database

 -40-

PostgreSQL Database Connections and Settings

SQL Assistant presently provides support for PostgreSQL version 8.0 and up. It is likely that SQL Assistant can
also be used with PostgreSQL version 7.x.; however, no specific testing has been done for 7.x versions, and
there is no guarantee that SQL Assistant is fully compatible with them.

To connect to a PostgreSQL database server, SQL Assistant can use either the PostgreSQL ODBC driver, the
ADO.NET driver, or the LibPQ native interface. Neither ODBC or ADO.NET are part of SQL Assistant. If you
choose ODBC or ADO.NET, the appropriate driver must be preinstalled before you can use SQL Assistant with
PostgreSQL targets. PostgreSQL drivers can be freely downloaded from the PostgreSQL Foundry project web
site http://pgfoundry.org/projects/psqlodbc/.

In comparison, the LibPQ native interface is preinstalled with SQL Assistant, both 32-bit and 64-bit versions are
available, and it is ready to use out of the box. It is also the most capable interface and that is why it is
recommended as a preferred connectivity method. Using LibPQ interface SQL Assistant is able to process
COPY command with STDOUT/STDIN options, asynchronously output diagnostic messages, such as notes,
warnings, and exceptions while executing SQL queries, and so on.... there are so other features that are better
handled with LibPQ.

 Important Notes:

When working with PostgreSQL targets, SQL Assistant opens a new connection to the database server that is
not shared with the target application. This secondary connection can be opened using the same or different
user credentials. The secondary connection is closed automatically in the event the target editor or SQL
Assistant is closed.

Redshift Database Connections and Settings

Amazon Redshift database server is based on PostgreSQL 8.0.2. Even though it has a number of very
important differences from PostgreSQL, the connectivity to Amazon Redshift databases is the same as to
PostgreSQL databases. To connect to an Amazon Redshift database , SQL Assistant can use either the
Amazon Redshift ODBC driver, PostgreSQL ODBC driver, the ADO.NET driver, or the LibPQ native interface.
Neither ODBC or ADO.NET is part of SQL Assistant. If you choose ODBC or ADO.NET, The driver must be
preinstalled before you can use SQL Assistant with Amazon Redshift targets. Amazon Redshift ODBC drivers
can be freely downloaded from Amazon Web Services web site
http://docs.aws.amazon.com/redshift/latest/mgmt/install-odbc-driver-windows.html. PostgreSQL drivers can be
freely downloaded from the PostgreSQL Foundry project web site http://pgfoundry.org/projects/psqlodbc/.

On contrary, the LibPQ native interface is preinstalled with SQL Assistant, both 32-bit and 64-bit versions are
available. It is also the most capable interface and that is why it is recommended as a preferred connectivity
method. Using LibPQ interface SQL Assistant is able to process COPY command with STDOUT/STDIN
options, asynchronously output diagnostic messages, such as notes, warnings, and exceptions while executing
SQL queries, and so on.... there are also other features that are better handled with LibPQ.

 Important Notes:

When working with Amazon Redshift targets, SQL Assistant opens a new connection to the database server
that is not shared with the target application. This secondary connection can be opened using the same or
different user credentials. The secondary connection is closed automatically in the event the target editor or
SQL Assistant is closed.

http://pgfoundry.org/projects/psqlodbc/�
http://docs.aws.amazon.com/redshift/latest/mgmt/install-odbc-driver-windows.html�
http://pgfoundry.org/projects/psqlodbc/�

CHAPTER 2, Connecting to Your Database

 -41-

Greenplum Connections and Settings

Pivotal Greenplum database servers are based on PostgreSQL versions. The connectivity to Greenplum
databases is the same as to PostgreSQL databases. To connect to an Greenplum database , SQL Assistant
can use either the PostgreSQL ODBC driver, the ADO.NET driver, or the LibPQ native interface. Neither ODBC
or ADO.NET is part of SQL Assistant. If you choose ODBC or ADO.NET, The driver must be preinstalled before
you can use SQL Assistant with Greenplum targets. PostgreSQL drivers can be freely downloaded from the
PostgreSQL Foundry project web site http://pgfoundry.org/projects/psqlodbc/.

On contrary, the LibPQ native interface is preinstalled with SQL Assistant, both 32-bit and 64-bit versions are
available. It is also the most capable interface and that is why it is recommended as a preferred connectivity
method. Using LibPQ interface SQL Assistant is able to process COPY command with STDOUT/STDIN
options, asynchronously output diagnostic messages, such as notes, warnings, and exceptions while executing
SQL queries, and so on.... there are also other features that are better handled with LibPQ.

 Important Notes:

When working with Greenplum targets, SQL Assistant opens a new connection to the database server that is
not shared with the target application. This secondary connection can be opened using the same or different
user credentials. The secondary connection is closed automatically in the event the target editor or SQL
Assistant is closed.

Teradata Database Connections and Settings

SQL Assistant presently supports Teradata versions 14 and 15. To connect to a Teradata database server,
SQL Assistant can use either the Teradata ODBC driver or the Teradata ADO.NET client, neither of which is
part of SQL Assistant. One of these drivers must be preinstalled before you can use SQL Assistant with
Teradata targets. Teradata drivers are typically installed with Teradata client software and are part of your
Teradata license. The drivers can be freely downloaded from Teradata Developer Exchange web site
http://downloads.teradata.com/download/connectivity.

 Important Notes:

When working with user-defined targets for Teradata, SQL Assistant opens a new connection to the database
server that is not shared with the target application. This secondary connection can be opened using the same
or different user credentials. The secondary connection is closed automatically in the event the target editor or
SQL Assistant is closed.

Microsoft Access Database Connections and Settings

SQL Assistant presently provides direct integration and support for Microsoft Access databases, versions 2003,
2007, and 2010. It can also be used with earlier versions of Microsoft Access database using ODBC
connections. To connect to a Microsoft Access database, SQL Assistant uses the Microsoft Access ODBC

http://pgfoundry.org/projects/psqlodbc/�
http://downloads.teradata.com/download/connectivity�

CHAPTER 2, Connecting to Your Database

 -42-

driver which is not part of SQL Assistant. The driver must be preinstalled before you can use SQL Assistant
with Microsoft Access targets. Microsoft Access ODBC drivers are typically pre-installed on all Windows
systems. The latest ODBC driver versions can be obtained from Microsoft Corporation
http://www.microsoft.com.

 Important Notes:

When working with Microsoft Access targets, SQL Assistant opens a new connection to the database file, which
is not shared with the target application. This secondary connection can be opened using the same or different
user credentials. The secondary connection is closed automatically in the event the Microsoft Access IDE, or
non-Access target editor or SQL Assistant is closed.

SQLite Database Connections and Settings

To connect to a SQLite database, SQL Assistant can use either of the following, SQLite wire driver, SQLite
ODBC driver or SQLite ADO.NET driver. SQLite wire driver is part of the SQL Assistant software, the others are
not. The latest ODBC driver for SQLite can be obtained from Christian Werner http://www.ch-
werner.de/sqliteodbc/.

 Important Notes:

Using SQLite wire driver connections is recommended in most cases. The driver pre-instaleld with SQL
Assistant provides the most features, and is also a requirement for using regular expressions and JSON
functions in SQL queries. If you already have saved SQLite connections created in previous versions of SQL
Assistant using third party ODBC drivers or SQLite ADO.NET driver, you can continue using them unmodified,
but please be aware that some SQL Assistant features may malfunction or don't work at all when using other
drivers.

MongoDB Database Connections and Settings

Prerequisites. To connect to a MongoDB database, SQL Assistant requires MongoDB Connector for Business
Intelligence (BI) connection which supports using SQL queries for working with MongoDB data. The connection
can be made to a cloud-hosted MongoDB Connector for BI which is available in MongoDB Atlas, or to a locally
running instance of MongoDB Connector for BI. The MongoDB Connector for BI accepts SQL queries using the
MySQL protocol, which enables you to query MongoDB the same way you would query a MySQL database.

To connect to a MongoDB Connector for BI, SQL Assistant uses the ODBC driver, which isn't part of SQL
Assistant installation. The driver must be preinstalled before you can use SQL Assistant with MongoDB targets.
The latest ODBC driver version can be obtained from MongoDB site ttps://www.mongodb.com/blog/post/odbc-
driver-for-the-mongodb-connector-for-business-intelligence.

 Important Notes:

In the connection settings be sure to specify the host and port number of your MongoDB Connector for BI and
not your MongoDB server.

http://www.microsoft.com/�
http://www.ch-werner.de/sqliteodbc/�
http://www.ch-werner.de/sqliteodbc/�
https://www.mongodb.com/blog/post/odbc-driver-for-the-mongodb-connector-for-business-intelligence�
https://www.mongodb.com/blog/post/odbc-driver-for-the-mongodb-connector-for-business-intelligence�

CHAPTER 2, Connecting to Your Database

 -43-

Apache Cassandra Database Connections and Settings

SQL Assistant supports Apache Cassandra 3.0 and later, and also supports cloud based DataStax Enterprise
and DataStax AstraDB databases versions 6.x and later built on Apache Cassandra. To communicate with an
Apache Cassandra cluster SQL Assistant requires either a native driver preinstalled with SQL Assistant or a
compatible ODBC driver for using ODBC connectivity.

Both the Cassandra native driver provided with SQL Assistant and third-party ODBC driver may provide you
with an extended set of functions not available natively in Cassandra, which you may require for your
applications, and use with SQL Assistant too. The features are vary by driver. For example, some ODBC
drivers provide support for SQL expressions, INSERT-SELECT operations and others SQL functions that are
not supported by CQL language out of the box. Choose the driver that supports the features you require.
Cassandra ODBC drivers are available from a number of vendors including CData Software, Progress
Software, and others. Free ODBC driver is also available from DataStax Corporation
https://downloads.datastax.com/#odbc-jdbc-drivers Most ODBC drivers for Cassandra support various
authentication methods including basic authentication with login credentials, Kerberos, and LDAP. Please
consult your ODBC driver documentation for more details and check with your Cassandra administrators on
which authentication method you should use.

Snowflake Database Connections and Settings

SQL Assistant supports Snowflake 6 and later. SQL Assistant uses ODBC connectivity to communicate with an
Apache Cassandra cluster, which requires a compatible ODBC driver.

Cassandra ODBC drivers are available from a number of vendors including CData Software, Progress
Software, and others. Free ODBC driver is also available from DataStax Corporation
https://downloads.datastax.com/#odbc-jdbc-drivers

Most ODBC drivers for Cassandra support various authentication methods including basic authentication with
login credentials, Kerberos, and LDAP. Please consult your ODBC driver documentation for more details and
check with your Cassandra administrators on which authentication method you should use.

Database Connection Settings and Security

By default, SQL Assistant remembers used connection settings and user credentials and stores them in the
configuration file SqlAssist.sas file. Your connection settings, user names and passwords are stored in
encrypted form so they cannot be read or changed without your authorization.

If, for whatever reason, you do not want to save connection settings between work sessions, you can uncheck
the Save Connection Data option on the SQL Assistant - Connect dialog. This option is not visible by default.
To display it, click the Options >> button.

If a database connection attempt fails because your user name or password has changed since it was last
saved, SQL Assistant automatically prompts you to re-enter your connection settings and updates them in the
configuration file.

https://downloads.datastax.com/#odbc-jdbc-drivers�
https://downloads.datastax.com/#odbc-jdbc-drivers�

CHAPTER 2, Connecting to Your Database

 -44-

You can use SQL Assistant's Options dialog to change your connection password proactively and to modify
other connection settings. See the “Managing Database Connections” topic in CHAPTER 48 for more
information.

 Tip: Certain types of database drivers support connection encryption features. Use the Encrypt
Connection property available in SQL Assistant options to activate that feature. See the “Overview” topic in
CHAPTER 2 for more information.

Shared, Automatic, and Interactive Database Connections

Shared Connections

SQL Assistant supports a database connection sharing feature that can be used with certain types of target
editors. The connection sharing feature allows SQL Assistant to automatically intercept and join an existing
connection established by the target, which eliminates the need for you to set up a separate connection for
SQL Assistant. From a database server point of view, a shared connection is represented by one physical
connection established to the database that is used jointly by the target editor and SQL Assistant.

Another great advantage of a shared connection is that the current database context is also shared. All
changes to the context (for example, database switches and user impersonations) are fully transparent to SQL
Assistant. As a result, all SQL Assistant prompts and suggestions always match the current context and are
always correct.

As of SQL Assistant version 7.0, the following targets are compatible with this feature:

 SQL Server 2005/2008 Management Studio, Full and Express editions

 SQL Server 2012/2014/2016 Management Studio, Full and Express editions

 Certain editions of Visual Studio.NET/2005/2008

 Visual Studio 2010, 2012, 2013, 2015 Professional and Ultimate editions

 SQL Server Query Analyzer

 MySQL Query Browser

 Oracle SQL*Plus

 DB Tools for Oracle

 SQL Assistant's SQL Editor Professional and Standard editions

Automatic and Interactive Database Connections

For all other target editors, SQL Assistant supports regular types of database connections requiring you to fill in
the connection properties in the SQL Assistant's interactive Connect to Database dialog. See the “Overview”
topic in CHAPTER 2 for more details. Alternatively, such connections can be pre-configured in advance, before
they are needed for accessing the database during code editing. Connections can be pre-configured on the DB
Options tab in SQL Assistant's Options dialog. See the “Managing Database Connections” topic in CHAPTER
48 for more information.

From a database server point of view, a non-shared connection is represented by two physical connections
established to the database, with one connection established and used exclusively by the target editor and one
connection established and used exclusively by SQL Assistant. Note that when SQL Assistant is used with

CHAPTER 2, Connecting to Your Database

 -45-

generic text and code editors such as Notepad, Notepad++, UltraEdit, and other editors not supporting
database connectivity, only one physical database connection is established.

By default, SQL Assistant remembers entered connection parameters and saves them for future use. It prompts
only once to enter connection parameters. Next time you open the same editor and start typing the code, SQL
Assistant loads previously saved parameters and automatically establishes a new database connection without
prompting you again for connection parameters. This Auto-connect behavior is optimal for most people who
work with a single database system and always connect to the same server and database.

If you work with multiple database servers, you can disable the Auto-connect feature. When this feature is
disabled, SQL Assistant prompts for a new database connection whenever it needs one to complete its first
database operation. When you get that prompt, you can choose either of the previously saved connections
from the server drop-down or you can enter a new set of connection parameters.

The Auto-connect feature can be customized individually for each registered target editor. Different settings
can be chosen for different targets. See CHAPTER 49, Registering and Configuring Targets for SQL
Assistance topic for more details.

CHAPTER 2, Connecting to Your Database

 -46-

Custom Connection Parameters

SQL Assistant enables you to define custom connection parameters. You can use custom parameters to fine
tune your database connections and make working with your databases more efficient.

For ad-hoc database connections, use the raw connection settings section on the Connect to Database dialog.
First click the Options >> button to expand the connection options, and then click the Show Raw Connection
String hyperlink to show the raw connection settings as demonstrated on the following diagram.

Add each custom connection parameter on a new line below the standard parameters. Note that the lines with
custom parameters are highlighted with light beige background to make it easier to distinguish them from the
lines with standard parameters.

 Important Note: You must ensure that the custom parameters specified in the raw connection settings
are supported by the database driver and client software and by your database server version. Consult your
database driver and client software documentation for a list of supported parameters and their formats.

CHAPTER 2, Connecting to Your Database

 -47-

For remembered connections, use the Custom Settings option in database connection settings saved in the
SQL Assistant Options.

 Important Note: You must ensure that the custom parameters specified in the connection settings are
supported by the database driver and client software and by your database server version. Consult your
database driver and client software documentation for a list of supported parameters and their formats.

You can use the Test... button available in the right-top corner of the DB Options tab to test the connection
and to verify that the entered connection parameters are compatible with the selected database driver and
supported by your database server.

Automatic Recovery of a Broken Database Connection

Because of SQL Assistant’s unique ability to share connections with certain types of SQL editor targets, it is
heavily dependent on the availability and speed of the database connection. In certain situations, if a database
connection breaks, SQL Assistant may attempt to automatically repair the broken connection in order to
maintain uninterrupted code entry. If an attempt to repair broken connection fails, SQL Assistant displays its
own Connect to Database dialog independent of the target editor. You can use this dialog to enter the
connection details as described in other topics of this chapter. For more information, see topics specific to your
database type:

Oracle Database Connections and Settings

SQL Server Database Connections and Settings

CHAPTER 2, Connecting to Your Database

 -48-

MySQL Database Connections and Settings

DB2 Database Connections and Settings

Sybase Database Connections and Settings

PostgreSQL Database Connections and Settings

Amazon Redshift Database Connections and Settings

Microsoft Access Database Connections and Settings

SQLite Database Connections and Settings

CHAPTER 3, Code Assistants and SQL Intellisense

 -49-

CHAPTER 3, Code Assistants and SQL
Intellisense

Starting and Stopping SQL Assistant

During installation, the setup program places a SQL Assistant shortcut in the Windows Startup folder so that
when you logon to the system Windows, loads SQL Assistant automatically. To start SQL Assistant manually,
simply click the SQL Assistant shortcut in the SQL Assistant Program Folder or run the SqlAssist.exe file.

When SQL Assistant is running, its icon appears in the Window system tray.

To exit SQL Assistant:

1. Right-click the SQL Assistant icon in the Window system tray.

2. Select Exit command from the popup menu.

 Tip: If SQL Assistant is registered as an add-on, the host program loads the add-on automatically on
startup or when a new instance of SQL editor is opened from within the host program. The host program
automatically unloads the add-on when the program quits. If SQL Assistant is registered as an add-on, you
have the option of running SQL Assistant as an icon in the system tray. In this case you can disable the "Load
on Windows Startup" option in SQL Assistant options. See the “Managing SQL Assistant Load Methods” topic
for more information.

Temporarily Pausing SQL Assistant

To pause SQL Assistant services without exiting the program:

1. Right-click the SQL Assistant icon in the Window system tray.

2. Select the Suspend command from the popup menu. SQL Assistant icon in the system tray changes
color from red to gray.

CHAPTER 3, Code Assistants and SQL Intellisense

 -50-

To resume SQL Assistant services:

1. Right-click the SQL Assistant icon in the Window system tray.

2. Select the Resume command from the popup menu. SQL Assistant resumes its normal activities. SQL
Assistant icon in the system tray changes color from gray back to red.

 Tip: If you have SQL Assistant and target editor menu integration enabled, you can use SQL Assistant's
Suspend and Resume commands available from the editor's right-click context menu and/or top level menu.

SQL Intellisense

SQL Assistant provides advanced code Intellisense features to make your SQL programming experience more
productive. When you are working in the SQL code editor, SQL Assistant suggests code matches for auto-
completing code items you type into the editor. It may also display additional informational about SQL
keywords, statement syntax, referenced objects, columns, parameters, and much more. SQL Intellisense uses
various types of popup prompts, menus, and tooltips. To accept an Intellisense suggestion for code completion,
press the item completion character (by default, the Enter key). Alternatively, you can ignore the Intellisense
suggestion and continue typing the code. To dismiss the prompt immediately, press the Esc key.

In addition, the SQL Intellisense features allow you to graphically construct complete SQL queries using just
your computer mouse. For example, when you type the keyword "SELECT," Intellisense displays a list of
databases, schemas, and tables. You can click on the [+] sign before the table name (or expand the database
or the schema name first, and then expand the table), then the table columns are listed. You can mark the
checkboxes in front of the column names that you want for the query. You now have a complete SQL SELECT
statement with column names and tables completed for you. Similarly, you can click through JOINS and select
table joins, WHERE conditions, and other options and SQL operation types.

CHAPTER 3, Code Assistants and SQL Intellisense

 -51-

Following are some examples of SQL Intellisense popups provided by SQL Assistant.

The remainder of this chapter explains these features in more detail.

 Tips:
 Intellisense behavior is dependent on database type and on many other factors. SQL Assistance

provides numerous customization options you can use to tune Intellisense behavior options to match
your coding habits as well as to queries and options specific to your database type .

 Most of the options controlling Intellisense behavior can be found either on the DB Options tab in the
Options dialog within the General section or within the Auto Complete section.

 SQL Assistant Intellisense supports several different name matching methods it can use to match
database entries, keywords, and other text you type in the editor. They described in detail in
CHAPTER 6, Database Explorer, in Content Filtering and Sorting topic. In the Auto Complete
section in the Options you can choose the method that you would like to use as the default method.

CHAPTER 3, Code Assistants and SQL Intellisense

 -52-

You can select different methods for different databases. You can also change the method for the
current session on the fly. In SQL Assistant popup, right-click anywhere within the popup box, and in
the context menu select the Name Matching Method menu and then the desired method..

SQL Assistant Windows and Appearance

SQL Assistant windows and popups have a consistent look in all target editors. However their availability,
position, and management functions depend on the target editor type and the chosen SQL Assistant options.
For example, when working within SQL*Plus, which comes as one of the pre-registered targets, the SQL
Reference window appears on the right hand side of the screen while in all other pre-registered targets, it is
displayed, by default, as a docked window on the left side of the target editor screen.

Below is an example SQL*Plus screenshot demonstrating several active SQL Assistant windows.

In comparison, a similar set of SQL Assistant windows in Microsoft SQL Server Query Analyzer may look like in
the following example.

Table
JOINs

Docked windows
containing interactive
SQL Reference

CHAPTER 3, Code Assistants and SQL Intellisense

 -53-

There are two types of SQL Assistant windows that can appear in the target application workspace:

 Docked windows are windows docked to the sides of the editor workspace area. SQL Assistant
supports both vertical and horizontal docked Windows. The SQL Reference System and Code
Structure View are always displayed in the vertically docked window. They share the same window
and appear as two different tab pages. All other SQL Assistant windows appear as tabs in the
horizontally docked window at the bottom part of the editor workspace area.

The SQL Assistant's Integrated Development Environments (IDE) supports multiple editor windows
that can be arranged in a multi-tab and multi-document interfaces. Each editor window can have its
own different set of docked windows attached to it.

Docked windows can be resized separately or together with the target editor. Docked windows can be
repositioned and attached to different sides of the editor using the context menu over the tab, as
demonstrated on the following screenshot.

Table
JOINs

Docked window
containing
interactive SQL
Reference

Docked window containing procedural
code views, data previews, SQL
execution status messages, and syntax
check results

CHAPTER 3, Code Assistants and SQL Intellisense

 -54-

Certain types of docked windows can be attached to the main window which is not editor tab/window
specific and appears visible all the time.

Docked windows can be also floated to make them target editor window independent. They can be
moved to a second monitor or stacked up if desired.. To make a window floating, right-click the tab of
the docked window and from the content menu choose Dock -> Floating menu. You can resize the
floated window as needed. Note that the floating windows by default appear on top of all other
windows. This feature is by design. If they obscure other applications, you can resize them, move
them, or restore their docked state within the target editor window. You can also disable the top-most
feature using the right-click menu over the floating window title bar, as shown on the following
screenshot.

To dock a floating window, right-click the window’s title bar and choose the appropriate docking
command from the right-Dock menu.

 Popups are kind of floating windows displayed next to the editing position. They are part of SQL
Intelligence features and unlike other floating windows they appear and disappear automatically
depending on the position of your mouse cursor in the SQL code. Popup windows can be moved and
resized.

Manually Invoking SQL Assistant Popups Using Keyboard Hot Keys

If, for whatever reason, a SQL Assistant popup is not displayed at the current cursor position and you want to
display the popup, you can use the global Ctrl+Space hot key or a custom hot key if you changed the default
key to something else. Read the following topics for more details. The hot key used to open a SQL Assistant
popup can be changed on the Options dialog. For more information, see the “Customizing Hot Keys” topic in
CHAPTER 48.

Press the Esc key at any time to immediately close an SQL Assistant popup.

CHAPTER 3, Code Assistants and SQL Intellisense

 -55-

Manually Invoking SQL Assistant Popups Using Context and Top-level Menus

To avoid the need to remember numerous hot key sequences, SQL Assistant supports direct integration with
top-level right-click popup menus available in your development environments. To use SQL Assistant functions,
right-click on the text in the editor where you want to invoke SQL Assistant, then select the top-most item in the
context menu. The item text should read SQL Assistant and lead to the next menu level containing specific
SQL Assistant functions.

 Note: In editors like SQL*Plus that do not support right-click context menus, SQL Assistant creates its own
right-click menu. The following example, demonstrates SQL Assistant commands displayed in Microsoft SQL
Query Analyzer context menu.

Right-click context menu integration is enabled by default in all pre-configured and new targets, while top-level
menu integration is disabled by default. See the “Customizing Target Editor Menu Integration” topic in
CHAPTER 8 for more information on how to customize SQL Assistant integration with target editor menus.

CHAPTER 3, Code Assistants and SQL Intellisense

 -56-

Manually Invoking SQL Assistant Popups from the System Tray

All commands available in the SQL Assistant menus are can also be invoked from the SQL Assistant icon in the
Windows system tray. Right-click on the system tray icon to display the menu, then choose the Target menu
branch as shown in the following screenshot.

Viewing SQL Assistant Usage Statistics from the System Tray

In addition to invoking various SQL Assistant commands and features, you can use the system tray icon to view
a summary of SQL Assistant usage statistics. Rest the mouse pointer over the SQL Assistant's icon in the
system tray area to display a usage statistics balloon as demonstrated on the example screenshot.

See the following topic for information about usage statistics and how they are calculated.

CHAPTER 3, Code Assistants and SQL Intellisense

 -57-

Understanding and Using SQL Assistant's Usage Statistics

SQL Assistant gathers usage statistics in all target editors where it is active. Usage statistics provide you with
information for analyzing which coding methods and SQL Assistant usage techniques provide the most gains.
For example, you can use them to compare which of the following strategies for building SQL queries is most
efficient:

 Using SQL Assistant's Help, start by defining FROM and JOIN clauses, then add a SELECT clause to
the query skeleton created by SQL Assistant

 Start with the SELECT clause first, and then JOIN statements

SQL Assistant provides three types of usage statistics:

Global-level statistics for all target editors and all editing sessions – these statistics are displayed on the
About tab page in SQL Assistant's Options dialog. They are also displayed as a balloon for SQL Assistant's
system tray icon. Keyboard usage in all target editors ever used with SQL Assistant in all editing sessions is
displayed.

Editor-level statistics for all editing sessions – these statistics are available in SQL Assistant's menus –
both in the right-click context menu and in the top-level menu (if target editor top-level menu integration is
enabled). Keyboard usage for all instances of the current target editor in all editing sessions is displayed.

Instance-level statistics for the current sessions – these statistics are available in SQL Assistant's menus –
both in the right-click context menu and in the top-level menu (if target editor top-level menu integration is
enabled). Keyboard usage is displayed for the current target editor instance only, and only for the current
editing session.

Types of Statistics Collected

All statistics are collected and aggregated in real-time. The following metrics are available:

Typed by User – this is the number of characters typed by the user in the target editor. This number includes
all characters and digits, carriage returns, tabs and other characters typed as part of the code.

Added by SQL Assistant – this is the number of characters that SQL Assistant added to the code. It includes
text inserted using SQL Assistant's popups, text generated by code snippets, tabs inserted by the auto-indent
feature, and other SQL Assistant's dynamic code auto-formatting features applied in the background as you
enter the code.

Typing Speed – this is a measure of your average typing speed calculated as an average number of
characters added to the code per minute. This number counts all characters, including both characters typed
and characters added to you code by SQL Assistant. Note that this metric calculates typist speed during active
periods of code entry only. Periods of typist inactivity for 30 seconds and longer are ignored.

Productivity Gain - this is the ratio of how much code you entered with the help of SQL Assistant expressed
as a percentage. This number is only available for the global statistics level. For example, if you type 50
characters, and 100 more characters are added for you by SQL Assistant's intellisense and code snippets
functions, your productivity gain is 200%.

 Tip: An average database developer who is well familiar with their database schema and who remember
most table and column names can enter anywhere from 20 to 50 characters per minute. Note that this time
includes breaks, mouse activities, data lookup, An average coder working with an unfamiliar database schema
can enter from 1 to 5 characters per minute because they have to spend much time researching schema object
names, columns and parameters and typing unfamiliar names. In both cases SQL Assistant can dramatically
improve their productivity and increase their coding speed by 300% or more.

CHAPTER 3, Code Assistants and SQL Intellisense

 -58-

Disabling and Enabling Statistics Collection

If you do not want SQL Assistant to gather keyboard usage statistics, you can disable this feature:

1. Use any available method to display SQL Assistant's menu.

2. Click the Statistics submenu and then click the Active command.

To re-activate this feature, repeat these steps.

Resetting Statistics

To reset statistics and begin anew:

1. Use any available method to display SQL Assistant's menu.

2. Click the Statistics submenu and then click the Reset command.

CHAPTER 3, Code Assistants and SQL Intellisense

 -59-

How to Build Advanced SQL Commands With Only a Few
Keystrokes

The following examples demonstrate several important techniques for quickly generating SQL code, complete
with multiple table joins, column selection lists, joins and other SQL features.

Example 1: Building complete SELECT statement starting with column
names

1. Type SELECT and press spacebar. The SQL Assistant's Objects popup will appear.

2. Press the Right Arrow keyboard key to expand columns of the actor table. The result should look like the
following.

3. Press the Down Arrow twice to move the selection to the first_name column. Press the Right Arrow key
to select this column. The SELECT statement in the editor will change to the following:

SELECT a.first_name FROM actor a

Press the Down Arrow to select the next column, last_name. Press the Right Arrow again to add this
column to the SELECT list.

CHAPTER 3, Code Assistants and SQL Intellisense

 -60-

4. Using Down Arrow and Right Arrow keys, scroll to the next table, actor_info, and expand that table too.
Then using the same the technique, select the film_info column from the actor_info table.

5. Click at the end of the generated query and add a WHERE clause. In other words, click after "ai" and press
the Enter key. Type the “WHERE” keyword and press spacebar. The SQL Assistant's Columns popup will
appear.

6. Using the Down Arrow, scroll to the second line and press the Enter key to paste ai.actor_id. The SQL
Assistant column popup will disappear.

CHAPTER 3, Code Assistants and SQL Intellisense

 -61-

7. Type the equal sign. The SQL Assistant's columns popup will appear again. Scroll down to the a.actor_id
column and press Enter or simply double click that column.

You now have the complete SELECT statement with columns from multiple tables and a complete WHERE
clause.

 Note: This result required only 22 key-presses using mostly two adjacent navigation keys and two mouse
clicks. Compare this to the length of the text, that is 106 characters long, and you come up with 79% saving.
And the coding of this query with 3 joined tables took only a few seconds.

Example 2: Building complete SELECT statement starting with joins

1. Type SELECT * FROM and press spacebar. The SQL Assistant's Objects popup will appear.

2. Type the letter “F”. The object list will be automatically filtered to show objects beginning with the letter F.
The result should like the following image:

Press the Enter key to select the film table. SQL Assistant will modify the SQL query in the editor to the
following:

SELECT * FROM film f

CHAPTER 3, Code Assistants and SQL Intellisense

 -62-

3. Now type JOIN and press spacebar. The SQL Assistant's object-joins popup will appear.

Using the Down Arrow and Right Arrow keys, expand the film_category table join The result should like
the below image:

Now press the Enter key to add the film_category table to the query. In the editor you now have the
following query:

SELECT *
FROM film f JOIN film_category fc ON fc.film_id = f.film_id

CHAPTER 3, Code Assistants and SQL Intellisense

 -63-

4. Type JOIN again at the end of the query to add another join. Follow same steps as described above, but
this time pick the category table join:

You now have:

SELECT *
FROM film f
JOIN film_category fc ON fc.film_id = f.film_id
JOIN category c ON c.category_id = fc.category_id

5. Click before or after the asterisk and press Ctrl+Space to open SQL Assistant's column expansion popup
(see the Advanced Code Expansion for Object Columns and Arguments” topic for more information)
You should get the following:

CHAPTER 3, Code Assistants and SQL Intellisense

 -64-

6. Using the mouse or navigation keys, select the appropriate columns from the referenced tables by clicking
the check boxes.

The resulting query may look like below

 SELECT c.name, f.title, f.description, f.release_year
 FROM film f
 JOIN film_category fc ON fc.film_id = f.film_id
 JOIN category c ON c.category_id = fc.category_id

 Note: This result required only 35 quick key-presses, including spacebar presses. Compare this to the
length of the text, that is 146 characters long, and you come up with 76% saving. And the coding of this query
with 3 joined tables took only a few seconds.

Example 3: Creating multi-line comments with 4 keys

1. Type /** and then press the Ctrl+Enter hot key sequence. The result will be as follows. The cursor will be
positioned on the second line with the exact position indicated by the pipe | character.

/***
* |
***/

 Tip: This simple example involves one of the pre-defined code snippets that are part of SQL Assistant's
standard configuration. SQL Assistant is packed with a large number of pre-defined snippets. Some snippets
are very simple. Examples are the automatic adding of the END keywords to every BEGIN and indenting the
code. Others are more complicated and can be used to generate body of a stored procedure or complete
cursor logic along with table references, variables and loops. Code snippets provide very efficient method for
quick code entry.

CHAPTER 3, Code Assistants and SQL Intellisense

 -65-

Example 4: Generating complete-cursor logic with 7 keys and 1 click

1. Type cfetch and then press the Ctrl+Enter hot key. The Object popup will appear.

2. Click any of the tables or views available in the popup. The result is displayed on the following picture:

 Tips:
 This simple example involves one of the pre-defined code snippets that are part of SQL

Assistant's standard configuration.

 You can create your own snippets to quickly generate common code used in your queries and
procedures.

 For more information for how to use advanced code snippets, see CHAPTER 7, Code Entry
Automation using Code Snippets

Using Object Name Code Completion Features

The content of SQL Assistant popups is context and database-driven. For example, when you type FROM
keyword within SELECT statement, or UPDATE keyword, the popup list is populated with items you may want
to insert into the text. These items may include table and view names, table function names, schema names,
and so on.

CHAPTER 3, Code Assistants and SQL Intellisense

 -66-

For your convenience, items of different types are displayed in different colors and indicated by different icons
displayed on the left side of the popup list.

If the item you want is below the visible area of the popup, scroll through the list to locate the item and then
double-click or press the Enter key to insert it into the text. Alternatively, you can start typing the first few
characters of the item to display only items that begin with those characters.

If the item you want is not in the popup list, continue typing normally and the popup will disappear
automatically.

The popup containing object, schema and database names can appear when you type space character after a
SELECT, FROM, JOIN, TRUNCATE TABLE, DECLARE, EXEC, EXECUTE, CALL, or USE keywords. It can
also appear after a database or schema name followed by a dot character. The set of keywords that trigger the
automatic popup is controlled by the "SQL Assistance" type you select in SQL Assistant options for the current
target type, such as T-SQL or PL/SQL.

 Tip: The order of different items and types of items listed in the popup can be customized in SQL
Assistant's settings in the List Items section of the DB Options tab. You can set additional filters using
customized versions of database catalog queries available on the on the DB Options tab in the DB Queries
section. For more information, see the “Using Object Type Filtering” and “Customizing Database Catalog
Queries” topics in CHAPTER 48, Customizing SQL Assistant's Behavior.

 Tip: The Object Names popup list typically contains names of objects in the current user schema, names
of database schemas in the current database, and names of databases in the current server. Schema names
and database names represent multi-level items that can be expanded. If you need to select an object in a
different schema or in a different database, you can do it in multiple steps selecting database or schema level
item then typing dot and selecting next level item, then typing dot again, and so on. Or you can do it in one step
expanding levels in the popup using mouse or keyboard keys and selecting the required final item as in the
following example:

Note that in certain situations, SQL Assistant automatically expands multiple levels if it can uniquely identify the
schema and table. For example, if you start typing the schema name with the characters "au" and there is only
one schema name that begins with those characters, the list will be narrowed to one schema and the schema
level will expand automatically as in the following example,

CHAPTER 3, Code Assistants and SQL Intellisense

 -67-

Note that levels can be expanded and collapsed using either the mouse or keyboard. Using the mouse, click
on the [+] plus sign to expand the level, click on the [-] minus sign to collapse an expanded level. Use the Right
Arrow and Left Arrow navigation keys to achieve the same effect using the keyboard.

Another helpful feature is multi-level item filtering. Here is an example of how this feature works. Suppose you
are coding a SQL Server procedure and in the procedure code you want to reference,
Inventory.dbo.SpareParts, is in a table in another database. To quickly enter this table in the FROM clause:

1. After keyword FROM, type space. The SQL Assistant's objects popup will appear on the screen. Start
typing the characters "in". SQL Assistant will filter the content of the object names popup so the
Inventory database name appears on top.

2. Use the Right Arrow key to expand this database level and type the character "d". Now the second
level containing schema names should show only schemas whose names begin with letter "d." Most
likely the "dbo" schema will be the first in list.

3. Use the Down Arrow key to select "dbo" schema and then use Right Arrow key to expand this schema
level. Then type "sp". Now the third level containing schema names should show only objects whose
names begin with letters "sp" and most likely "Spare Parts" table will be the first one in list.

4. Use Down Arrow key to select "SpareParts" table and then press the Enter key to insert the table
name into the code (or use whatever key you have chosen in options as a list item selection key)

As you can see in this example, you can quickly type 5 characters and use 3 navigation key presses, plus the
Enter key, to quickly insert the Inventory.dbo.SpareParts table name into your code. Compare this to the
length of the fully qualified table name, which is 24 characters long.

Object Name Aliases

When completing table and view names, by default SQL Assistant automatically adds short aliases. In the
previous topic you learned how to quickly insert object names into your code. The actual text that is inserted
when you press the item selection key or use mouse includes the selected table name or view followed by the
AS keyword and further by table aliases. For example, if you select Inventory.dbo.SpareParts table name in
the popup window after typing SELECT * FROM, the inserted text would be
SELECT * FROM Inventory.dbo.SpareParts AS sp

CHAPTER 3, Code Assistants and SQL Intellisense

 -68-

 Tips:

 If you don’t want SQL Assistant to automatically add an alias, hold down Shift key when selecting a
name. That will result in the name being inserted without trailing AS <alias> element.

 You can predefine preferred aliases for commonly used tables in SQL Assistant options, as well as
customize how automatic aliases are calculated. For more details see Customizing Code Auto-
completion Options in CHAPTER 48, Customizing SQL Assistant's Behavior.

Using Object, Schema, and Database Name Auto-Completion

Using the Ctrl+Space shortcut, you can instruct SQL Assistant to auto-complete the partially entered name of
an object, schema, or database name. For example, in the Microsoft SQL Server Query Analyzer, if you type

SELECT * FROM sysda

and then press Ctrl+Space hot key, SQL Assistant automatically completes the text as

SELECT * FROM sysdatabases

If there is only one name beginning with the partially entered text, that name can be matched unambiguously and
completed automatically. If multiple names match the entered text, a SQL Assistant object popup appears with the
list of objects, schema, and databases whose names begin with "sysda" prefix.

Using Variable Name Auto-Completion

This feature is available for SQL Server and Sybase ASE and ASE targets in which variable names begin with
@ symbols. Using the Ctrl+Space shortcut, you can make SQL Assistant auto-complete partially entered
variable names name. For example, if in Microsoft SQL Server Query Analyzer, if you type

SET @somev

and then press Ctrl+Space hot key, SQL Assistant automatically completes the text as

SET @somevariable

If there is only one variable declared in script whose name begins "somev " text, that variable name can be
matched unambiguously and completed automatically. If multiple names match the entered text, a regular SQL
Assistant variable names appears with the list of variables whose names begin with "somev " prefix.

CHAPTER 3, Code Assistants and SQL Intellisense

 -69-

Using Column and Parameter Names Completion Features

The table/view column list popup appears expanded automatically when SQL Assistant is invoked after a dot
character, comma, equal sign or end of procedure name. The popup item list is normally limited to column
names of the referenced table or parameters of the referenced procedure or function.

Below are several examples demonstrating the column and parameter names completion feature:

SQL Assistant popup window content depend on the popup invocation context and the target environment.
Depending on the context, a series of checkboxes might appear next to column names in the list so you can
select multiple columns at once. See the “Using Multiple Columns Selection in DML Statements” topic in
CHAPTER 3 for more details.

In addition to column names and their data-types, SQL Assistant column popups may display optional icons
indicating primary key columns and indexed columns. See the following topic for information on how to enable
this optional feature.

Enabling Display of Key Columns and Indexed Columns

By default, SQL Assistant is pre-reconfigured to display simple table column lists containing only column
names, their data types and nullability states. Simple lists allow SQL Assistant to use a relatively small amount
of memory for its internal in-memory data caches and, most importantly, they allow fast response times when

CHAPTER 3, Code Assistants and SQL Intellisense

 -70-

SQL Assistant queries database catalog tables that store table column information.

In addition to displaying simple column information, SQL Assistant can be setup to display icons in column lists
as well as overlay icons indicating table primary key columns, foreign key columns, unique key columns, and
indexed columns. If you work with a sufficiently fast small to medium size database and you are not concerned
with the amount of memory SQL Assistant uses for its internal data caches, you can enable this optional
feature.

 Tip: By the "small", "medium", or "large" database size quantifiers, we are referring to the number of
tables, functions, procedures, packages, and other objects available in the database, not the amount of data
stored in database tables. From this perspective, a database containing tens of thousands of objects and
hundreds of thousands of table columns, procedure parameters, etc… is considered as "large." A good
example of a large database would be a database hosting an Enterprise Resource Planning (ERP) application
such as SAP, JD Edwards, and similar.

 Important Notes: We encourage you to enable the optional Display Keys and Indexed Columns
feature and test whether the performance and response times you experience are acceptable. If they are not,
you can always switch back to the default simple Column display option.

See the “Two Database Catalog Queries for Getting Column Information and How to Change Them” topic in
CHAPTER 48, “Customizing SQL Assistant's Behavior,” for instructions on how to switch between two available
Column display options.

Table or key and index icons and their meaning

Icon Description

This icon indicates that the column is part of a primary key. The primary
key icon takes precedence over other icons If the same column is part of
multiple keys or indexes.

This icon indicates that the column is part of a foreign key. The foreign
key icon takes precedence over unique key and index icons if the same
column is part of multiple keys or indexes.

This icon indicates that the column is part of a unique key. The unique
key icon takes precedence over the index icon if the same column is part
of a unique key and one or more indexes keys or indexes.

This icon indicates that the column is part of an index.

CHAPTER 3, Code Assistants and SQL Intellisense

 -71-

The following screenshots demonstrate the differences between simple table column lists and table mouse-over
hints and column lists and mouse-over hints with additional icons indicating table keys and indexes:

Simple column list Column list with key and index icons

Table columns hint
Table columns hint with key and index
icons

Using JOIN Clause Completion Features

When typing a JOIN clause into the editor, a code completion popup displays each time you type the JOIN
keyword, the ON keyword, or an equal sign that is part of the JOIN clause. A similar popup may also appear
after you enter a WHERE clause with a correlated sub-query.

In the popup appearing after the JOIN keyword, you are presented with a list of suggestions based on the
analysis of the referential integrity constraints defined for the tables referenced in the JOIN clause as well as
the list of other tables in the database The list of referential integrity based suggestions appears on top of the
popup and a horizontal line separates it from the rest of the popup content.

You can select an object name to add it to the current SQL statement and then type the ON keyword and select

CHAPTER 3, Code Assistants and SQL Intellisense

 -72-

a condition for the join. However, it is more efficient to expand the table required for the join and then select a
join condition from the list of displayed conditions. SQL Assistant will automatically generate the entire JOIN
clause, including table names, aliases and columns.

The following screenshot demonstrates how to use the JOIN clause completion feature when using referential
integrity-based suggestions

In addition to using referential integrity definitions for JOIN clause suggestions, SQL Assistant can use column-
name matches. SQL Assistant uses color-coded styles to distinguish between different suggestion types. The
following screenshot shows JOIN suggestions based on column name matching.

Note that both types of JOIN suggestions can appear in the same popup list. The purple color suggestions
indicate referential constraints; gray color suggestions indicate column name matches.

 Tips:

 If a referential constraint consists of multiple columns, all columns referenced in that constraint
appear on the same line. If the line is long, some of the columns may appear cut off and may not

CHAPTER 3, Code Assistants and SQL Intellisense

 -73-

be visible. To display these columns, you can increase the width of the popup window by dragging
its right edge further to the right. See the “Working with SQL Assistant Popups” topic for details on
how to resize and manipulate SQL Assistant's popups.

 You can use keyboard navigation keys to quickly expand and collapse tables suggested for a JOIN
and show/hide their columns. Use the Right Arrow key to expand the selected table level and the
Left Arrow to collapse the level.

Using Multiple Columns Selection in DML Statements

When using SQL Assistant to generate DML statements such as SELECT, INSERT and UPDATE, you can
choose which columns to include in the statement as soon as you type the first keyword. For example, if you
want to use a SELECT statement to retrieve data from several columns of the customer table, use the following
steps:

1. Type SELECT and press the space bar. A SQL Assistant objects popup will appear.

2. Select the customers table from the popup.

3. Click the plus sign in front of the customers table name to expand the table and display its
columns. Alternatively, you can highlight the table and then press the Right Arrow navigation key to
expand the customers table.

4. Select the checkboxes on front of columns you want to include with the SELECT statement.
Alternatively, use the Up Arrow or Down Arrow keys to scroll the list, then use the Right Arrow and Left
Arrow keys to select or deselect the appropriate columns. As you select or deselect columns, you will
see the SELECT statement for the current column selection automatically generated for you behind
the SQL Assistant's popup.

5. Press Esc or Enter to close the popup.

CHAPTER 3, Code Assistants and SQL Intellisense

 -74-

 Tip: The same technique can be used for INSERT and UPDATE statements as shown in the following
screenshot.

 Tip: To quickly select all columns in a table, right-click the table name in the popup menu and click the
Check All command. The following screenshots demonstrates how to use that command.

Using Context-based Suggestions Based on Historical
Coding Patterns

SQL Assistant caches SQL DML statements code you have previously entered, either manually or with the help

CHAPTER 3, Code Assistants and SQL Intellisense

 -75-

of one of SQL Assistant's code-suggestion or code-generation features. These statements are saved in a
History Cache file and are ranked according to the frequency with which each statement has been used.
When you begin typing one of these statements at a later time, the editor retrieves the relevant portion of the
cache file and displays it in a selection window as shown in the screenshot below. To select a line of code from
the selection window, use the UP and DOWN arrow keys to select a statement, then press the Enter key to
insert the line into your editor code.

Depending on the context, the complete query text from the History Cache can be suggested exactly as it was
entered, or only a part of the original query can be used for the suggestions, if the beginning of the query
matches what you have already entered into the editor. In the screenshots above, you can see both full and
partial text suggestions based on the text of previously entered SQL SELECT queries cached in the History
Cache.

The size of the history cache is controlled by SQL Assistant settings. See CHAPTER 48, Customizing SQL
Assistant's Behavior for more details. The default cache size is 32 Kbytes. SQL Assistant uses a mix of Most
Frequently Used (MFU),, Most Recently Used (MRU) and First In First Out (FIFO) rules to maintain cache data.
When choosing the right cache size, evaluate your system performance and check how it affects SQL Assistant
response times when you enter new code. A larger cache size allows SQL Assistant to save more history data,
and more history data permits improved SQL statement ranking and, thus, better context-based suggestions.
Smaller cache sizes allow faster processing of SQL cache data which can provide better response times at the
cost of less accuracy and fewer choices for suggestions.

CHAPTER 3, Code Assistants and SQL Intellisense

 -76-

Another factor to consider when using code suggestions based on your historical coding patterns is which
statements to show in the suggestion part of the SQL Assistant popups. The following choices are available:

 Most Recently Used – This is the default option. If selected, this option causes SQL Assistant to
show suggestions matching the text you type against the most recently used SQL statements.

 Most Frequently Used – If selected, this option causes SQL Assistant to show suggestions
matching the text you type against the most frequently used SQL statements.

 No Sort – If selected, this option causes SQL Assistant to show suggestions matching the text you
type against records in the cache in the order they were saved or updated. With this option, the
exact physical order of lines in the History Cache is unknown and depends on your coding
patterns.

The number of History Cache based suggestions appearing in SQL Assistant's popups is controlled by
History Items Shown in Lists option that can be configure in SQL Assistant system options for type of
assistance. The default value is 3 for all types.

If you would like to hide History Cache based suggestions in popups, set the value to 0 (zero).

When the popup is already displayed on the screen, you can dynamically adjust the number of displayed items
by dragging the horizontal line separating history-based suggestions appearing in the popup.

The adjusted size will be effective for the lifetime of the target editor instance. To set the size permanently, use
the available system options as described in CHAPTER 48, Customizing SQL Assistant's Behavior. The
position of the historical items within the popup is controlled by the List Items option group in the SQL
Assistant system options. You can use this options group to organize which types of items appear in popups, in
which order, and position of the historical items within the popups.

 Tip: SQL Assistant supports a separate cache for the Code Execution History, which is used for recalling
recently executed SQL statements. For more information, see the Using Code Execution History topic in
CHAPTER 14, Executing SQL Scripts.

Using Function Argument Hints Features

The function argument list popup displays when you type an open parenthesis character "(" or commas

CHAPTER 3, Code Assistants and SQL Intellisense

 -77-

separating function arguments. The popup item list is normally limited to hints describing function arguments
and the function return code, and also in a separate section, list of column names of tables and views
referenced in the same SQL statement.

Below is an example popup demonstrating function argument completion feature.

 Tips:

 Function argument names and the return code are displayed in a different color and provided as hints to
help you enter values having correct data types and in the correct order. After inserting the text from the
argument popup, you should replace it with the actual values or valid script variables

 Optional arguments are displayed in [] brackets.

 When multiple overloaded versions of a function have different argument types or a different number of
arguments, each function version appears in a separate section as shown on the following screenshot:

Using Advanced Oracle Package and Object Type Attribute
Completion Features

The advanced popup for Oracle packages and object types appears after package and type names. The popup
contains lists of attributes and functions available in the referenced objects, providing graphical visibility for
what is available in the referenced packages and types. The red text notes on the following example
screenshot describe how to read the popup content.

CHAPTER 3, Code Assistants and SQL Intellisense

 -78-

 Tips:

1. The popup list may contain multiple levels of information. Items prefixed with a plus sign contain
sub-items such as object attributes, functions, and function parameters. To expand a sub-item list,
click on the plus sign. Similarly to expand sub-items of sub-items, click on the plus sign displayed next
to the sub-items.

2. If you don't want to paste or auto-generate code when the popup appears after the initial SQL
statement keyword, just continue typing the code normally. The popup will disappear automatically.

3. When multiple overloaded versions of a function have different argument types or a different number
of arguments, each function version appears in a separate section.

Using Keywords Completion and Syntax Hints Features

The keywords completion feature is context based. The keywords popup appears automatically when SQL
Assistant senses that a keyword might be used in the current edition position. By default, the keywords popup
appears after typing the first two characters of a keyword. The popup can also appear in places where a
keyword or some other required SQL syntax element is expected. For example, when using default settings,

CHAPTER 3, Code Assistants and SQL Intellisense

 -79-

typing SELECT * causes SQL Assistant to display keywords popup whose suggestions list contains FROM

keyword and other context based items. The following screenshot demonstrates another case of context based
keyword prompts.

 Tips:

1. The popup list may contain two types of items: keywords and syntax hints. In certain cases, item text
may contain both keyword and the associated following syntax hint part. The keywords are always
displayed in blue, while suggested syntax hints are displayed in black.

2. Keyword lists may contain individual keywords and groups of keywords that are typically used
together; for example, in Oracle targets, both "CREATE" and "CREATE OR REPLACE" keyword
suggestions appear in the popup displayed after typing letters CR as well as some other common
keyword combinations beginning with the CR text suffix, such as CREATE TABLE and other.

3. Generally, the most commonly used keywords appear at the top of the list in a separate section.

4. The keywords appearance in the popup list and their treatment depends on the settings in the current
formatting style associated with the target editor. For example, if in the current formatting style,
keywords options are set for keywords to be converted to upper-case, in the popup keywords also
appear in the upper-case. In other words, what you see is what you get (WYSIWYG). For more details
see the “Keywords” topic in CHAPTER 5.

Using Local and Global Variable Names Completion Features

The variable names suggestions and completion feature is implemented for all supported database systems.
However, the implementation differs for database systems using the T-SQL dialect. This includes Microsoft
SQL Server, Sybase ASE, and Sybase ASA. In these systems, the variable names popup is activated after
typing the @ and @@ symbols. The variable name list popup appears expanded when SQL Assistant is
invoked after single @ character or after double @@ characters. The following picture shows an example
popup with local variable names and parameters for T-SQL based database systems.

CHAPTER 3, Code Assistants and SQL Intellisense

 -80-

For local variables prefixed with a single @ character, the popup item list includes all variables declared above
the current line in the same unit of code (such as a stored procedure, trigger, function, or other procedural
object), in other words, all variables declared between the preceding CREATE or ALTER command and the
current cursor position.

For global variables prefixed with double @@ characters, the popup item list includes all standard SQL Server
global variables. For Sybase based targets, the popup item list includes all standard Sybase ASE (ASA) global
variables.

For all other database systems not using T-SQL dialect, the variable names appear as a special expandable
item within content of the object names popup and column names popup. The name of this special item is
"local variables." The following picture shows an example popup with local variable names and parameters for
Oracle, DB2 and other database systems.

The "local variables" section also appears in the keyword popup after you type SET keyword.

Like any other SQL Assistant list, as you type the code, the context of the variable names list is automatically
filtered to display matching items only.

Note that for non T-SQL based systems, the collapsed "local variables" branch is expanded automatically if you
continue typing when the popup is already displayed and your typing matches beginning of a variable name
available in the branch.

CHAPTER 3, Code Assistants and SQL Intellisense

 -81-

Using Package Variable Names and Type Names Completion
Features

This feature is similar to Local Variables names completion feature except that it is specific to Oracle database
servers only. Refer to the description of the Local Variables completion feature in the previous section for
instructions on where to find and how to use these features.

 Tip: When looking for package variables, SQL Assistant parses the content of the current file as well as
analyzing package code stored in the database server system catalog tables. If you are working on a package
body for which its package header has not been compiled yet and the package header code is not available in
the current file, do not expect SQL Assistant to find package level variable declarations. Always compile
package headers before you reference their attributes in package body. This will not only help SQL Assistant
find the declarations, but it will also help SQL Assistant validate procedure and function declarations appearing
in the package body and check for correct syntax.

Using User/Role Names Completion Features

The user/role name list popup appears when SQL Assistant is invoked after GRANT, REVOKE and DENY
commands. For example, if you type the following line:

GRANT SELECT ON MyTable TO

SQL Assistant will display a list of users and roles to which you can grant the SELECT privilege. Note that SQL
Assistant also automatically displays object list popup after the ON keyword.

The following screenshot demonstrates the user name completion feature.

Using Code Auto-Expansion and Auto-Generation Features

Automatic Generation of DML Statements

SQL Assistant supports several handy code auto-generation features. Code auto-generation is context-based
and is triggered in certain places within the SQL code. Several examples are provided below.

CHAPTER 3, Code Assistants and SQL Intellisense

 -82-

If you select a table, view or function name from the popup list that displays after you type the SELECT
keyword, SQL Assistant inserts into the code the complete SELECT statement for the selected object. Object
columns are inserted after the SELECT keyword following the FROM clause containing the selected object,
table or view. Similarly, if you choose an object that appears after typing an INSERT or UPDATE keyword, SQL
Assistant generates and inserts the complete text of the INSERT or UPDATE statement into the code.

The following SQL Server specific example demonstrates the SQL statement code generation feature.

 Tips:

 Hold down the SHIFT key while choosing an item in the SQL Assistant popup appearing after the
initial SQL statement keyword to paste just the selected object name without generating additional
code.

 If you don't want to paste or auto-generate code when the popup appears after the initial SQL
statement keyword, just continue typing normally. The popup will disappear automatically.

 You can also press the Esc key to dismiss the popup.

Automatic Generation of Variable Declarations

SQL Assistant can automatically generate variables for table, view or table function columns. This feature can
be useful when coding cursors, batch selects, and updates as well as similar SQL operations requiring
declaration of a place holder variable for each column in a given object.

To use this feature:

1. Type the DECLARE keyword then type a space. SQL Assistant will display a list of objects in the database.

2. From the popup list, select the object you want to target. SQL Assistant will automatically insert as many

CHAPTER 3, Code Assistants and SQL Intellisense

 -83-

variable declarations into the code as there are columns in the selected object.

 Note: The names and data types of the declared variables exactly match the names and data types of
corresponding columns in the selected database object.

Following is a SQL Server specific example that demonstrates the automatic code generation feature.

 Tips:

 If you don't want to paste or auto-generate any code when the popup appears after the DECLARE
keyword, just continue typing the code normally. The popup will disappear automatically.

 Hold down the SHIFT key while choosing an item in the SQL Assistant popup appearing after the
DECLARE keyword to paste just the selected object name without generating additional code.

 You can also press the Esc key to dismiss the popup.

Advanced Interactive Code Snippets

Using SQL Assistant's advanced code snippets features, you can automatically generate entire code blocks
with complete procedural and business logic based on the popup selections. Interactive code snippets can take
your object selection and for the selected objects obtain from the database its attributes, parameters, columns
and so on and then plug this information into snippet placeholders, For example, you can use the predefined
cfetch snippet to generate a complete block of code with table variable declarations, cursor declaration and
other cursor loop and handling commands as on the following picture.

CHAPTER 3, Code Assistants and SQL Intellisense

 -84-

For more information for how to use advanced code snippets, see CHAPTER 7, Code Entry Automation using
Code Snippets

Advanced Code Expansion for * and Object Columns and
Arguments

SQL Assistant constantly monitors SQL queries entered into the editor and senses SQL syntax elements that
you might need to expand. For example, after you enter the following code line

SELECT * FROM Categories

If you place the cursor over the asterisk symbol, SQL Assistant will highlight that symbol and display a hint.
suggesting the expansion of the asterisk wildcard. If you click on the hint or simply use the default Ctrl+Space
hot key, SQL Assistant will display a list of columns for the table referenced in the SELECT statement. You can
then use the column popup to choose columns that you want to use in place of the asterisk. The following
example image demonstrates how it works in the editor.

CHAPTER 3, Code Assistants and SQL Intellisense

 -85-

 Tips:

 Use the Right Arrow or Left Arrow navigation keys to select columns using the keyboard only. Use Up
Arrow and Down Arrow keys to scroll the popup list.

 You can delete an item from the code by selecting it in the popup and then deselecting it.

 Use the Esc key to dismiss the popup at any time.

 Code Auto-Expansion is available for various SQL code elements. For example, to expand a query by
adding additional columns to the SELECT clause, click after the name of the table to which you want
to add columns and press Ctrl+Space. Alternatively, you can wait a second or two for the hint and then
click the hint.

 To get assistance with DDL commands like CREATE TABLE, DROP STATISTICS, ALTER TRIGGER
and many others, click near the keywords of the statement for which you need help and then press the
hot key for SQL Reference. The default hot key for SQL Reference is Ctrl+F1.

Advanced Code Expansion and Reference for DDL
Commands

SQL Assistant constantly monitors SQL queries entered into the editor and senses DDL commands that you
might need help with. For example, if you type a code like the following:

ALTER TABLE Categories ADD CONSTRAINT

If you pause for a couple of seconds after entering this text, SQL Assistant will display a hint as demonstrated
on the following screenshot.

CHAPTER 3, Code Assistants and SQL Intellisense

 -86-

If you click the first hyperlink offering help with the ALTER TABLE syntax, SQL Assistant will popup a context-
based SQL Reference window for the ALTER TABLE command. You can use the SQL Reference window to
interactively build the ALTER TABLE command.

Similarly if you pick the second hyperlink offering help with the CONSTRAINT syntax, SQL Assistant will popup
SQL Reference topic with description of CONSTRAINT related types and available options.

For details on how to use SQL Reference, see CHAPTER 9, Interactive SQL Reference System

CHAPTER 3, Code Assistants and SQL Intellisense

 -87-

Working with SQL Assistant Popups

The following screenshot shows a typical SQL Assistant popup.

The following topics describe how you can use the keyboard and mouse actions to work with the popup.

Navigation Keys

The following navigation keys are supported in the SQL Assistant popups.

Down Arrow key moves the logical selection to the next item. If pressed immediately after the popup appears
on the screen, it selects the top item. If pressed while the last visible item is selected and there are more items
available in the list, then it scrolls the content down to the next item and selects it. Can be repeated until the last
available item is reached.

Up Arrow key works just like the Down Arrow but in an opposite direction.

Down Page key scrolls the content by one logical page and moves the logical selection to the top visible item.
The logical page size is controlled by the popup list size and can be adjusted as described in the Resizing
Content topic later in this chapter.

Up Page key works just like the Down Page but in an opposite direction.

ALT+End keys, when pressed simultaneously, move the logical selection to the last item in the popup list.

ALT+Home keys, when pressed simultaneously, move the logical selection to the first item in the popup list.

Left Arrow and Right Arrow– select an item in the current line and works with column and argument popups
with multiple-choice options. If the selected item is expandable, they expand or collapse the branch.

 Tips:

 The most efficient way to use SQL Assistant popups is to start typing the item you want so that only
items beginning with that text remain in the list and then using the Down Arrow key move the selection
to required item and then hit the Enter key to paste the selected item text into the editor.

 You can also use the computer mouse to scroll the SQL Assistant popup content and then click the
item you want to paste into the editor.

CHAPTER 3, Code Assistants and SQL Intellisense

 -88-

Selection Keys

The SQL Assistant supports several alternative item selection keys:

 The Enter key is the default key, which is the standard key used in all Windows controls to select an item
in a list and other multiple-choice selection control. This key also allows you to tab through the text while
SQL Assistant popup remains displayed on the screen.

 Tab key is an alternative key, which is supported for compatibility with Microsoft development
environments featuring Intellisense® technology. This key requires two-hand typing – right hand for
scrolling and selecting items in a list and left key for pressing the Tab key.

 Tip: Using SQL Assistant options you can customize which selection keys can be used with SQL popups
and other features. You can choose to use a single key such as Enter or Tab or you can choose to use both
keys. See the Customizing SQL Assistance Types topic for more information.

Scrolling Content

The content of the SQL Assistant popup can be scrolled using either the keyboard navigation keys Arrow
Up/Down and Page Up/Down or using the mouse. When using the mouse you can scroll the popup content by
dragging its scrollbar handles or clicking little arrows available at the extremes of scrollbars to scroll in small
increments. See the sample screenshot with comments at the beginning of the Working with SQL Assistant
Popups topic for information on where to locate scrollbar handles.

Resizing Content

To resize the SQL Assistant popup, drag the resizer handle in the bottom-right corner of the popup window.
See the screenshot at the beginning of the Working with SQL Assistant Popups topic for information on where
to locate the resizer handle.

Note that the new popup window size will be remembered and used in the future for the popup windows with
the same kind of content. To re-enable automatic popup window sizing, right-click the popup window and its
context menu choose Automatic Window Sizing menu.

Resizing Individual Columns

Depending on the popup type, several columns of text can be displayed in the item list. Moreover different parts
of the list can have different number of columns and column width and positions. If the column width is
insufficient and some parts of text appear cropped, you can resize these columns to see the complete text.
Note that thin gray vertical lines indicate column boundaries. To change size of a column, rest the mouse
pointer over the vertical line indicating the right boundary of that column. The mouse pointer should change to

. Press the left mouse button and while holding it pressed drag the line to the desired position. See the
marked screenshot in the beginning of the Working with SQL Assistant Popups topic for information on where
to locate lines indicating column boundaries.

CHAPTER 3, Code Assistants and SQL Intellisense

 -89-

Moving Content

If the SQL Assistant popup covers part of the editor screen that you want to see, click on an empty area within
the popup window and drag the popup window to a more convenient location on the screen.

Refreshing Content

For performance reasons, SQL Assistance uses in-memory cache for the catalog data retrieved from the
database so that it does not need to query the database each time it needs to display SQL Assistant popups
with the same content. This internal cache is not updated automatically when changes occur in the database
catalog data during active SQL Assistant sessions. For example, when new stored procedures or tables are
created in the database or when table columns are altered, SQL Assistant is not automatically made aware of
these changes so they are not reflected in the content of popups. You can use any of the following methods to
refresh the internal SQL Assistant cache:

 Method 1: Select the Refresh Cache command from one of SQL Assistant menus.

 Method 2: While the popup is displayed on the editor screen, press the F5 hot key. Note that this
Refresh method cannot be used if F5 key is also used as a hot key in the editor.

 Method 3: While the popup is displayed on the editor screen, right click on the popup and click the
Refresh command in the context menu.

 Important Notes: The cache is reloaded automatically after DDL operations so that changes in the
schema objects can be seen immediately in the Intellisense popups, and in other places. SQL Assistant
monitors SQL queries being executed in the editor, and whenever it encounters ALTER, CREATE, or DROP
commands in the current batch, it marks the cache dirty, and then reloads it after the SQL execution is
complete. When working with large databases and performing frequent schema changes, for example,
executing ALTER PROCEDURE and similar commands for database code changes, frequent cache reloading
might not be a convenient feature as it may create undesired performance effect. You can use the
Disable/Enable Automatic Refresh control in the Database Explorer toolbar to temporarily turn off the automatic
refresh feature.

Using Mouse-over Hints

Mouse-over balloons provide you with an informative hint pertaining to an object referenced in the target editor
code, such as stored procedure name, table name, variable name and so on. You can use either of the
following methods to display mouse-over hints:

CHAPTER 3, Code Assistants and SQL Intellisense

 -90-

 Timed hint - Hover mouse pointer over some object name, column, or variable name referenced
in the code and leave it there for a couple of seconds. If the object under the mouse pointer is a
valid object in the current database context or a valid variable declared somewhere in the current
code context, a mouse-over hint will appear as an informational balloon above or below the object
name.

 Immediate hint - Use the hot-track feature to force immediate display of the hint. While holding the
Ctrl key down, hover mouse pointer over an object name, column, or variable name referenced in
the code. The name under the mouse pointer should turn into a hyperlink. If this name is a valid
object name in the current database context or a valid variable name declared somewhere in the
current code context, a mouse-over hint will appear immediately as an informational balloon above
or below the object name.

There is an important difference between mouse-over hints displayed for already entered code and interactive
popups appearing while you are typing new code. Mouse-over hints are designed to aid in reviewing and
analyzing SQL code, while interactive popups are designed to aid in entering SQL code and performing various
code completion functions.

The following screenshots demonstrate examples of a mouse-over hint displayed for a stored procedure and an
interactive prompt for code completion displayed for the same stored procedure during code typing:

Mouse-over hint

Interactive prompt
for code completion
and parameters

Mouse-over hints are available for references for the following types of objects and variables:

 Script variables – this hint displays declaration of the variable data type with a hyperlink that can
be used to jump to the actual line where the variable is declared. This type of mouse-over hint also
supports references to arguments declared in user-defined functions and stored procedures.

 User-defined functions and stored procedure signatures, including package functions and
procedures in Oracle – this hint displays declaration of function / procedure arguments and its

CHAPTER 3, Code Assistants and SQL Intellisense

 -91-

return type, as demonstrated on the previous screenshot.

 Tables – this hint displays declaration of table columns and their data types.

 User-defined table-functions – this hint displays declaration of table-function arguments, columns
and their data types.

 Views – this hint displays declaration of table columns and their data types.

Using Data Preview and Code Preview Hyperlinks in Mouse-over Hints

Data Preview and Code Preview hyperlinks are available in certain types of mouser-over hints. Data Preview
hyperlinks are available in hints displayed for tables and views. Code Preview hyperlinks are displayed in hints
for most types of procedural objects, such as stored procedures, functions, view, packages and types in Oracle,
as well as for tables and views.

Click the Data hyperlink or click icon to retrieve sample data and display it in the Data Preview pane.

Click the Code hyperlink or click icon to reverse-engineer DDL code of the object and display it in the Code
View pane.

Using the Column and Variable Data-type Hints Feature

SQL Assistant supports interactive mouser-over hints for column, variable, and argument data-types.

To trigger a hint for a particular table or view column referenced in the code, rest the mouse pointer over that
column name. After a brief delay, SQL Assistant will display a balloon with the column declaration. Note that the
code syntax must be valid in order for SQL Assistant to recognize which table or view owns the column under
the mouse pointer.

CHAPTER 3, Code Assistants and SQL Intellisense

 -92-

To trigger a hint for a particular variable referenced in the code, rest the mouse pointer over that variable. After
a brief delay, SQL Assistant will display a balloon with the variable declaration and a hyperlink.

To jump to the actual variable declaration, move the mouse pointer over the balloon. A hyperlink will appear
within the hint. Click the hyperlink and SQL Assistant will scroll the text in the target editor and place the cursor
in front of the variable declaration.

Using the Keyword Capitalization and Formatting Feature

SQL Assistant can be configured to automatically format keywords as you type them. The set of keywords
recognized by the program is controlled by the Code Formatting settings you select in SQL Assistant options.

If the Keyword Capitalization feature is enabled, SQL Assistant automatically formats keywords you type into
the editor using the case conversion rules specified in the Convert Keywords rule. For example, if you type
alter table mytable and the Convert Keywords rule is set to Uppercase, SQL Assistant automatically
updates the entered text to ALTER TABLE mytable.

CHAPTER 3, Code Assistants and SQL Intellisense

 -93-

You can customize the case conversion rules used to format individual keywords in SQL Assistant Options.
You can also disable the automatic keyword formatting feature. For more information, see the Customizing
Keywords Used With the Keyword Capitalization Feature topic in CHAPTER 48.

Using the Automatic Tab-Replacement Feature

SQL Assistant can be configured to automatically insert spaces in place of tab characters. Turning this option
on will cause SQL Assistant to replace tab characters with spaces as you type tabs in your code. It will also
replace tabs you enter in code snippets and formatting rules with spaces when these features are used.

The number of spaces used for tab replacements is determined by the Number of Spaces per Tab option
which can be configured on the Targets tab in SQL Assistant's Options dialog. This option can be set
separately for each type of editor. Use the Replace Tabs with Spaces option in the same place to enable /
disable tab replacement.

Using the Smart Auto-Indent Feature

If the Auto-Indent option is enabled, pressing the Enter key in the target editor adds a new line with the caret
positioned on it, along with the indent which SQL Assistant assumes to be reasonable in the current code point.
The size of the indentation (amount of spacing) is based on the code formatting patterns configured for the
current SQL dialect. It is calculated from the left side of the editor screen in accordance with the SQL code
format patterns for the current SQL statement and relative to the indent of the previous line. For example, if you
are writing an Oracle PL/SQL procedure and typing some text like in the following examples within a
BEGIN…END construct:

BEGIN
 IF my_variable > 0 THEN
 END IF;
END;

and press Enter key after the THEN keyword, SQL Assistant will automatically insert a new line and will enter
as many spaces (or tabs) as configured in the format patterns. The resulting code will look like the following:

BEGIN
 IF my_variable > 0 THEN
 |
 END IF;
END;

Here, the pipe sign represents new position of the editing caret. In comparison, if you press the Enter key after
a text line like "my_variable := 55;" the indent of the inserted line will be the same as the indent of the previous
line.

BEGIN
 my_variable := 55;
 |
END;

CHAPTER 3, Code Assistants and SQL Intellisense

 -94-

 Tip: SQL Assistant also automatically un-indents closing brackets, END, END IF, END LOOP, LEAVE and
some other compound SQL statement closing keywords so that the indent of these SQL code closing keywords
matches the indent of the opening keywords;

See the Customizing Code Formatting Patterns topic in CHAPTER 48 for details on where and how to change
code formatting patterns.

Using the Smart Undo Feature

SQL Assistant can be configured to alter the behavior of your SQL Editor's undo operations activated after use
of Ctrl+Z hot key. It can make the undo behavior smarter.

SQL Assistant intercepts Ctrl+Z hot key press and analyzes the position of the last text change and the current
cursor position. If the position of the last change is not visible on the screen, the editor window scrolls to that
position and the edit caret is positioned at the undo point. This behavior allows you the opportunity to review
the code and decide whether that place is the place where you actually want to undo your changes.

To enable or disable the Smart Undo feature, use the Smart Undo option available on the Target page in SQL
Assistant Options. Note that this feature can be set selectively for specific editors only.

Using the Smart Text Navigation Feature

SQL Assistant can be configured to alter the behavior of your SQL Editor's handling of the Home and End keys.

SQL code is typically a well-formatted document with blocks of code recursively indented to improve text
structure and to simplify reading and understanding of the implemented business logic. While working with SQL
code, you may need to add text at the start of a text line. Normally if you press the Home key, the editor moves
the caret to the 0 position at the beginning of the line. You then press the Right Arrow key several times to skip
some number of white-space characters at the beginning of the line. With SQL Assistant and smart code
navigation enabled, a single press of the Home key places the edit caret just in front of the first non-white space
character in the line. Similarly, the End key places the edit caret after the last non-white space character.

If you press the Home key a second time, the caret moves to position 0 at the beginning of the line. Similarly,
pressing the End key a second time places the caret after the very last character in the line, including any
trailing white-space characters.

To enable or disable Smart Text Navigation feature, use the Smart Text Navigation option available on the
Target page in SQL Assistant Options. Note that this feature can be set selectively for specific editors only.

Highlighting of Trailing White-space Characters

This feature works in tandem with Smart Text Navigation. In addition to improved start and end-of-line
navigation, SQL Assistant implements highlighting of trailing white-space characters. The highlighting occurs in

CHAPTER 3, Code Assistants and SQL Intellisense

 -95-

the current line after you press the End navigation key once. The highlighting disappears as soon as you press
any key. See the Using Smart Text Navigation Feature topic for more details.

Highlighting of Matching Column/Value Pairs in INSERT
Statements

In addition to standard assistance with auto-generation of code for DML statements, SQL Assistant supports
two additional features for helping with manual coding of VALUES clauses in INSERT statements. These
features help to avoid misplaced values by ensuring that values are inserted into correct table columns.

As you type the values, after each comma entered, SQL Assistant displays the Columns popup synchronized
with the column list in the INSERT part of the current statement and filtered to match the current position of the
value. The following screenshot demonstrate how this feature works.

 Note: The order of suggested columns in the popup is based on the physical order of columns in the
referenced table. It is assumed that the columns are listed in the same order in the INSERT INTO column list.

You can use Column/Value pair highlighting feature to verify columns and values match properly. To see pairs
of matching values and column names, click anywhere within the value of interest. SQL Assistant will highlight
the value in the VALUES list and its matching column name in the INSERT INTO list. You can also click on a
column in the INSERT INTO list, and SQL Assistant will highlight that column name and its matching value in
the VALUES list.

The following screenshot demonstrate how this feature works.

CHAPTER 3, Code Assistants and SQL Intellisense

 -96-

Highlighting of Current SQL Statement with a Single
Keypress

By default, the Ctrl+Alt+H hot key can be used to highlight the current SQL statement. The hot key can be
customized in SQL Assistant Options.

The primary purpose of the statement highlighting function is to support quick syntax checking and execution of
the current SQL statement. The highlighting statement can be syntax checked or executed using SQL
Assistant's hot keys Ctrl+F9 and Ctrl+Shift+F9 or similar hot keys in the target editor. For example, many SQL
editors such as the SQL Server Management Studio and Toad support the F5 hot key for executing highlighted
blocks of SQL code. In the DB Tools, the Ctrl+Shift+R hot key performs the same function. Consult your editor's
documentation for details on the supported hot keys.

 Tips:

 The current statement is defined as a SQL statement having its text surrounding the edit caret. This
definition is also code context sensitive. For example, if the caret is within a SELECT statement
contained within a CREATE PROCEDURE body that contains multiple nested SQL statements,
pressing Ctrl+Alt+H will highlight the SELECT statement. If the caret is within the CREATE
PROCEDURE line itself, pressing Ctrl+Alt+H will highlight the entire procedure code, starting with the
CREATE PROCEDURE keyword and ending with the last statement within the procedure body.

 Repeated use of the Ctrl+Alt+H triggers incremental expansion of the current selection> For example,
if CREATE PROCEDURE body contains nested BEGIN...END construct and within BEGIN...END
there is SELECT statement with the edit caret within the text of the SELECT statement, then the first
time the Ctrl+Alt+H is the pressed, the SELECT statement is highlighted. The second time it is
pressed, the BEGIN...END is highlighted with all its nested statements. The third time it is pressed, the
entire CREATE PROCEDURE is highlighted, and so on...

One-Click Actions for Specially Formatted Comments

SQL Assistant recognizes single line /*{ }*/ comments containing text between curved brackets as specially
formatted comments. Specially formatted comments are treated as placeholders for entry fields. In SQL
Assistant options, you can customize the action of these fields. By default, a click anywhere within a specially
formatted comment causes SQL Assistant to select the entire comment text so it can be immediately replaced
by typing new text.

SQL Assistant generates specially formatted comments when completing INSERT, UPDATE, and CALL
statements. Following is an example:

CHAPTER 3, Code Assistants and SQL Intellisense

 -97-

You can use SQL Assistant's Options dialog to customize the default behavior of specially formatted
comments.

1. Open the Options dialog.

2. Activate the DB Options tab.

3. On the left, select the SQL Assistance type that is matching your database type.

4. On the right, expand the Auto Complete… group of options. Modify the Action for Specially
Formatted Comments option as required. The following mouse click action types are supported:

 None -- Processes clicks normally; no special action is required.

 Select – Select the entire comment text including the opening and closing tags. This is the default
action.

 Delete – Automatically delete the entire comment text including the opening and closing tags.

Converting SQL Queries to Application Code

In many programming languages SQL commands are stored in string variables and tedious to code, they
sometimes pages long and need special symbols and quotes escaped. It's also easy to misspell schema object
names and columns without SQL syntax validated in design time. Consider the following Java example:

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("String sql = "SELECT c.CustomerId, c.FirstName,\n"
 + "c.LastName, c.Company, e.EmployeeId, e.Phone \n"
 + "FROM employees AS e \n"
 + " JOIN customers AS c \n"
 + " ON c.SupportRepId = e.EmployeeId \n"
 + "WHERE c.City = 'Paris' \n"
 + "ORDER BY c.FirstName, c.LastName"; ");

SQL Assistant can help you generate well formatted query strings.

1. Highlight text of the SQL query you want to convert.

2. In the right-click menu select Copy SQL As… command.

3. Choose the desired programming language in the next level menu.

The text of the query will be converted and copied to the Clipboard. You can then paste it into your
development environment.

A number of programming language specific conversion patterns are preconfigured in SQL Assistant settings. If
your programming language is not listed, use the same Copy SQL As… command as described above, and
then choose the top command Modify Language Formats… This command will open the Language Formats
dialog in which you can add additional conversion rules and modify the existing rules too if you want to
customize them.

CHAPTER 4, Code Structure View and Bird's Eye View

 -98-

CHAPTER 4, Code Structure View and Bird's
Eye View

Overview of Code Structure View

The Code Structure View tool displays a hierarchical view of the code in a nested, tree-like form adjacent to
the left side of the target editor window. The Code Structure View lists the most important SQL commands in
the order they appear in the SQL query. Click on any command in the Code Structure window to display its
code in the editor window on the right.

To open the Code Structure View, press the Ctrl+F12 hot key. Code Structure View can be also opened
using SQL Assistant's menu in the system tray or from menus available in the target editor. To use the target
editor's menus, the menu integration option must be enabled. For details, see the Manually Invoking SQL
Assistant Popups topic in CHAPTER 3.

Code Structure View can show references to many different types of SQL commands, including but not limited
to the following: CREATE, DROP, EXECUTE, SELECT, INSERT, DELETE, UPDATE, TRUNCATE, PRINT,
USE, GRANT, REVOKE, and DENY.

 Tips:

 For CREATE PROCEDURE, CREATE FUNCTION and CREATE PACKAGE commands, a plus sign
is displayed next to the command. Click the plus sign to expand the CREATE command and display
the nested SQL commands which are part of the expanded procedure, function or package.

 A plus sign is also displayed for various loop structures such as FOR, WHILE, UNTIL and generic
LOOP loops as well as for conditional IF statements. Just like for CREATE commands, you can click
the plus sign to expand the nested SQL commands.

CHAPTER 4, Code Structure View and Bird's Eye View

 -99-

 Different icons and colors are used for different types of SQL statements to improve the visual
appearance of the code structure and to allow users to locate the required SQL commands faster.

Working with the Code Structure View Interface

Code Navigation

You can instantly navigate to any command in the target editor by clicking the command name in the Code
Structure View or by selecting the command name and pressing the Enter key. The editor window will scroll to
the selected SQL command and the caret will be set to the beginning of that command line.

Another helpful feature of the Code Structure View is dynamic code highlighting. When you move the mouse
pointer over command hyperlinks displayed in the Code Structure View, SQL Assistant automatically highlights
the corresponding code lines in the editor window.

Expanding / Collapsing Multiple Levels

The Code Structure View supports right-click context menus, which can be used to quickly expand or collapse
all levels or specific levels only. Commands are available to expand or collapse up to four levels or all levels at
once.

Grouping Similar Commands

The Code Structure View automatically groups similar commands and shows them as a single item. A count of
grouped commands appears at the end of the line

To see individual commands in a group, click the plus sign displayed in front of the group.

Filtering Content by Schema Object References

To quickly filter code structure view to show only hyperlinks to places in the code referencing specific schema
object name or names containing certain substring, click the Filter bar above the Code Structure View pan.
Start typing the name of the object to show only lines in the code related to that object.

CHAPTER 4, Code Structure View and Bird's Eye View

 -100-

To undo the filter, simply erase the text in the Filter bar.

Scrolling Content

To scroll the Code Structure View window content using the mouse, drag the scrollbar handles as needed, or
click the small arrows at the extremes of scrollbars to scroll in small increments. See the screenshot at the
beginning of the Working with SQL Assistant Popups topic for information on where to locate scrollbar handles.

Resizing Content

To resize the Code Structure View pane, drag the vertical bar separating the pane and the code editor. Note
that when you place mouse pointer over the right edge of the Code Structure View pane the cursor shape

changes to a double arrow shape

Persisting Code Structure View

By default, the Code Structure View pane is not persistent and is not displayed automatically when you open
the target editor's code windows. Follow the steps described in the Overview of Code Structure View topic for
information on invoking the Code Structure View manually.

To persist the Code Structure View and make it appear automatically in every code editor window, click the
pushpin icon in the right-top corner of the Code Structure View pane. To disable the Code Structure View
persistence, click the pushpin icon again. Note that the persistence state is indicated by the toggled state of the
pushpin icon.

CHAPTER 4, Code Structure View and Bird's Eye View

 -101-

Overview of Bird's Eye View

The Bird's Eye View tool displays a miniature view of the code loaded in the editor. The view appears adjacent
to the left side of the target editor window. The sole purpose of the Bird's Eye View is to ease the code
navigation while working with large scripts.

You can open the Bird's Eye View using the Shift+F12 hot key. Bird's Eye View can be also opened using
SQL Assistant's menu available in the system tray or from menus available in the target editor. To use the
target editor's menus, the menu integration option must be enabled. For details, see the Manually Invoking SQL
Assistant Popups topic in CHAPTER 3.

Using Partial Code Display vs. Full Code Display

Fully loading very large scripts into the Bird's Eye View and creating scaled down page views may take a while
especially on old slow computers. Note that each page view requires taking a separate screenshot. SQL
Assistant uses several performance optimization techniques to load the pages faster. On opening of the view,
SQL Assistant scans the first 1000 lines of script and automatically builds page views for those lines only. In
most editors opened full screen, the first 1000 lines typically represent about 15 to 20 pages of code. If the
entire script file is longer than 1000 lines, additional lines are scanned and page views are added to the Bird's
Eye View as you scroll through the file or enter new code. This Partial Code Display method allows SQL
Assistant to work efficiently and quickly update the Bird's Eye View in the background.

If you would like to force scanning of the entire file right away, right-click the Bird's Eye View area and select
the Refresh command from the context menu. SQL Assistant will scan the entire file and load all page

CHAPTER 4, Code Structure View and Bird's Eye View

 -102-

snapshots into the Bird's Eye View. This will provide you with a Full Code Display and allow fast navigation
within any part of the loaded file.

Working with the Bird's Eye View Interface

Code Navigation

In Bird's Eye View, a red rectangle is used to identify the code lines currently displayed in the editor window.
Dragging the red rectangle up or down causes the editor window to scroll up or down to display the code
section covered by the rectangle.

You can also use the scroll bars to navigate forward or backward through the code, and you can instantly
navigate to any page in the target editor by clicking that page in the Bird's Eye View.

Refreshing Content

The Bird's Eye View content is refreshed automatically as you make changes in the code and as you scroll
through the code pages. However, in certain cases SQL Assistant might be unaware of code changes in the
target and as a result will not refresh the view automatically. For example, this can happen if you open an
existing file in the same editor window replacing the previous text. This can also happen if you do a global
search and replace in the same editor window or multiple windows at once. These kinds of changes are
performed in the editor's memory without necessarily updating output to the computer screen. In these cases,
you may want to open the Bird's Eye View refresh manually not waiting for the screen updates so that the
content you see in the Bird's Eye View matches what you got in the file.

To force refresh of the view, right-click anywhere in the Bird's Eye View pane and click the Refresh command
on the context menu.

 Important Notes: A forced refresh causes SQL Assistant to rescan the entire file. If the file is very large
or you are running SQL Assistant on a slow computer, it may take more than a few seconds to rescan the file
and create a snapshot of every page. For this reason, if your file is longer than 4000 lines, SQL Assistant
displays a prompt asking you to confirm the refresh operation. For more information, see the Using Partial Code
Display vs. Full Code Display topic in this chapter.

Scaling the View

The Bird's Eye View automatically scales the text size based on the file content type and length. The scaling
factor is represented as a fraction of the original text size. For example, the x4 scaling factor means that text in
the Bird's Eye View will appear four times smaller then the text displayed in the target editor. The actual text
size is dependent on the font type and font size used in the editor and may vary for different environments and
target types.

To change the default text scaling, right-click anywhere in the Bird's Eye View to display the context menu. In
the context menu, click the Scale command to display its submenu and then choose the desired scaling factor.

Note that the scaling factor is represented as a fraction of the original text size. For example, x4 scaling factor
means that the text in the Code Bird's View will appear 4 times smaller then the text displayed in the target

CHAPTER 4, Code Structure View and Bird's Eye View

 -103-

editor. The actual text size is dependent on the font type and font size used in the editor and may vary for
different environments and target types.

Scrolling Content

To scroll the Bird's Eye View window content, using the mouse drag window scrollbar handles as needed, or
click little arrows available at the extremes of scrollbars to scroll in small increments. See the screenshot at the
beginning of the Working with SQL Assistant Popups topic for information on where to locate scrollbar handles.

Note that by default SQL Assistant scrolls the content the Bird's Eye View automatically and synchronously
with the scrolling of the target editor window. The red rectangle indicating the current page is also moved
automatically to reflect the current position in the file. If you would like to freeze the automatic content scrolling,
right-click anywhere in the Bird's Eye View to display the context menu. In the context menu, click the Auto
Scroll command. To restore automatic scrolling, repeat the same operation.

 Tips:

 You may want to disable Auto Scroll in case you need to make a quick change in some part of the
file and then return to the previous editing position. After making the change, click on the red
rectangle in the Bird's Eye View and SQL Assistant will return the editor to the previous position.

 The Bird's Eye View freezing can be also used along with a small scaling factor as way to visually
compare different parts of the code in the same file, having one part of the file displayed in the
Bird's Eye View area and another part in a different place of the same file displayed in the editor
area.

Resizing Content

To resize the Bird's Eye View pane, drag the vertical bar separating the pane and the code editor. Note that
when you place mouse pointer over the right edge of the Bird's Eye View pane the cursor shape changes to
resize shape as on the following screenshot.

Make sure the cursor takes the right shape before dragging the pane edge.

Persisting Bird's Eye View

By default, the Bird's Eye View pane is not persistent and is not displayed automatically when you open the
editor window. You can manually open the Bird's Eye View pane by following the steps described in the
Overview of Bird's Eye View topic.

To persist the Bird's Eye View so that it appears automatically in every code editor window, click the pushpin
icon in the right-top corner of the Bird's Eye View pane.

CHAPTER 4, Code Structure View and Bird's Eye View

 -104-

To disable the Bird's Eye View persistence, click the pushpin icon again. Note that the persistence state is
indicated by the toggled state of the pushpin icon.

CHAPTER 5, Code Formatter and Beautifier

 -105-

CHAPTER 5, Code Formatter and Beautifier

Overview

In addition to the automatic, on-the-fly code indentation, wrapping, and keyword format-as-you-type features,
SQL Assistant provides a full featured code formatting utility that can be used for formatting blocks of code, as
well as for formatting all code in a file. If you highlight a portion of the code in the editor—for example, a single
SQL statement or a group of SQL statements—and then invoke the SQL Assistant's Code Formatter utility, it
will format only the highlighted code. If you invoke this utility with no code highlighted, the utility will format the
entire body of code contained in the editor.

The Code Formatter supports multiple predefined formatting styles that can be customized and chosen as
needed. It also allows you to create new, custom formatting styles.

Each formatting style is specific to a particular SQL dialect associated with the style. Formatting rules
associated with the style can be used to control and customize general formatting behavior which will then be
applied to all SQL code formatted using that style. Code formatting patterns can be defined for specific types of
SQL statements and SQL syntax elements. Statement-level formatting patterns override formatting behavior
specified in style-level general formatting rules. You can also define new patterns for new types of SQL
statements and SQL elements. If formatting patterns are specified for nested elements, formatting specified for
higher level elements overrides formatting to be applied to lower level elements. For example, you can specify
separate formatting patterns for IF statements requiring multi-line text flow and text indents, as in the following
example:

IF ...

 AND ...

 OR ...

BEGIN

 <stmtList>

END...

ELSE

 ...

BEGIN

 <stmtList>
END

And also specify a separate formatting pattern for BEGIN...END elements requiring single line text flow, as in
the following example:

BEGIN <stmtList> END

In this case, when formatting standalone BEGIN…END blocks of code, the Code Formatter utility will use the
second pattern. However, when formatting IF statements using IF…BEGIN…END syntax, it will use the first the
first pattern, ignoring the pattern defined for BEGIN..END element.

Applying Formatting Styles to Code

To format a block of SQL code, for example, a single SQL statement or a group of SQL statements, highlight

CHAPTER 5, Code Formatter and Beautifier

 -106-

the required block, and then invoke the SQL Assistant's Code Formatter utility, it will format only the highlighted
code. To format the entire body of code contained in the editor, make sure no code is highlighted, and then
invoke the SQL Assistant's Code Formatter utility

There are several ways to invoke the Code Formatter:

 Use the default Ctrl+F11 hot key or a custom hot key, if you changed the default key. This will apply
the default formatting style.

 Use the default Ctrl+Shift+F11 hot key or a custom hot key, if you changed the default key. If you have
multiple custom formatting styles saved in SQL Assistant's Options, you will be prompted to select the
formatting style you want to apply.

If you have only a single custom style, that style will be applied automatically without additional
prompting to select it. If you have no custom styles saved in the Options, the default style will be used.

 Use SQL Assistant's system tray icon menu (see the Using System Tray Icon Menu topic for details)

 Use the target editor's context or top-level menus, if the menu integration option is enabled (see the
Using Context and Top-level Menus topic for details).

Note that the Code Formatter formats the code in accordance with the current preferences in SQL Assistant’s
Options for the chosen formatting style. The currently selected formatting style is indicated by a checkmark in
the SQL Assistant's menus displayed next to the formatting style name. To select a different style, click on that
style name in the menu. The checkmark will appear next to the name and that style will be used for all code
formatting in the same target editor.

 Tip: Only enabled formatting styles are displayed in the menus. You can enable and disable styles in SQL
Assistant's Options.

See the following help topics for more information on code formatting rules and patterns and how to customize

CHAPTER 5, Code Formatter and Beautifier

 -107-

them.

 Important Notes:

When you make changes in the editor, only the text in the editor is changed. If that text is associated with a
disk file, the file is not updated until you use your editor's File | Save feature.

If, for whatever reason, you want to undo the formatting, use your editor's Edit | Undo feature to undo the
changes. If the entire text is reformatted, you may need to use the Undo feature twice, first to undo the
insertion of the formatted code and again to retrospectively undo the editor reset command. This will
restore text in the editor as it was before you invoked SQL Assistant's Code Formatter feature.

 Tip: You can format off-line SQL files using SQL Assistant's command line interface. See the Command
Line Interface topic in this chapter for more information.

Formatting Styles, Rules and Options

Formatting styles, rules and options can be accessed on the Code Format tab of the SQL Assistant's Options
dialog. To modify an existing formatting style:

1. Double-click the SQL Assistant icon in the Windows system tray. The Options dialog will appear.

2. Click the Code Format tab.

3. In the style names list displayed in the top-left corner of the dialog, select the style you want to modify.
Style specific configuration options will appear on the right side of the dialog.

 Tips:

 Use the formatting style management icons available in the top-left corner of the Options dialog to
create new styles or rename, duplicate or delete existing styles.

Note that the icon functions are sensitive to the location of the focus in the Code Formatting tab. For
example, if a formatting style is selected in the top-left window when you click the X button, the
selected formatting style will be deleted entirely, including all associated formatting rules and patterns.
However, if a pattern name is selected in the bottom-left window when you click the X button, the
selected SQL pattern is deleted.

 The content of the window on the right side of the Code Formatting tab is also context sensitive. If an
SQL pattern is selected, the pattern definition is displayed. If a formatting style is selected, properties
of that formatting style are displayed.

 The default style and formatting patterns for each supported SQL dialect are protected and may not be
deleted; however, you can still change their definitions as you see the fit.

 You can drag-and-drop formatting style names in the top-left window to rearrange their order.

CHAPTER 5, Code Formatter and Beautifier

 -108-

General Options

The following general formatting options can be modified:

SQL Dialect – use this drop-down list to choose the type of SQL language associated with the selected
formatting style.

Convert Keywords to – use thus the drop-down list to choose how you want SQL Assistant to auto-
format keywords as you type. Choose the Upper-case function to automatically convert keywords to
upper case. Choose the Lower-case function to automatically convert keywords to lower case. Choose
the InitCaps function to automatically format keywords with the first character in upper case and all
remaining characters in lower case. Choose the Custom-case option to have the keywords formatted
exactly as they are entered in the keywords list.

 Note that choosing the None option disables the automatic keyword formatting feature.

Auto-indent Mode – use this option to control whether SQL Assistant is allowed to automatically indent
your code as you type it in the editor.

Spacing, Line Breaks, and Text-Wrapping Options

The following sections describe the SQL Assistant's Code Formatter and Beautifier features for controlling
explicit text flow and wrapping:

Text Length for In-line Parentheses – this option controls the treatment of sub-queries and expressions
within parentheses and allows keeping short expressions on a single line. In other words, if the text within
parentheses is shorter than the specified maximum value, the entire text within brackets is kept on the same
line. If the text is longer than the specified value, parentheses are moved to new lines and the text within
parenthesis is reformatted using regular formatting rules.

The following example demonstrates how this parameter affects code wrapping. Note that wrapping could
also be affected by the formatting patterns. This example uses the default settings.

 SELECT id as customer_id, store_id, first_name, last_name,
 (SELECT max(id) FROM orders o WHERE o.cust_id = c.id) AS last_order_id,
 email, address_id, active, create_date, last_update
 FROM cust c;

If the maximum value for this parameter is set to 60 characters, you should get the following result after
formatting:

 SELECT id as customer_id,
 store_id,
 first_name,
 last_name,
 (SELECT max(id) FROM orders o WHERE o.cust_id = c.id) AS last_order_id,
 email,
 address_id,
 active,
 create_date,
 last_update
 FROM cust c;

CHAPTER 5, Code Formatter and Beautifier

 -109-

Note that the entire sub-query appears on a single line. However, if the option is set to a shorter value such
as 30 characters, the result would look different:

 SELECT id as customer_id,
 store_id,
 first_name,
 last_name,
 (
 SELECT max(id)
 FROM orders o
 WHERE o.cust_id = c.id
) AS last_order_id,
 email,
 address_id,
 active,
 create_date,
 last_update
 FROM cust c;

Line Length for Code Wrapping – this option defines the maximum length, in characters, of code lines in
your scripts. The default value is 60 characters. Use this option for controlling overall line wrapping for long
lines of text. For example, consider the WHERE condition in the following screenshot:

In this example, the WHERE condition exceeds the default 60-character maximum line length by 11
characters. During formatting, the text in the WHERE clause will therefore be wrapped to two or more lines
(depending on the type of expression) as shown in the screenshot below. Note that other formatting options,
such as the Text length for in-line parenthesis option, could also affect code wrapping.

 Note: To disable automatic line wrapping, set value of Line Length for Code Wrapping option to zero

In-line Parenthesis Spacing – use this option to set how "white" space is treated in your code around
parenthesis. The values in the drop-list for this option are self-explanatory.

Align Data-types – use this option to control data-type alignment in type declarations for function and
procedure parameters as well as for tables and views column definitions. See the following screenshot for
details.

CHAPTER 5, Code Formatter and Beautifier

 -110-

Align Assignments – use this option to control alignment of values in value assignment. The indenting is
applied to values following the equal "=" sign, as in the following example

Separate SQL Statements – use this option to define how empty lines are treated between individual SQL
statements. The names of values in the drop-list for this option are self-explanatory:

 Don't Modify

 Multi-line Statements Only

 All Statements

 All Statements (Except Consecutive)

 Notes:

 Multiline statements are SQL statements allocating more than one line of code.
 Single-line statements are statements allocating a single line.
 All statements (Except consecutive) means both multiline and single line statements,
 except consecutive single line statements as in the following example.

DECLARE @ProdCategoryID INT
DECLARE @RegionID INT
DECLARE @OrderDate DATETIME = NULL

Operators Spacing – use this option to define how white space is treated around arithmetic, binary and string
concatenation operators. The values in the drop-list for this option are self-explanatory.

CHAPTER 5, Code Formatter and Beautifier

 -111-

Commas and Logical Operators Formatting Options

Formatting options for commas and logical operations are used to control positioning of these syntax elements
within the text of SQL queries. The values are self-explanatory and the effect of different options can be
immediately seen in the examples displayed next to each option.

 Important Notes: Changes made to positioning options for commas and logical operators impact both
style-level formatting rules and statement-level formatting-patterns defined for individual SQL statements. This
is by design and for your convenience.

For example, if you change logical operator positioning from STACKED to WRAPPED, SQL Assistant
automatically updates the formatting of all individual statements affected by the style change, eliminating the
need for you to update formatting patterns for individual statements. If necessary, you can override style-level
formatting for individual SQL statements by modifying individual statements directly.

Keywords

The Keywords section allows you to customize keyword list for each formatting style. In this section you can
also control keyword casing. This list is used in conjunction with the Convert Keywords to option. Only
keywords listed in the Keywords section are processed by the Code Formatter. In case the Convert
Keywords to option is set to None, no keywords are changed, In case it is set to Custom-case value,
keywords are converted to match the case in which they are entered in the Keywords section.

The Keywords list is also used for keyword suggestions. See the Using Keywords Completion and Syntax Hints
Features topic in CHAPTER 3 for more details. Note that some items in the Keywords list, such as SELECT
TOP, appear as concatenated keywords. These items are used for keyword popups and should not be
modified.

Statement-level Formatting Patterns

To a great extent, you can customize how code is formatted for specific types of SQL statements and SQL
syntax elements. SQL Assistant uses the concept of formatting patterns, which consist of anchoring keywords
and syntax elements and other text in between.

Use SQL Assistant Options to edit code formatting patterns:

1. On the Options screen activate the Code Formatting tab.

2. In the top-left style names list, choose the formatting style you want to modify.

3. In the bottom-left Formatting Rules list, click the type of SQL statement whose formatting pattern you
want to modify. The screenshot below shows the formatting pattern for a T-SQL SELECT statement.

CHAPTER 5, Code Formatter and Beautifier

 -112-

4. Edit the selected pattern as required. For more information see the Customizing Code Formatting Patterns
topic in CHAPTER 48.

5. [Optional] You can use the Test Formatter function to preview the results of formatting. See the Testing
Code Formatter Effective Settings topic for detailed instructions.

6. Click the OK button to save changes and close the Options dialog.

Special Formatting Rules

SQL Assistant supports a special formatting rule named (header) that is used to insert code-refactoring
comments at the beginning of a reformatted SQL script, rather than to modify the SQL code within the script.
This special rule supports several macro-variables for inserting dynamic information at the time of code
formatting. This special rule can be customized just like any other code formatting rule. Follow the instructions
in the previous topic for step-by-step instructions.

CHAPTER 5, Code Formatter and Beautifier

 -113-

If you do not want to add code formatting headers to the reformatted SQL code, simply disable the (header)
rule by clearing the checkbox in front of the rule name.

The following macro-variables are supported in the (header) rule.

Variable Meaning

$DATE$ Current system date

$TIME$ Current system time

$LOGIN$ Login name for the current database connection

$USER$ Database user name for the current database connection

DB Name of the current database (in the context of the current database
connection)

$SERVER$ Name of the current database server (in the context of the current
database connection)

$OSUSER$ Network name of the current user

$MACHINE$ Name of the computer where macro-variable is processed

SA_TARGET SQL Assistant current target caption, for example, "SQL Server
Enterprise Manager"

$SA_VERSION$ SQL Assistant version

CHAPTER 5, Code Formatter and Beautifier

 -114-

Testing Code Formatter Effective Settings

SQL Assistant allows you to test current effective settings of selected formatting options before saving changes
to an SQL script. You can use this feature to make changes in settings and immediately preview their effects.

You can enter or paste test SQL queries into the Before edit box of the Test Formatting window and then
press the Format button to see how they will be formatted. If the results are not what you want, you can adjust
the formatting options and try again.

 Tips:

 The Test Formatting dialog is non-modal; you don't need to close it in order to modify the options. If
you want, you can position the Options and Test Formatting dialogs side by side so that you can
modify both at the same time.

 The Test Formatting dialog is resizable. Drag the window resizer control in the top-bottom corner of
the dialog to change the dialog size.

 Scroll bars appear in the Test Formatter's Before and After edit controls if the text length does not fit
in the visible area.

 By default, SQL Assistant performs synchronizes scrolling of both edit controls so that you can see the
original text and the results of the formatting side-by-side. However, in some cases the length and
layout of the formatted text can be very different from the original test text such that synchronous
scrolling might be inappropriate. To disable synchronous scrolling, uncheck the checkbox in the left-
down corner of the Test Formatting dialog.

Commenting and Uncommenting Code Blocks

The SQL Assistant code formatter provides two functions for formatting code comment blocks.

CHAPTER 5, Code Formatter and Beautifier

 -115-

To quickly format a block of code as a code comment:

1. Using your mouse or keyboard, select the block of code you want to comment out.

2. Right-click anywhere in the editor workspace. From the right-click menu, select SQL Assistant, then
select the Comment Code submenu. From the Comment Code submenu, click one of the following
comment formatting commands:

a. Comment with – –

b. Comment with /* */

To uncomment a currently commented block of code:

1. Using the mouse or keyboard, select the block of code you want to uncomment.

2. Right-click in the editor workspace. From the right-click menu, select SQL Assistant, then select the
Comment Code submenu. From the Comment Code submenu, click the Uncomment command.

 Tips:

 If the commenting functions are activated when no text is highlighted in the editor, the entire script is
commented out. Similarly if the uncommenting functions are activated when no text is highlighted in
the editor, the entire script is parsed and comments are removed from all lines with comments.

 Note that the uncommenting functions only remove leading comments that appear at the beginning of
a line of text. They do not touch comments appearing in the middle and at the end of line text.

 By default, during commenting or uncommenting blocks of text, SQL Assistant copies the highlighted
text to an internal memory buffer, transforms it as required, and then replaces the selected text in a
single pass. If you invoke the editor's "undo" function after that operation, the previous block of text is
restored as it was before the commenting action was performed. However, some code editors do not
allow SQL Assistant to perform operations on contiguous blocks of text. Certain editors only allow line-
by-line changes. In this case, SQL Assistant is forced to replace each line in the selected block of text
separately. As a result, using the 'undo" function restores only the last line. To undo the entire
operation, you must invoke the "undo" function multiple times to restore the entire block.

 To customize code commenting method compatible with your editor, use Commenting Method option
available in the target options in SQL Assistant's Options dialog. See the Advanced section in the
target options.

Formatting SQLCMD Scripts

When working with SQL Server 2008 and SQL Server 2012 based editors, the SQL Assistant code formatter
automatically recognizes SQLCMD scripts and skips lines containing non-SQL commands, such as lines
beginning with double-exclamation point characters.

Command Line Interface

To format off-line SQL files from command line console, use the following command:

sacmd fmt:"path-to-sql-file " sas:"path-to-sa-settings-file" fpref:"format-style-name"

CHAPTER 5, Code Formatter and Beautifier

 -116-

In the above command, replace path-to-sql-file with the full file name of the SQL file to format; replace path-
to-sa-settings-file with the full file name of the SQL Assistant settings file containing the required database
connection parameters; and replace format-style-name with the required formatting style name.

 Important Notes: The SQL Assistant settings file location is version and user profile specific. See the
notes in the Overview topic in CHAPTER 51 for details on how to find out the location of that file.

Example:

cd "C:\Program Files (x86)\SQL Assistant 12"
sacmd fmt:"C:\Projects\App Code\procedure1.sql" sas:"%APPDATA%\SQL Assistant\12.4\sqlassist.sas" fpref:"MySQL
Custom Style 1"

Using DOS Batch Processing to Format Multiple SQL Files

The following example demonstrates how to use standard DOS commands in a batch file to recursively invoke
SQL Assistant's command line interface and reformat multiple SQL Files:

1. Save the following text as format_sql_files.bat file in any folder on your system:

@ECHO OFF

SET curr_dir=%CD%
CD "C:\Program Files (x86)\SQL Assistant 12"

FOR %%f IN (%1*.sql) DO (
 ECHO Processing file %%~ff
 SACMD fmt:"%%~ff" sas:"%APPDATA%\SQL Assistant\12.4\sqlassist.sas" fpref:%2 > NUL
)

CD "%curr_dir%"
ECHO Done

2. Copy all SQL files you want to reformat to the folder C:\SQL Scripts.

3. Open command line console, navigate to the folder where you saved format_sql_files.bat file, and
execute the following command:

format_sql_files.bat "C:\SQL Scripts" "T-SQL Default Style"

Note: The preceding script example has been tested on a Windows XP system. Changes might be required
before running it on other versions of Windows. Before attempting to run this script on other versions of
Windows, please verify and, if necessary, correct the SQL Assistant installation path.

CHAPTER 6, Database Explorer

 -117-

CHAPTER 6, Database Explorer

Overview

The Database Explorer pane is a graphical interface to your database with a hierarchical tree representation of
your database schema objects, tablespaces, files, full-text catalogs, security principles, assemblies and
extensions, and other features. In the hierarchical tree the information is groupepd into folders. The Database
Explorer makes navigating and managing databases easy, enabling you to change database and schema
object properties, create new objects, monitor activities and performance, perform database backups and
restores, execute various database and schema scope reports, update statistics, and utilize many other
functions.

The databases and their schema objects are displayed for the currently active database connection. Each
target editor and editor tab have their own instance of the Database Explorer docked, making it easy to work
with many different databases simultaneously. The Database Explorer also enables you to use drag-and-drop
interface for quickly building your code from existing database schema objects, columns, parameters and other
items.

The Database Explorer pane can be moved around and docked to the left or right side of the parent editor, or it
can be undocked and moved to a separate monitor

To open the Database Explorer pane, press the Ctrl+W hot key. The Database Explorer pane e also opened
using SQL Assistant's menu in the system tray or from menus available in the target editor. To use the target

CHAPTER 6, Database Explorer

 -118-

editor's menus, the menu integration option must be enabled. For details, see the Manually Invoking SQL
Assistant Popups topic in CHAPTER 3.

To make the Database Explorer sticky and open automatically in every editor instance, click the pushpin icon.

To expand folders, click the plus sign (+) or double-click the folder. Expand folders to show more detailed
information. Right-click folders or objects to show their contect menu for performing common tasks.

Persisting Database Explorer Pane

By default, the Database Explorer pane is not persistent and does not display automatically in target editor's
code windows. You can manually open the it following the steps described in the About topic.

If you want the Database Explorer appear automatically in every code editor window, click the pushpin icon
in the right-top corner of the Database Explorer window. This will make the Database Explorer pane persistent
in the current target editor and all future instances of the same editor type and its code windows.

To disable the Database Explorer persistence, click the pushpin icon again. Note that the persistence state is
indicated by the toggled state of the pushpin icon.

Content Filtering and Sorting

The Database Explorer offers super-fast content filtering. Type the substring you want to use as a filter for
database objects into the filter box available above the database-tree.

To control which objects appear in the database tree, you can either use the right-click context menu or the
SQL Assistant's Options dialog. For example, to hide or show system schemas and objects in the Database
Explorer, you can right-click any database and choose Show System Objects menu.

The Database Explorer content filleting supports the same item name matching ordering methods that you use
in SQL Intellisense popups.

CHAPTER 6, Database Explorer

 -119-

You can customize Database Explorer content filtering and sorting method in the Options dialog:

1. Open the Options dialog

2. Select DB Options tab.

3. Select SQL Assistance type for your database server on the left side of the dialog.

4. Expand Database Explorer option group on the right side of the dialog.

5. Select desired Item Name Matching Method.

6. Click Ok to save changes and close the dialog.

Item Name Matching Methods - Specifies the method that governs the way Database Explorer name
matching responds to names you type in the filter box. Note that text matching is case insensitive. The
methods are:

 Name Starts with Key String – the name must begin with the text you typed into the filter. For
example, if you typed "Order", names like "OrderHeader", "OrderDetail" would be shown in the
Database Explorer objects tree.

 Name Contains Key String, Order Alphabetically – the name must contain the text you typed into
the filter. The text string could be anywhere within the name. For example, if you typed "Order", names
like "OrderHeader", "OrderDetail", "fnOrderData", "prDeleteOrder" would be shown in the Database
Explorer objects tree. The matching names are filtered and then sorted alphabetically. In the example
here, the resulting order is going to be "fnOrderData", "prDeleteOrder", "OrderDetail", "OrderHeader".

 Name Contains Key String, Order by Best Match – the name must contain the text you typed into
the filter. The text string could be anywhere within the name. For example, if you typed "Order", names
like "OrderHeader", "OrderDetail", "fnOrderData", "prDeleteOrder" would shown in the Database
Explorer objects tree. The matching names are filtered and then sorted in order of the best match. In
the example here, the resulting order is going to be "OrderDetail", "OrderHeader", "fnOrderData",
"prDeleteOrder".

 Name Contains Characters from Key String, Order Alphabetically –the name must contain the
characters from the text you typed into the filter. The characters appear in the same order but do not
need to be sequential. For example, if you typed "Ordr", names like "OrderHeader", "OrderDetail",
"fnOrderData", "prDeleteOrder" , "vwOrdrWklyReport", as well as "vwOrdYearlyReport" will be shown
in the Database Explorer objects tree. The matching names are filtered and then sorted
alphabetically.

 Name Contains Characters from Key String, by Best Match –the name must contain the
characters from the text you typed into the filter. The characters appear in the same order but do not
need to be sequential. For example, if you typed "Ordr", names like "OrderHeader", "OrderDetail",
"fnOrderData", "prDeleteOrder" , "vwOrdrWklyReport", as well as "vwOrdYearlyReport" will be shown
in the Database Explorer objects tree. The matching names are filtered and then sorted in order of the
best match.

Using Context Menus

Right-click context menus in the Database Explorer provide quick access to frequent commands. The contents
of the right-click menu vary for different types of database schema objects, for databases, for table and view
columns and for other types of database items. The right-click context menus in the Database Explorer are also
context driven. For example, if you want to create a new schema object, in the Database Explorer you can
navigate to the node for the schema in which the object is to be created, right-click that schema node, and then
select New… in the right-click menu. A prompt will appear asking you to choose type of the schema object you
want to create. You can choose a Table, or a Security Policy, or a Function, or any other type of the schema
object. However, if you expand the schema folder and select Tables node, and after that you select New… in
the right-click menu, there will be no prompt shown for the object type, as the only applicable choice is a new

CHAPTER 6, Database Explorer

 -120-

table. It works similar for all other hierarchical levels. To create a new schema, right click the database in which
the schema is to be created. To create a new database or new user, right click the server level node, and so
on. The description of the actual commands and their usage are described in detail in other topics of this User's
Guide.

Using Drag-and-Drop

Drag-and-drop provides an innovative method for fast code entry. Drag items from the Database Explorer and
drop them into the code editor at a position where you want to insert the dragged item's name. What is actually
inserted depends on the insertion point context. For example, If you drop table name after FROM keyword
where another table is already referenced, SQL Assistant will replace the referenced table name with the
dragged table name. If you drop the table name in a middle of string value, SQL Assistant will expand the string
inserting table name where specified.

Managing Database and Schema Objects

To review or modify properties of an existing object, locate that object in the tree, right click it and select the
Properties… menu. For procedural objects and view you can also work with their code in a full featured editor.
To open an editor for the selected object, choose the Edit menu.

The New… menu will open an object creation dialog specific to the type of the selected object and type of the
database you are connected to. The Properties… dialog menu will open an object properties dialog specific to
the type of the selected object and type of the database you are connected to which you can use to modify the
selected object, add or remove objects features and sub-objects. For example, a Table Properties dialogs can
be used to modify, add and drop table columns, modify, create and drop table indexes, triggers, constraints,
rules, permissions, tags, manage row-level security policy, and so on…

Hundreds of different schema object management dialogs are available to help you with the database schema
management for most of the database systems supported by SQL Assistant. The schema object management
dialogs display mouse-over hints for all their fields and features providing in-line help and suggestions, which
are database type and database version specific. Please use the mouse over hints and also consult with your
database documentation for help with the database and schema management.

The Database Explorer supports many management commands.
The menus and available commands are database type and
database version specific. Only database type specific
commands are shown in the menus.

Commands that in the same category or handle related tasks are
grouped in sub-menus. The sample image on the left side of this
page demonstrates "Database" and "Server" specific
management tasks for a SQL Server database. There are also
separate sub-menus for database maintenance, for backup and
restore operations, for performance monitoring, and so on…

CHAPTER 6, Database Explorer

 -121-

Source Code Control Integration

The Database Explorer can be directly linked to the source
control Interface and show statuses of schema objects in the
Source Control System. To enable that feature, select
Hide/Show -> Show Source Control Status command in the
right-click context menu for the database node or any schema
object. See CHAPTER 23, Database Source Code Control
Interface for instructions on how to configure and use the Source
Code Control

Database and Schema Scope Aggregated Statistics

The mouse-over hints for databases and schemas shown in DB Explorer provide additional utilities and reports
that simplify database management. They can be used to quickly count number of schema objects by type in a
schema or entire database, or display row counts for all tables.

 Tips:

 The row counts are approximate. They are obtained from statistics stored in the system catalog tables.

 To update schema and database stats using Update Statistics… command which is available in DB
Explorer's right-click menu.

 You can also use right-click menu as demonstrated on the following screenshot to export and analyze
the results further.

CHAPTER 6, Database Explorer

 -122-

 SQL Assistant provides a large number of reports that can be also used to show aggregate database
and schema scope statistics. The reports are accessible using several different methods including
right-click menu in DB Explorer and then selecting Reports menu. Among available reports are
reports showing biggest tables in the database by row counts, by space usage; tables without indexes,
and so on…

Updating Table and Index Statistics

To maintain good database performance, you should update table and index statistics after the content of
tables changes significantly; for example, after deleting or adding a large amount of data.

It's often that the statistics are refreshed infrequently using scheduled statistics collection jobs, or automatic
statistics collection options get disabled for certain reasons, and so the statistics do not get refreshed
automatically. There could be many reasons for why you may want to update statistics in demand in order to
resolve an immediate performance issue, or perhaps update statics in a different manner using non default
options.

You can use schema scope Update Statics menus in the Database Explorer to update table and index statistics
for all tables in the selected schema. This command will open Update Statistics dialog with database type
specific methods and options. For example, options are available for shrinking free space and eliminating space
fragmentation from tables and indexes, and then collecting fresh statistics, for collecting statistics using data
sampling, which is a good option for very large tables, or using a full table scan.

CHAPTER 6, Database Explorer

 -123-

Refactoring Existing Schema Objects

The Safe Refactoring menus in the Database Explorer provide commands to safely modify, rename, and drop
schema objects in your database. The Safe Refactoring commands are also available to rename, drop, and
add columns in database tables and views, to rename, drop, and add parameters in database procedures and
functions.

See CHAPTER 8, Smart Database Refactoring for more information and description of how the safe database
refactoring is implemented and how you can use it and customize too.

Using Table Information Reports

SQL Assistant provides a number of table information reports for analyzing table and index space allocation,
table fragmentation, and other table metrics. You can access them using right-click menu in the Database
Explorer and then selecting the Object Info command, or alternatively use the mouse-over event to display
table info balloon and in the balloon click the Info hyperlink in the top-right corner. This will show the Table Info
pane, and the reports will be accessible as hyperlinks on the right side of the pane as demonstrated on the
following screenshot.

 Tip: You can add custom reports to the Info page. See CHAPTER 24, Reporting, Data Pivot and Analytics
for more information

Performing Database and Schema Scope Backup and
Restore

For many types of databases SQL Assistant provides graphical interfaces for backup and restore operations.

CHAPTER 6, Database Explorer

 -124-

The graphical backup and restore dialogs can be accessed using several different methods. The simplest
though is right-click context menus for database and schema nodes in the Database Explorer. You can then
use commands available in the Backup and Restore menus as pictured below. The available backup and
restore commands, methods, and options are database type and database version specific.

CHAPTER 7, Code Entry Automation using Code Snippets

 -125-

CHAPTER 7, Code Entry Automation using
Code Snippets

Overview

SQL Assistant's Code Snippets feature enables you to quickly insert static, ready-made snippets of code into
your SQL scripts, as well as dynamically generated SQL code. For example, Code Snippets can be used to
insert small chunks of code such as BEGIN … END, and also generate many pages of code and even entire
stored procedures implementing complex business logic. Macro variables are used to program code snippets
when dynamic code generation is required.

 Tip. Code snippets provide the most efficient way to enter SQL code. A number of ready to use code
snippets are installed with SQL Assistant. We encourage you to define your own snippets for code structures,
and queries you use most often. Use the Code Snippets tab in the SQL Assistant options to create new
snippets and manage existing ones.

To generate SQL code using code snippet and insert the resulting code into your SQL code editor, in the editor
type the name of the snippet you want to use and then press Ctrl+Enter hot key. If the snippet is configured for
a non-default hot key, press that hot key instead of Ctrl+Enter. Alternatively, you can use SQL Assistant's
context menu to select a snippet. Right-click in the editor to bring up the context menu, select SQL Assistant
 Code Snippets [here you will find a list of available snippets to choose from]. Choose name of the
snippet you want to use.

SQL Assistant comes with a number of ready to use code snippets. For example, if you use a PL/SQL editor
and you type letters "for" without quotes and then press Ctrl+Enter default hotkey, the following text will be
inserted at the current caret position:

FOR i IN 0..| LOOP

END LOOP;

Use the SQL Assistant Options dialog to customize pre-configured snippets and to create new snippets.

1. On the Options screen, activate Code Snippets tab.

2. Choose SQL dialect for which you want to configure code snippets.

3. Select a snippet as shown in the following screenshot.

CHAPTER 7, Code Entry Automation using Code Snippets

 -126-

4. Edit the snippet code as required.

To disable a snippet, you can uncheck the box next to the snippet name. If a snippet is disabled, its definition
remains in the SQL Assistant options but the snippet is not active and cannot be used. Disabled snippets also do
not appear in SQL Assistant's context menus

To delete a snippet, click on the snippet name and then press the Del key on the keyboard.

For more information on how to use and change SQL Assistant options, see CHAPTER 48.

 Tip: The vertical bar | in the snippet code indicates where SQL Assistant will place the edit caret after
snippet code is inserted into the editor. Note that this predefined caret position does not work in buffered text
editors like SQL*Plus where the caret is always placed at the end of the last line.

To create new code snippets and manage existing ones, use SQL Assistant's Options dialog.

You can assign different hot keys to different code snippets, or use the same hotkey. The choice of hotkeys
depends on the snippet purpose, snippet execution mode and on your personal preferences. For more
information, see the Customizing Existing and Creating New Code Snippets topic in CHAPTER 48.

 Tip: Code snippets can be also accessed via SQL Assistant menus. For example, if right-click menu
integration option is enabled, you can right-click in the target editor, choose the SQL Assistant submenu, then
choose the Code snippets submenu. From the code snippets submenu, choose the snippet you want and the
SQL Assistant will insert the snippet code into the editor.

CHAPTER 7, Code Entry Automation using Code Snippets

 -127-

Note that the Code Snippets submenu displays only the initial characters of the Code Snippet code along with
the snippet name and hot key. The snippet hot key is displayed in brackets. For example, case+(Ctrl Enter). If
the hot key is a composite key, all keys must be pressed at the same time. In the Code Snippets submenu
menu, individual keys are separated by the pipe "|" symbol.

 Additional Tips:

 Use the code snippet management icons available in the top-left corner of the Options dialog to create
new snippets or to rename, duplicate or delete existing snippets.

Note that the icon functions are sensitive to the location of the focus in the Code Snippets tab. For
example, if a snippet interface name is selected in the top-left when you click the X button, the
selected interface name is deleted entirely, including all associated code snippets. However, if a
snippet name is selected in the lower left window, clicking the same button will delete the selected
snippet.

 The content of the right side of the Code Snippets tab is also context sensitive. If a snippet interface is
selected in the top right window, the interface definition is displayed in the right window. If a snippet
name is selected in the lower left window, the right window displays properties of that snippet and its
code.

 Drag-and-drop snippet interface names in the left-top list to rearrange their order. You can use this
method to push most commonly used interfaces to the top of the list and minimize the amount of
scrolling and clicking required for customizing code snippets.

CHAPTER 7, Code Entry Automation using Code Snippets

 -128-

 Code snippets can contain macro-variables whose values are dynamically replaced when the snippet
code is inserted into the code editor. To insert a macro-variable into the snippet code, you can type its
name, including $ sign delimiters, into the code window on the right. Alternatively, you can use the
Macro button available in the top-right corner of the tab to select a macro-variable from a menu
containing a list of available macros, as shown in the illustration below. This method also provides
interactive assistance for macro-variables supporting multiple options such as, for example, the
$OBJECT(…)$ macro variable.

See the “Macro-variables and Dynamic Code Generation” section below for a listing of available
macro-variables.

CHAPTER 7, Code Entry Automation using Code Snippets

 -129-

Auto-formatting Generated Code

By default the code generated by code snippets is inserted into the editor as it is entered in the snippet and
generated by the database. You can have the generated code automatically formatted before it is inserted. Use
the Code Formatting Style option and change the default None value to one of the formatting styles
compatible with the selected SQL Assistance type.

Macro-variables and Dynamic Code Generation

Code snippets can contain certain macro-variables whose values are dynamically replaced when the snippet
code is inserted into the code editor. There are two types of macro-variables: passive and active.

Using Passive Macro-Variables

Passive variables produce easy to guess results and do not require additional user input. The following passive
macro-variables are supported in all snippets:

Variable Meaning

$DATE$ Current system date

$TIME$ Current system time

$LOGIN$ Login name for the current database connection

$USER$ Database user name for the current database connection

DB Name of the current database (in the context of the current database
connection)

$SERVER$ Name of the current database server (in the context of the current
database connection)

$OSUSER$ Network name of the current user

CHAPTER 7, Code Entry Automation using Code Snippets

 -130-

$MACHINE$ Name of the computer where macro-variable is processed

SA_TARGET SQL Assistant current target caption, for example, "SQL Server
Enterprise Manager"

$SA_VERSION$ SQL Assistant version

For example, if you have a code snippet named "fun" having the following text:

CREATE OR REPLACE FUNCTION |
(
 v_in IN <data type>
)
RETURN <data type>

/***
* Function description:
* Date: $DATE$
* Author: $OSUSER$ connected as $LOGIN$
*
* Changes
* Date Modified By Comments
**
*
**/
IS
DECLARE
 v_ret <data type>;
BEGIN
 v_ret := ...;

 RETURN v_ret;
END;

If you type word "fun" without quotes in the SQL editor and press Ctrl+Enter (or whatever you have selected as
a hotkey for that code snippet), the text of the code snippet will be inserted at the current caret position in the
editor and the $DATE$ macro-variable will be automatically substituted with the current system date. Similarly,
the $OSUSER$ macro-variable name will be replaced by your Windows login name, for example,
MyDomain\MyName, and the $LOGIN$ macro-variable will be substituted with your database login name, for
example, SomeLoginName. The caret will be then placed at the point marked with the pipe | symbol so you can
type your function name immediately after the snippet code is inserted into the editor.

 Tip: In Oracle, MySQL, and DB2 targets, $LOGIN$ and $USER$ variables always generate the same
value.

Using Active Macro-Variables

In comparison to passive macro-variables, an active macro-variable referenced in snippet code will cause SQL
Assistant to display a prompt that lists additional options. Based on your selection from the prompt, the macro-
variable will be replaced with dynamically generated code appropriate for your input selection. The following
active macro-variables are supported in all snippets:

Variable Meaning

$OBJECT(…)$ This will be replaced with the name of the selected object or object's
sub-item in case an object level is expanded in the popup and a sub-

CHAPTER 7, Code Entry Automation using Code Snippets

 -131-

item is selected. See the separate $OBJECT(…)$ macro topic for
more information.

$OBJECT$ This will be replaced with the name of the selected object. $OBJECT$
is a shortcut version of the more advanced $OBJECT(…)$ macro-
variable. The result is the same as choosing $OBJECT(…)$ macro-
variable in the menu and then choosing Insert Object Name option
with All Objects filtering option.

Note: The $OBJECT$ macro is maintained for backward compatibility.
When developing new code snippets, please use the new
$OBJECT(…)$ macro.

$COLUMNS(…)$ This will be replaced with a list of columns of the selected object or a
list of columns and their data-types. Column names and data-types,
can be inserted on a single line, multiple lines, or a vertical list as
specified in the macro parameters. This macro-variable can be used
with tables, views, and table functions only. See the separate
$COLUMNS(…)$ macro topic for more information.

$COLUMNS$ This will be replaced with a comma-separated list of columns of the
selected object. If there are more columns than can fit on a single line,
additional lines with columns will be added as needed. This macro-
variable can be used with tables, views, and table functions only.

Note: The $COLUMNS$ macro is maintained for backward
compatibility. When developing new code snippets, please use the
new $COLUMNS (…)$ macro.

$COLUMNS_V$ This is virtually the same as the $COLUMNS$ macro, except that each
column will be inserted on a separate line. The inserted text will appear
as vertical comma-separated list of column names. Positions of
commas and elements before and after each inserted column name
are controlled by pre and post macro-text elements. See the Tips
section below for more details.

Note: The $COLUMNS_V$ macro is maintained for backward
compatibility. When developing new code snippets, please use the
new $COLUMNS (…)$ macro.

$COLUMNS+TYPES$ This will be replaced with a comma-separated list of columns of the
selected object and their data types. This macro-variable can be used
with tables, views, and table functions only.

Note: The $COLUMNS+TYPES$ macro is maintained for backward
compatibility. When developing new code snippets, please use the
new $COLUMNS (…)$ macro.

$COLUMNS+TYPES_V$ This is virtually the same as $COLUMNS+TYPES$ macro, except that
each column/type pair will be inserted on a separate line. The inserted
text will appear as a vertical comma-separated list of column
name/type pairs. Positions of commas and elements before and after
each inserted column name are controlled by pre and post macro-text
elements. See the Tips section below for more details.

Note: The $COLUMNS+TYPES_V$ macro is maintained for backward
compatibility. When developing new code snippets, please use the
new $COLUMNS (…)$ macro.

$COLUMN_KEYS$ This will be replaced with a comma-separated list of primary key
columns of the selected object. If there are more columns than can fit

CHAPTER 7, Code Entry Automation using Code Snippets

 -132-

on a single line, additional lines with columns will be added as needed.
This macro-variable can be used only with tables having primary keys.

Note: The $COLUMN_KEYS$ macro is maintained for backward
compatibility. When developing new code snippets, please use the
new $COLUMNS (…)$ macro.

$COLUMN_KEYS _V$ This is virtually the same as the $COLUMN_KEYS$ macro, except that
each column will be inserted on a separate line. The inserted text will
appear as a vertical comma-separated list of column names. Positions
of commas and elements before and after each inserted column name
are controlled by pre and post macro-text elements. See Tips section
below for more details.

Note: The $COLUMN_KEYS _V$ macro is maintained for backward
compatibility. When developing new code snippets, please use the
new $COLUMNS (…)$ macro.

$COLUMN_KEYS+TYPES$ This will be replaced with comma-separated list of primary key
columns of the selected object and their data types. This macro-
variable can be used only with tables having primary keys.

Note: The $COLUMN_KEYS+TYPES$ macro is maintained for
backward compatibility. When developing new code snippets, please
use the new $COLUMNS (…)$ macro.

$COLUMN_KEYS+TYPES_V$ This is virtually the same as $COLUMNS+TYPES$ macro, except that
each column/type pair will be inserted on a separate line. The inserted
text will appear as a vertical comma-separated list of column
name/type pairs. Positions of commas and elements before and after
each inserted column name are controlled by pre and post macro-text
elements. See Tips section below for more details.

Note: The $COLUMN_KEYS+TYPES_V$ macro is maintained for
backward compatibility. When developing new code snippets, please
use the new $COLUMNS (…)$ macro.

$ARGS(…)$ This will be replaced with a comma-separated list of arguments of the
selected object or arguments and their data-types. This macro-variable
can be used with stored procedures and user-defined functions only.
See the separate $ARGS(…)$ macro topic for more information.

$ARGS$ This will be replaced with comma-separated list of arguments of the
selected object.

Note: The $ARGS$ macro is maintained for backward compatibility.
When developing new code snippets, please use the new $COLUMNS
(…)$ macro.

$ARGS_V$ This is virtually the same as the $ARGS$ macro, except that each
argument will be inserted on a separate line. The inserted text will
appear as a vertical comma-separated list of arguments. Positions of
commas and elements before and after each inserted argument name
are controlled by pre and post macro-text elements. See Tips section
below for more details.

Note: The $ARGS_V$ macro is maintained for backward compatibility.
When developing new code snippets, please use the new $COLUMNS
(…)$ macro.

CHAPTER 7, Code Entry Automation using Code Snippets

 -133-

$ARGS+TYPES$ This will be replaced with comma-separated list of arguments of the
selected object and their data types. This macro-variable can be used
with stored procedures and user-defined functions only.

Note: The $ARGS+TYPES$ macro is maintained for backward
compatibility. When developing new code snippets, please use the
new $COLUMNS (…)$ macro.

$ARGS+TYPES_V$ This is virtually the same as $ARGS+TYPES$ macro, except that each
argument/type pair will be inserted on a separate line. The inserted
text will appear as a vertical comma-separated list of arguments and
their types. Positions of commas and elements before and after each
inserted argument/type pair are controlled by pre and post macro-text
elements. See Tips section below for more details.

Note: The $ARGS+TYPES_V$ macro is maintained for backward
compatibility. When developing new code snippets, please use the
new $COLUMNS (…)$ macro.

For example, if you have a code snippet named "cfetch" having the following text

DECLARE v_$COLUMNS+TYPES$;

DECLARE my_cursor CURSOR FOR
SELECT $COLUMNS$
FROM $OBJECT$;

OPEN my_cursor;
fetch_loop:

LOOP
 FETCH FROM my_cursor INTO v_$COLUMNS$
 IF at_end <> 0 THEN
 LEAVE fetch_loop;
 END IF;

 /* ... Cursor logic here ... */

END LOOP fetch_loop;

CLOSE my_cursor;

If you type "cfetch" without quotes and then press Ctrl+Enter (or whatever you have selected as a hotkey for
this code snippet), you will be presented with a prompt for an object name. If, for example, you select
"Customers" table, the text of the code snippet will be inserted at the current caret position and the $OBJECT$
macro-variable will be automatically substituted with the selected table name. The columns of the selected
"Customers" table and their data types, will be inserted as variable declarations along with the defined v_.prefix
for variable names and the following DECLARE CURSOR statement will be generated using Customer's table
columns and the results output to the generated SQL variables:

DECLARE v_CustomerID nchar(10), v_CompanyName nvarchar(80),
 v_ContactName nvarchar(60), v_ContactTitle nvarchar(60),
 v_Address nvarchar(120), v_City nvarchar(30), v_Region nvarchar(30),
 v_PostalCode nvarchar(20), v_Country nvarchar(30), v_Phone nvarchar(48),
 v_Fax nvarchar(48);

DECLARE my_cursor CURSOR FAST_FORWARD READ_ONLY FOR
SELECT CustomerID, CompanyName, ContactName, ContactTitle, Address, City,

CHAPTER 7, Code Entry Automation using Code Snippets

 -134-

 Region, PostalCode, Country, Phone, Fax
FROM Customers;

OPEN my_cursor;
fetch_loop:

LOOP
 FETCH FROM my_cursor INTO INTO v_CustomerID, v_CompanyName, v_ContactName,
 v_ContactTitle, v_Address, v_City, v_Region,
 v_PostalCode, v_Country, v_Phone, v_Fax;
 IF at_end <> 0 THEN
 LEAVE fetch_loop;
 END IF;

 /* ... Cursor logic here ... */

END LOOP fetch_loop;

CLOSE my_cursor;

Macro-variables Execution

Macro-variables code execution is optimized for minimal possible interaction with the user. If a code snippet
refers to multiple related macro-variables, only a single prompt is displayed at macro execution time and the
results of that prompts are shared for all referenced related macro-variables. The $OBJECT$ macro has
highest priority. It can be used to filter the contents of the popup menu and to limit it to certain types of items
only. See the $OBJECT(…)$ Macro topic in this chapter for more information.

In the previous example for the "cfetch" code snippet, the snippet code refers to a series of four macro-
variables, $COLUMNS+TYPES$, $COLUMNS$, $OBJECT$, and $COLUMNS$ (again). During execution of the
"cfetch" snippet, SQL Assistant displays a single Objects prompt. The results of that prompt are then used to
replace all four macro-variables with the appropriate items.

Also note that the text leading or trailing macro-variable names is repeated for each item returned as a result of
the macro-variable expansion. See the following topic for more details.

Using Macro-variables with Text Prefixes and Text Suffixes

The prefix and suffix text entered before or after an active macro-variable is honored in all expanded elements.
For example, in the SQL Server editor, if you use a snippet that includes the macro @$COLUMNS$, when the
snippet code is expanded, each column will be prefixed with the @ sign, effectively inserting variable names
into the code. Similarly, if you want to generate text that is automatically expanded from the selected text, and if
some word is appended to each expanded item, add that text immediately after the macro-variable name.

See the code snippet referenced in the Special Cases for Column/Variable and Argument/Value Pairs topic in
this chapter as an example of using text prefixes with the $COLUMNS(…)$ and $ARGS(…)$ macro variables
and their derivative macros. See the predefined code snippets in SQL Assistant options for more examples of
using text prefixes and suffixes with other types of macro-variables.

CHAPTER 7, Code Entry Automation using Code Snippets

 -135-

Escaping $ Symbols in Snippet Codes

When executing the snippet code the code processors searches for syntax tokens enclosed in a pair of $...$
symbols. For all tokens identified as known macro-variables it substitutes their references with the generated
macro code. All unknown tokens enclosed in a pair of $...$ symbols are removed from the snippet text before
code execution. If you need to enter $ symbols as literals within the snippet code, you must escape them using
^ suffix, for example,

CREATE OR REPLACE FUNCTION "p_Get$OBJECT(ins_object, table)$"
(
 a_$COLUMNS(vertical,types,keys)$
)
RETURNS REFCURSOR
AS
body^
 /***
 * Code generated by SoftTree SQL Assistant
 ***/
body^
LANGUAGE plpgsql;

Note the use of body^ tags to escape $ symbols surrounding the body token. During snippet code
execution, the snipped engine will generate $body$ code.

Custom Interractive Prompts

Custom prompts can be used to obtain user input for generating dynamic SQL code using code snippets.
Custom prompts can be created using the special $PROMPT(…)$ macro.

Variable Meaning

$PROMPT(…)$ This macro creates a data input dialog that displays a custom prompt.
The prompt definition is saved in a user-defined macro-variable that
can be referenced in the snippet code.

The macro code requires entering the following macro-parameters as
a comma-separated list:

Variable name – name of the macro variable in which the result will be
saved. This parameter is required.

Prompt text – The text of the prompt asking user to enter or choose
some value. Note that the prompt text may not contain commas. This
parameter is required.

Default value – The default value. This parameter is optional and can
be omitted.

Dialog title – The title of the prompt dialog. Note that the title text may
not contain commas. This parameter is optional.

List values – The list of values for multiple-choice prompts. Values in
the list must be space separated. If a value contains spaces, the entire
value must be enclosed in double quotes. This parameter is optional
and can be omitted.

Descriptive names for list values – The optional list of descriptive

CHAPTER 7, Code Entry Automation using Code Snippets

 -136-

value names. Use this parameter if you need to display lookup value
names instead of the actual values. Names in the list must be space
separated. If a name contains spaces, the entire name must be
enclosed in double quotes. This parameter is optional and can be
omitted.

 Tip: There are two different methods for entering a $PROMPT(…)$ macro into a code snippet when you
create new snippet or alter an existing snippet. You can either type in the entire macro code manually or you
can use the Macro menu available in the top-right corner of the Code Snippets tab. Using the Macro menu is
the recommended method. With the menu, SQL Assistant provides an interactive $PROMPT(…)$ macro build
dialog. This dialog makes designing $PROMPT(…)$ macros both safe and simple, ensuring that the macro
syntax is correct.

The following screenshots demonstrate how the interactive menu works. In the examples in the left column,
“Enter Value” is selected from the Input Type drop-down. On the right, “Select value from drop-down list” is
selected for Input Type.

Input Type presentation style: edit box Input Type presentation style: drop-down value
list

Here is what will be inserted into the snippet code:

$PROMPT(rows,Enter data-sample
size,5,Code Generation Input Required)$

Here is what will be inserted into the snippet code:

$PROMPT(rows,Enter data-sample
size,,Code Generation Input Required,5
50 500 1000,"Very small" Small Medium
Large)$

Here is the prompt dialog that displays on the user
screen when this snippet is executed:

This snippet creates the following prompt dialog and
drop-down list:

The value obtained with the help of the $PROMPT(…)$ macro should be referenced in the snippet code using
a variable name enclosed in $ symbols. The following example shows a snippet named "proc" that is designed
for use in the T-SQL dialect. Please note the highlighted text.

$PROMPT(proc_name,Enter new procedure name)$

USE [DB]
go

CHAPTER 7, Code Entry Automation using Code Snippets

 -137-

IF object_id('$proc_name$') IS NOT NULL
BEGIN
 PRINT 'Dropping procedure $proc_name$'
 DROP PROCEDURE [$proc_name$]
 IF @@ERROR = 0 PRINT 'Procedure $proc_name$ dropped'
END
go

CREATE PROCEDURE [$proc_name$]
/***
* Procedure description:
* Date: $DATE$
* Author: $OSUSER$
*
* Changes
* Date Modified By Comments
**
*
**/
(
 |<parameters>
)
AS
BEGIN
 /* code business logic here */

 RETURN @@ERROR
END
go

IF @@ERROR = 0 PRINT 'Procedure $proc_name$ created'
go

In this example, if you type the characters "proc" and press Ctrl+Enter, SQL Assistant first displays an Input
Prompt asking you to enter a new procedure name. Once you have entered the name and clicked the OK
button, the macro inserts the specified name in each location referenced by the $proc_name$ macro-variable. It
then insert the resulting code into the editor replacing "proc" code snippet name.

 Tip: The snippet code containing a $PROMPT(…)$ macro can be also programmed to call other supported
macros. Additional interactive prompts may appear on the editor screen during snippet execution if required by
other macros referenced in the snippet code.

 Important Notes: Do not use names of built-in macro variables as names of variables referenced in the
$PROMPT(…)$ macros because that can lead to unpredictable results. The following example demonstrates
type of code that should be avoided:

$PROMT(CURRENT_WORD,Enter some word)$
PRINT 'You entered $CURRENT_WORD$'

As you can see, the second line in the snippet code refers to $CURRENT_WORD$. This reference is
ambiguous, as it is unclear whether this code refers to the predefined $CURRENT_WORD$ macro name or to
the $CURRENT_WORD$ macro variable defined in the $PROMPT(…)$ macro.

Also note that snippet code execution methods and the order of macros executed within the snippet code can
change in future SQL Assistant versions.

CHAPTER 7, Code Entry Automation using Code Snippets

 -138-

Special Cases for Column/Variable and Argument/Value Pairs

To simplify programming of dynamic code generation, SQL Assistant supports special use cases for code
snippets containing active macro-variables referenced on the same line and separated by an equal sign. For
example, consider a predefined "si" snippet for T-SQL having the following definition:

DECLARE @$COLUMNS+TYPES$

SELECT
 @$COLUMNS$ = $COLUMNS$
FROM $OBJECT$
WHERE

When this snippet is invoked, the SELECT clause will be generated as a list of pairs of "variable name =
column name" syntax tokens. If you type "si" without quotes and then press Ctrl+Enter (or whatever you have
selected as a hotkey for this code snippet), you will be presented with a prompt for an object name. If, for
example, you select "Customers" table, the text of the code snippet will be inserted at the current caret position
and the $OBJECT$ macro-variable will be automatically replaced by the selected table name.

The columns of the selected "Customers" table and their data types, will be inserted as variable declarations
along with the specified @.prefix for variable names. The following SELECT statement will be generated using
Customer's table columns and the results output to the generated SQL variables:

DECLARE @CustomerID nchar(10), @CompanyName nvarchar(80),
 @ContactName nvarchar(60), @ContactTitle nvarchar(60),
 @Address nvarchar(120), @City nvarchar(30), @Region nvarchar(30),
 @PostalCode nvarchar(20), @Country nvarchar(30), @Phone nvarchar(48),
 @Fax nvarchar(48)

SELECT
 @CustomerID = CustomerID, @CompanyName = CompanyName,
 @ContactName = ContactName, @ContactTitle = ContactTitle,
 @Address = Address, @City = City, @Region = Region,
 @PostalCode = PostalCode, @Country = Country, @Phone = Phone, @Fax = Fax
FROM Customers
WHERE

After this code is inserted into the target editor, the editor’s cursor will be positioned immediately after the
WHERE keyword so that if you need to add a WHERE clause for this generated SELECT-INTO-VARIABLES
query, you can quickly generate one by pressing the spacebar and selecting one or more columns from the
popup menu that displays.

Similar snippets can be used for other operations. SQL Assistant comes with several sample snippets for each
SQL dialect. You can customize them as well as define your own active code snippets.

 Note:

Any text entered between an active macro variable and the equal sign, will repeat in every generated value
pair. This is true regardless of whether the text is adjacent to the variable name or is separated by a tab or
space character. The following example shows how inserted text is handled:

EXEC $OBJECT$
 ARG /* test suffix 1 */ = /* test suffix 2 */ ARG_var

When invoked, this test snippet will cause SQL Assistant to prompt you for the procedure name. Assume that
you pick the "SalesByCategory" procedure in the sample "Northwind" database. The text of the resulting code
may look like the following:

CHAPTER 7, Code Entry Automation using Code Snippets

 -139-

EXEC SalesByCategory
 @CategoryName /* test suffix 1 */ = /* test suffix 2 */ @CategoryName_var,
 @OrdYear /* test suffix 1 */ = /* test suffix 2 */ @OrdYear_var

Code Snippet Execution Modes

Code snippets can be processed in either of two execution modes:

Insert Output Into Code – In this mode, text and results returned during the processing of snippet code are
inserted into the SQL editor. For example, if a snippet contains static text BEGIN END, this text is inserted into
SQL editor when the snippet is activated. If a snippet contains text with macros for dynamic code generation,
the macros are executed during snippet code processing, macro references are replaced by the appropriate
values, and the resulting code is inserted into the SQL editor. For specific examples, see the Macro-variables
and Dynamic Code Generation topic in this chapter. The Insert Output into Code mode is intended for
automating SQL coding processes.

Execute and Display Output Results – In this mode, text and results returned during the processing of
snippet code are displayed in SQL Assistant's Results and Messages panes, while code in the SQL Editor
remains unmodified. In this mode, the data output methods and formats are the same as formats used to
display output results returned during regular SQL code execution and data preview. See examples in Reading
and Understanding Code Execution Output for more details. Note that SQL Assistant's Results and Messages
panes are displayed automatically whenever they are required. In the case where snippet code does not return
any results, the code is executed in the database and only the Messages pane is displayed with code execution
status messages. The Execute and Display Output Results mode is intended to automate execution of
repetitive SQL queries, data lookup queries, and other auxiliary functions.

Advanced Code Entry Automation

Advanced Snippet Programming

SQL Assistant provides special coding $$…$$ macro, and several supporting macros for programming
advanced code snippets. This enables you to use SQL that you are already familiar with as a macro
programming language. Using $$…$$ macro you can create code snippets for automating SQL code
generation for your custom projects. No job is too big or too small for advanced code snippets. They can be
used to generate elementary code, for example, for getting a data value from the database and inserting it into
the SQL editor code. The can be used to generate complex code, for example, to generate an entire set of
CRUD stored procedures for a given table or project.

Programming advanced snippets is like building development tools for yourself and other members of your
team. The results can be reused multiple times and applied to multiple database objects in multiple projects.
Developers can share their code snippets using the built-in Settings Export/Import feature. See the Sharing
SQL Assistant Settings Between Team Members topic in CHAPTER 48 for more details.

CHAPTER 7, Code Entry Automation using Code Snippets

 -140-

$$…$$ Macro

Using the $$…$$ macro is the primary method for creating advanced snippets for code entry automation. You
can enter any valid SQL code between the double dollar $$ symbols. If snippet's execution mode is set to
Insert Output Into Code, it's expected that the SQL code executed by the $$…$$ macro returns some text
based results which can be inserted into the code editor as dynamically generated text. If snippet's execution
mode is set to Execute and Display Output Results, the the SQL code in the $$…$$ is executed in the
database, and if returns any results, the results are redirected to a separate Results pane; and the code in the
editor is not changed. For information about supported snippet execution modes, see the previous topic Code
Snippet Execution Modes

Variable Meaning

$$…$$ This macro contains executable SQL code you want to run when the
macro is invoked. The results of the executed code can be optionally
output to the editor replacing the macro name.

Note that predefined macros can be referenced inside the body of custom $$….$$ macros. SQL Assistant
executes predefined macros first and replaces their references before executing a custom $$…$$ macro. For
example, you define a code snippet named "do-it" with the following code, note the highlighted text of custom
$$…$$ macro:

SET @my_var = 'As of $DATE$ @ $TIME$ table $OBJECT$ had $$ SELECT count(*) FROM
$OBJECT$ $$ rows'

To invoke this snippet, in the SQL editor type "do-it" (without the double quotes) and press Ctrl+Enter. This will
trigger the following activities:

1. Replace the $DATE$ and $TIME$ predefined macros with the current date and time, for example,
5/25/2009 and 9:32:45.

2. Display Object Name popup at the current edit caret position in the editor.

3. After you select a table from the popup, for example, dbo.Accounts, that table name replaces the
reference to the $OBJECT$ macro.

4. Execute the custom query enclosed in the $$…$$ symbols. In this example, the query is:
SELECT count(*) FROM dbo.Accounts query.

5. Replace the $SELECT count(*) FROM $OBJECT$$ with the result of the above query For this
example, assume the result is:12055.

6. If the snippet execution mode is Insert Output Into Code, SQL Assistant inserts the code generated by
the snippet into your SQL editor. In this example, the inserted code is:

SET @my_var = 'As of 5/25/2009 @ 9:32:45 table dbo.Accounts had 12055 rows'

 Important Notes:
 Multiple $$…$$ macros can be used in the same code snippet.

 Macro code for $$…$$ macros can include other macros such as $OBJECT$, $DATE$,
$CURRENT_WORD$ and others.

 Nested $$…$$ macros are not supported, and $$…$$ macros may not be used within
$PROMPT(…)$ macros.

 Result set processing rules:

1. If a $$…$$ macro contains a SELECT statement or stored procedure returning a multi-column
result set, multiple column values are concatenated as tab-separated text. The resulting text row

CHAPTER 7, Code Entry Automation using Code Snippets

 -141-

is then processed by the snippet

2. If a $$…$$ macro contains a SELECT statement or stored procedure returning multi-row result
set, text of all rows is concatenated using the carriage return symbol as a line separator. Columns
in each row are processed as described in rule 1 above.

3. If a $$…$$ macro contains multiple SELECT statements or stored procedures returning multiple
result sets, each result set is processed as described in rules 1 and 2 above. The resulting text
from all result sets is then concatenated using the carriage return symbol as a result set
separator.

The following graphical examples demonstrate how to use $$…$$ macros in your custom code snippets to
automate repetitive tasks and to generate required SQL code dynamically:

Example 1 (DB2): Running a report for a selected account number – This example demonstrates how to
set up a code snippet that can be used to automate reports retrieval for an expense account. The snippet can
be invoked later with a single key press. Note that this method is not specific to the DB2 or UltraEdit editor
pictured on the screenshots.

CHAPTER 7, Code Entry Automation using Code Snippets

 -142-

Code for this example snippet:

$$
SELECT
 a.ACTNO,
 a.ACTDESC,
 e.EMPNO,
 LASTNAME,
 e.JOB,
 p.PROJNAME,
 epa.EMPTIME
FROM
 ACT a
 JOIN EMPPROJACT epa
 ON epa.ACTNO = a.ACTNO
 JOIN EMPLOYEE e
 ON e.EMPNO = epa.EMPNO
 JOIN PROJECT p
 ON p.PROJNO = epa.PROJNO
WHERE
 a.ACTNO = $CURRENT_WORD$
$$

CHAPTER 7, Code Entry Automation using Code Snippets

 -143-

Example 2 (SQL Server): Reverse-engineering CREATE VIEW syntax with additional comments – This
example demonstrates how to set up a code snippet that can be used to automate reverse-engineering of DDL
syntax of a view with additional comments. The snippet can be invoked later with a single key press. Note that
this method is not specific to the SQL Server or SQL Server Management Studio editor pictured on the
screenshots.

Code for this example snippet:

/* For demonstration purposes code of
#CURRENT_NAME$ view was retrieved using
custom macro */

$
SELECT text
FROM syscomments
WHERE id = object_id('#CURRENT_NAME$')
$

CHAPTER 7, Code Entry Automation using Code Snippets

 -144-

Example 3 (Oracle): Generating "Delete" stored procedure for a table with primary key – This example
demonstrates how to set up a code snippet to automate generation of stored procedure code for any table in
the database. The snippet can be invoked later with a single keystroke. This example also demonstrates using
multiple $$…$$ macros within a single code snippet. Note that this method is not specific to the Oracle or DB
Tools for Oracle editor pictured on the screenshots.

Code of this example snippet:

CREATE OR REPLACE PROCEDURE p_Delete_$$SELECT UPPER(SUBSTR('$OBJECT$', INSTR('$OBJECT$', '.') + 1,
30)) FROM dual$$
(

CHAPTER 7, Code Entry Automation using Code Snippets

 -145-

 $$
 SELECT ' ' || CASE WHEN ROWNUM = 1 THEN ' ' ELSE ',' END
 || 'v_' || acc.column_name || ' ' || atc.data_type
 FROM
 all_cons_columns acc
 JOIN all_constraints ac
 ON ac.owner = acc.owner
 AND ac.table_name = acc.table_name
 AND ac.constraint_name = acc.constraint_name
 AND ac.constraint_type = 'P'
 JOIN all_tab_cols atc
 ON atc.owner = acc.owner
 AND atc.table_name = acc.table_name
 AND atc.column_name = acc.column_name
 WHERE
 acc.owner = UPPER(SUBSTR('demo.order_items', 1, INSTR('demo.order_items', '.') - 1)) /*
parse schema */
 AND acc.table_name = UPPER(SUBSTR('$OBJECT$', INSTR('$OBJECT$', '.') + 1, 30)) /* parse
table name */
 ORDER BY acc.position
 $$
) IS
BEGIN
 /***
 * Procedure description: Delete record from $OBJECT$ by
 * primary key columns
 * Date: $DATE$
 * Author: $OSUSER$
 *
 * Changes
 * Date Modified By Comments
 **
 *
 **/

 DELETE FROM $OBJECT$
 WHERE $$
 SELECT ' ' || CASE WHEN ROWNUM = 1 THEN ' ' ELSE ' AND ' END
 || acc.column_name || ' = v_' || acc.column_name
 FROM
 all_cons_columns acc
 JOIN all_constraints ac
 ON ac.owner = acc.owner
 AND ac.table_name = acc.table_name
 AND ac.constraint_name = acc.constraint_name
 AND ac.constraint_type = 'P'
 JOIN all_tab_cols atc
 ON atc.owner = acc.owner
 AND atc.table_name = acc.table_name
 AND atc.column_name = acc.column_name
 WHERE
 acc.owner = UPPER(SUBSTR('demo.order_items', 1, INSTR('demo.order_items', '.') - 1)) /*
parse schema */
 AND acc.table_name = UPPER(SUBSTR('$OBJECT$', INSTR('$OBJECT$', '.') + 1, 30)) /* parse
table name */
 ORDER BY acc.position
 $$;

 COMMIT;

EXCEPTION /* exception handlers */
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error deleting data from table $OBJECT$. Transaction is going to be be
rolled back.');
 ROLLBACK;
END;
/

$OBJECT(…)$ Macro

The special $OBJECT$ macro-variable provides advanced methods for selecting database names, schemas,
schema objects, columns, types and even variables and various structures within programmatic objects such as
procedures, Oracle packages and object types. The macro parameters in parentheses control display of the
prompt and determine what can be inserted into the editor in place of the macro reference. For example,

CHAPTER 7, Code Entry Automation using Code Snippets

 -146-

$OBJECT(ins_object, view, mview)$ causes the SQL Assistant to display a prompt that lists objects only of
type views and materialized views. The following options can be used with the $OBJECT(…)$ macro -variable.

"Insert" options control how $OBJECT(…)$ macro is executed and its
reference is replaced in the snipped code during code execution.

 Nothing – this option triggers the popup menu during code
snippet execution, but instructs SQL Assistant not to insert
anything in place of this specific $OBJECT$ reference. Use of
this option makes sense only if other macro-variables are
used in the same code snippet. The filter options in the
$OBJECT$ macro controls content of the prompt and
therefore what can be used with other macros in the same
code snippet.

 Qualified name – this option causes the code snippet to
insert the selected items into the code in place of the
$OBJECT(…)$ macro-variable. The selected items are
named as specified in the "Always Fully Qualify Object
Names" option in "SQL Assistance" group of options for your
database type. See the Qualify Object Names topic in
CHAPTER 8 for more details about object name qualification.

 Database name – this option causes the code snippet to
insert name of the database containing the selected items. In
other words, during snipped code execution $OBJECT(…)$
macro-variable reference is replaced with a database name.
This option can be used with SQL Server, Sybase ASE and
PostgreSQL database system types.

 Schema name – this option causes the code snippet to insert
name of the schema containing the selected items belong to.
In other words, during snipped code execution
$OBJECT(…)$ macro-variable reference is substituted with
schema name.

 Object name – this option causes the code snippet to insert
the selected object name. In this case, the state of "Always
Fully Qualify Object Names" option is ignored.

 Column name – this option causes the code snippet to insert
the selected column name. The result is similar to the result
of $COLUMS$ macro-variable, except that just a single
column can be selected. To access column names, expand
the object level in the popup, by clicking the little [+] sign in
front of the object name or using the common keyboard
shortcuts
Note: To select a column, it is enough to click that column in
the popup, or alternatively using the keyboard select the
required column name and then press the Enter key.

The other options implement filters controlling type of the content that can appear and/or can be selected in the
popups triggered by the code snippet. The following item types can be selected for content filtering:

 Objects

 Arguments of functions and procedures

 Columns and arguments having Binary data type

 Built-in Functions

 Columns

 Databases

 Columns and arguments having Date and Date/time data types.

 Functions

CHAPTER 7, Code Entry Automation using Code Snippets

 -147-

 Login Names

 Materialized Views

 Columns and arguments having Number data types

 Object Types

 Packages

 Package Constants

 Package Cursors

 Package Exceptions

 Package Records

 Package Subtypes

 Package Types

 Package Variables

 Procedures

 Public Synonyms

 Records

 Roles

 Schemas

 Sequences

 Columns and arguments having String data type

 Synonyms

 Tables

 Table Functions

 Views

 In addition you can specify within the $OBJECT(…)$ macro extended database object types, for
example, tablespace, certificate, credential, ddl trigger, xml collection, and so on

 Important Notes: Do not use multiple $OBJECT$ macros in the same code snippet with different Insert
and Filter options. The behavior of the code snippet is ambiguous in this case, and the code generation result
is unpredictable.

The following example demonstrates use of the $OBJECT(...)$ in SQL Assistant CRUD code generation
templates for SQL Server.

UPDATE [$OBJECT(ins_schema, table)$].[$OBJECT(ins_object, table)$]
SET $COLUMNS(vertical,updatable)$ = @$COLUMNS(vertical,updatable)$
WHERE "AND "$COLUMNS(vertical,keys)$" = @"$COLUMNS(vertical,keys)$

$COLUMNS(…)$ Macro

The special $COLUMNS$ macro-variable provides advanced methods for selecting table, view, and table
function column names and optionally their data types. The macro parameters within brackets following
COLUMNS macro-variable name control what can be inserted into the editor in place of the macro. For
example, $COLUMNS(vertical,types,keys)$ causes SQL Assistant to generate a vertical comma-separated
list of primary key column names with their data types. The $COLUMNS(…)$ macro can be prefixed or suffixed
with additional text that you want to add to each element of the generated list. See the sing Using Macro-
variables with Text Prefixes and Text Suffixes topic in this chapter for more details.

To access column names in the popup created by the macro, expand the object level in the popup, by clicking
the little [+] sign in front of the object name or using the common keyboard shortcuts. Note: To select a single

CHAPTER 7, Code Entry Automation using Code Snippets

 -148-

column, it is enough to click that column in the popup, or alternatively using the keyboard select the required
column name and then press the Enter key. To select multiple columns, using mouse tick the checkboxes in
front of the column names and then press the Enter key.

The following options can be used with the $COLUMNS(…)$ macro-variable.

 Vertical list – this option causes SQL Assistant to generate
vertical lists or columns. If this option is not selected, a horizontal
list will be generated. If you choose the horizontal list option and
there are more columns than can fit on a single line, additional
lines with columns will be added as needed. Line wrapping is
controlled by Spacing, Wrapping options in the Code formatting
settings. See CHAPTER 5, Code Formatter and Beautifier for
more information.

 Column name and datatype – this option causes SQL Assistant
to insert column names along with their data type as elements of
the list. If not specified, only column names will be inserted.

 Don't use datatype precision and length – this option can be
used only in combination with Column name and datatype option.
When this option is selected, SQL Assistant lists data type names
without specifying data type length and precision.

 Only key columns – this option causes SQL Assistant to process
primary key or unique columns only. Use of this option makes
sense for tables with primary key and/or unique key columns only.
It will not work for tables not having such keys. It will not work also
for views and table functions.

 Only non-key columns – this option causes SQL Assistant to skip
primary key and unique columns only. Use of this option makes
sense for tables with primary key and/or unique key columns only.
The result of this option is opposite of Only key columns option,
they are mutually exclusive and should not be used together.

 Only updatable columns – this option causes SQL Assistant to
process updatable table columns only. All system generated and
computed columns will be skipped.

Note: Do not use the Only key columns and Only updatable
columns options together. When used together, the result is
unpredictable and not guaranteed to be accurate.

 Don't add comma – – this option causes SQL Assistant not to add
trailing commas after columns.

The following example demonstrates use of the $COLUMNS(...)$ in SQL Assistant CRUD code generation
templates for SQL Server.

UPDATE [$OBJECT(ins_schema, table)$].[$OBJECT(ins_object, table)$]
SET $COLUMNS(vertical,updatable)$ = @$COLUMNS(vertical,updatable)$
WHERE "AND "$COLUMNS(vertical,keys)$" = @"$COLUMNS(vertical,keys)$

$ARGS(…)$ Macro

The special $ARGS$ macro-variable provides advanced methods for selecting stored procedure and user
defined function argument names and, optionally, their data types. The macro parameters within parentheses
following ARGS macro-variable name control what can be inserted into the editor in place of the macro
reference. For example, $ARGS(vertical,types)$ causes SQL Assistant to generate a vertical comma-
separated list of argument names with their data types. The $ARGS(…)$ macro can be prefixed or suffixed with

CHAPTER 7, Code Entry Automation using Code Snippets

 -149-

additional text to be added to each element of the generated list. See the Using Macro-variables with Text
Prefixes and Text Suffixes topic in this chapter for more details.

The following options can be used with the $ARGS(…)$ macro-variable.

 Vertical list – this option causes SQL Assistant to generate a
vertical list of arguments. If this option is not selected, a horizontal
list will be generated. If the horizontal list option is selected and
there are more arguments that can fit on a single line, additional
lines with arguments will be added as needed. Line wrapping is
controlled by Spacing, Wrapping options in the Code formatting
settings.. See CHAPTER 5, Code Formatter and Beautifier for
more information.

 Argument name and datatype – this option makes SQL Assistant
insert argument names and their data type as elements of the list. If
this option is not specified, only argument names will be inserted.

 Don't use datatype precision and length – this option can be
used only in combination with the Argument name and datatype
option. It causes SQL Assistant to insert data type names without
specifying data type length and precision.

 Sort arguments alphabetically – by default arguments are listed
in the order they are defined. This option makes SQL Assistant
insert arguments in alphabetical ascending order A to Z.

 Descending order - This option makes SQL Assistant insert
arguments in alphabetical descending order Z to A.

 Don't add comma – – this option causes SQL Assistant not to add
trailing commas after arguments.

Other Special Macros

SQL Assistant supports several other special macros designed for use in code snippets supporting advanced
code generation techniques: Typically these macros should be used with $$…$$ macro.

Variable Meaning

$CURRENT_WORD$ The text of current word containing the edit caret. By “word”, we mean any
series of text characters separated by spaces, commas, periods, brackets,
or other non-alphanumeric characters.

$CURRENT_NAME$ The name of current object containing the edit caret. This macro differs
from the $CURRENT_WORD$ macro in that the object name may contain
dot-separated schema and database parts. The macro will pick these parts
automatically along with the object name.

$CURRENT_LINE$ The entire text of the current line containing the edit caret. This text can be
parsed within the $$…$$ macro during execution.

$CURRENT_SEL$ The currently highlighted text.

Important note: The text is inserted into the snippet code “as is” before the
snippet code is executed. If the highlighted text spans several lines, it could
potentially break the snippet code. The following is an example of a code
snippet in which it is acceptable to insert multiple lines of text returned by
the $CURRENT_SEL$ macro: In this example the text highlighted in the

CHAPTER 7, Code Entry Automation using Code Snippets

 -150-

editor is inserted into the snippet code within the comments block.

CREATE PROCEDUTE my_procedure AS
/*
comments go here: $CURRENT_SEL$
*/

$CURRENT(…)$ Macro

The special $CURRENT$ macro-variable provides advanced methods for tokenizing the text near edit caret
and returning various lexical elements. The options within the macro define which lexical elements or words to
return. Note that "word" is defined as a series of alphanumeric characters separated by white spaces and/or
non alphanumeric characters with an exception of a series of characters enclosed in double quotes.
Alphanumeric characters comprise the combination of the twenty-six characters of the Latin alphabet (from A to
Z) and the numbers 0 to 9. In addition two special symbols "$" and "_" are treated as alphanumeric characters
too because they are often used in schema object names.

The following options can be used with the $CURRENT(…)$ macro.

 Current word – the result is the same as the result of
$CURRENT_WORD$ macro described in the previous topic,
unless additional behavior-control options are selected.
Additional optional modifiers can be choosen for specific types of
"words" that can be recognized.

Letters – a word is defined by a continuous group of letters a..z
only, any other character is a word boundary.

Digits – a word is defined by a continuous group of digits 0..9 only,
any other character is a word boundary.

Letters + Digits – a word is defined by a continuous group of
letters a..z and digits 0..9 only, any other character is a word
boundary.

Symbols – a word is defined by a continuous group of symbols
only which are non leters and not digits; white space, any letter or
digit is a word boundary.

If no modifiers are selected, all letters, digits and symbols are
included; a word boundary is defined by white space; everything
else is part of the word.

 Current qualified name – the result is the same as the result of
$CURRENT_NAME$ macro described in the previous topic,
unless additional behavior-control options are selected.

 Current line – the result is the same as the result of
$CURRENT_LINE$ macro described in the previous topic.

 Current selection – the result is the same as the result of
$CURRENT_SEL$ macro described in the previous topic.

 Current statement – The entire text of the current statement
containing the edit caret. This text can be parsed within the $$…$$
macro during execution.

 Important Note: The text is inserted into the snippet code “as
is” before the snippet code is executed. If the current statement
text spans several lines, it could potentially break the snippet code.

CHAPTER 7, Code Entry Automation using Code Snippets

 -151-

The following is an example of a code snippet in which it is
acceptable to insert multiple lines of text returned by the
$CURRENT(statement)$ macro: In this example the statement text
is wrapped into CRETE PROCEDURE body

CREATE PROCEDUTE my_procedure AS
BEGIN
 -- this line along with the current statement in the
 -- eitor will wrapped into CREATE...BEGIN...END
 -- procedure blocks

 $CURRENT(statement)$
END

It can be also used inside $$...$$ macro to dynamically insert text
of the current statement into $$...$$ macro, and then execute the
resulting, and insert final result into the editor. For example:

-- this comment line along with the modified results
-- of the dynamic statement in the editor will be
-- inserted into the code
$$
 SELECT 'this value' AS thisColumn, t.*
 FROM ($CURRENT(statement)$) AS t
$$

 Parameter 1 to Parameter 9 – This is the same as Current
qualified name except that it returns lexical elements preceding
the edit caret position. Parameter 1 refers to the element just
before the edit caret, Parameter 2 refers to the element before the
Parameter 1 element, Parameter 3 - to one before Parameter 2,
and so on... The lexical element counting starts backward from the
one just before the current edit caret position toward the beginning
of the current line.

If this option is coupled with Names only (qualified) option, the
macro processors accounts for and returns qualified names only.
For example, in the following line

CREATE INDEX ind_schema.ind_name ON
tab_schema.tab_name;|

macro $CURRENT(param1, names_only)$ returns
tab_schema.tab_name, while macro $CURRENT(param2,
names_only)$ returns ind_schema.ind_name. The ON keyword
is skipped because it does not represent a qualified name in
schema.object or database.schema.object format.

 Escapes quotes – this behavior-control option instructs the macro
processor to return quotes and brackets as they are specified in
quoted names and do not remove them. By default all quotes and
brackets are removed. For example, text "here [comes name]" is
parsed as "here" and "comes name" without that option, and as
"here" and "[comes name]" when that option is chosen.

 Do not replace – this behavior-control option makes the macro-
parser not to replace the lexical elements in the editor text which
are referenced in the snippet code with the code generated by the
code snippet. In other words, the results of the snippet code
execution are appended to the text in the editor.
For example, if the text in the editor is

CREATE INDEX ind_schema.ind_name ON
tab_schema.tab_name;|

here | symbol designates position of the edit caret in the line

CHAPTER 7, Code Entry Automation using Code Snippets

 -152-

above.
and a code snippet like

/* Here we are going to index data in table
$CURRENT(param1, names_only, dont_replace)$ */

is applied to it, the result would be

CREATE INDEX ind_schema.ind_name ON
tab_schema.tab_name; /* Here we are going to index data
in table tab_schema.tab_name */

Note that the highlighted text has been added to the text in the
editor after the edit caret. In comparison, if Do not replace option
is not used, and a code snippet like

/* Here we are going to index data in table
$CURRENT(param1, names_only)$ */

is applied to the same text, the result would be different

CREATE INDEX ind_schema.ind_name ON /* Here we are
going to index table tab_schema.tab_name */;

In this case the code generated by the snippet (the highlighted
text) has replaced the parameter 1 referenced in the macro.

 Important Note: The Do not replace option is useful only if
the code snippet contains single reference to $CURENT(...)$
macro. If there are multiple references within the same code
snippet and Do not replace option is unchecked, the results of
the code snippet execution are unpredictable.

 Names only (qualified) – this behavior-control option can be
used with Parameter 1 to Parameter 9 options. It defines type of
the lexical elements to look for, in other words whether to look for
simple words or for qualified names only. For example, text
"name3.name4)name1.name2, name3.name4" is parsed as four
separate lexical elements "name1","name2", "name3", and
"name4", if this option is not chosen, or as two elements
"name1.name2" and "name3.name4" if this option is chosen. A
qualified name is a name in schema.object or
database.schema.object format.

 Skip parenthesis – this behavior-control option makes the macro
parser ignore all parenthesis and any text between them. If you
want to extract function name from the code ignoring any
parameters that may follow it, you can choose this option. For
example, if macro

[schema].[$CURRENT(param1, skip_parentheses)$]

is applied to

EXEC [some_function](55, "value 5", 77)

The result of the macro execution would change text in the editor
to

EXEC [schema_name].[some_function](55, "value 5", 77)

inserting "[schema_name]." before the function name.

CHAPTER 7, Code Entry Automation using Code Snippets

 -153-

 CHAPTER 8, Smart Database Refactoring

 -154-

CHAPTER 8, Smart Database Refactoring

Overview

SQL Assistant's refactoring functions allow you to quickly and safely reorganize and restructure your database
code. What makes SQL Assistant refactoring different is its ability to scan and parse existing database code
and in the code locate and update references to the items being refactored. For example, if you rename a table
column, not only can SQL Assistant find all database dependencies associated with that column, it can also
locate column references within the code of stored procedures, functions, views and other objects. These
referenced objects will also be automatically renamed, and all affected objects will be recompiled as required.

Renaming objects, methods, columns, parameters

SQL Assistant supports several "rename-class", "rename-method", "rename-field", "rename-parameter", and
"rename-variable" refactoring methods for restructuring existing database code and schema structures. In other
words, this type of refactoring can be used to safely change the name of an existing database object, column,
or parameter. SQL Assistant automatically searches for database code dependencies, analyzes code
references, and suggests changes in dependent objects so that they remain operational after the root object
change. All code change suggestions are previewed before the actual changes take place in the database.

Adding new columns and parameters

SQL Assistant supports several "add-field" and "add-parameter" methods for refactoring and restructuring an
existing database code and its dependencies. In other words, this type of refactoring can be used for safely
adding a new column to a database table or view, or adding a new parameter to an existing procedure or
function. SQL Assistant automatically searches for database code dependencies, analyzes code references,
and suggests changes in dependent objects so that they remain operational after the root object change. All
code change suggestions are previewed before the actual changes take place in the database.

Deleting objects, columns, parameters

SQL Assistant supports several "delete-class", "delete-field", and "delete-parameter" methods for refactoring
and restructuring existing database code and code dependencies. In other words, this type of refactoring can
be used to safely drop an existing database object, to drop a column from a database table or view, or to delete
a parameter from an existing procedure or function. SQL Assistant automatically searches for database code
dependencies, analyzes code references, and suggests changes in dependent objects so that they remain
operational after the root object change. All code change suggestions are previewed before the actual changes
take place in the database.

Reorganizing code layout and qualifying object names

SQL Assistant supports advanced highly customizable methods for code formatting and layout control. These
methods can be used for standardizing code layout of database procedural objects developed by multiple
developers and/or ported from legacy applications. These methods can be also used for quick reformatting of
hard to read SQL code generated by various automated code generators and applications, as well as for
reformatting non-formatted SQL code captured by various database tracing utilities and profilers. Code
reformatting can be performed both in on-line editor-only mode and off-line batch mode for reprocessing off-line
SQL files. A separate chapter in this manual is dedicated to the usage, interface, and layout customization
techniques and options available. See CHAPTER 5, Code Formatter and Beautifier for more details.

The "qualifying-class-names" refactoring method is supported for renaming and fully qualifying object
references in procedural SQL code. In other words, this type of refactoring can be used for automatically adding
schema name and, optionally, database name qualifiers to the names of objects referenced within procedural
code such as SQL bodies of stored procedures and user-defined functions.

 CHAPTER 8, Smart Database Refactoring

 -155-

Extracting reusable code and code encapsulation

SQL Assistant also supports basic types of "extract-class" and "extract-method" refactoring types for breaking
database code into more logical pieces.

 Tips:

 The results of refactoring operations can be logged to a file along with backup script containing the
original code for altered procedures, functions, and views. The log file can be used to roll back
changes if you find the results of refactoring operations to be unsatisfactory.

 Use the refactoring interfaces management icons available in the top-left corner of the Options dialog
to create new refactoring interfaces or to rename, duplicate or delete existing refactoring interfaces.

Note that the icon functions are sensitive to the location of the focus in the Code Refactoring tab. For
example, if a refactoring interface is selected in the top-left list box and you click the X button, the
selected interface will be deleted entirely, including all associated refactoring rules. However, if a
refactoring rule is selected in the left-bottom list box when you click the X button, the selected rule will
be deleted.

 The content of the right side of the Code Refactoring tab is context sensitive as well. If a refactoring
interface is selected, the definition of the selected interface is displayed in the right window. If a
refactoring rule is selected, the rule definition code is displayed on the right.

 You can drag-and-drop refactoring interface names in the top left list to rearrange their order. You can
use that to push most commonly used interfaces to the top of the list and minimize the amount of
scrolling and clicking required for customizing refactoring rules.

Code Refactoring Macros

Code refactoring macros are special macros intended for use in code refactoring templates that can be used
along with other supported macros described in CHAPTER 7, Macro-variables and Dynamic Code Generation
topic to customize behavior of refactoring methods.

Variable Meaning

$REFACTORING_OBJ_NAME$ The fully qualified name of the selected schema object, or the name
entered by user in refactoring operations that prompt users to enter a
new object name.

$REFACTORING_COLUMNS$ This macro variable can be used in templates for converting queries
into database views and for similar refactoring operations. It inserts
comma separated list of columns from the result set returned by the
selected query.

$REFACTORING_COLUMNS_V$ It's the same as $REFACTORING_COLUMNS$ except that it inserts
vertically aligned list of column names.

$REFACTORING_CODE$ The code selected in the editor.

$REFACTORING_ARGS+TYPES$ The suggested argument signature for the database function or
procedure for which the refactoring is performed. Typically the
signature is generated based on declarations of local variables in the
selected code. This macro can be used in code refactoring operations

 CHAPTER 8, Smart Database Refactoring

 -156-

for converting selected code to standalone database functions or
procedures. For example:
SQL Server: @cust_id INT, @eff_date DATETIME, @ret INT OUT
MySQL: p_customer_id INT, p_effective_date DATETIME

Together with $REFACTORING_OBJECT$ it can be used to generate
code for a new function definition or in other operations where full
function signature is required.

$REFACTORING_ARGS$ It's the same as $REFACTORING_ARGS+TYPES$ except that it
inserts list t of argument names omitting their data types.

Refactoring Wizard Dialog

The Refactoring Wizard dialog is used by virtually all refactoring methods. The wizard dialog guides you
through a 3-step refactoring process:

 Step 1: Enter required refactoring parameters and options.

 Step 2: Preview and edit the proposed changes.

 Step 3: Execute the refactoring operations and review the output results and logs.

The labels on some buttons on the Refactoring Wizard dialog are step sensitive. For example, the second
button label reads "Next" in step 1, and reads "Refactor" in step 2.

 Tip: If the refactoring operation fails for some reason, you can click the Back button to go back to step 2
where you can review and edit the code for any failed items. After making necessary corrections, click the
Refactor button again to rerun the process.

Layout

Step 2 of the Refactoring Wizard is where you will spend most of your time reviewing proposed changes and, if
necessary, providing additional input. In Step 2, the dialog is split into three parts: the refactoring operation
description in the top section of the dialog, the object tree navigator on the left side, and the SQL editor on the
right side. Items in the object tree are represented by icons indicating their object type and text labels as
illustrated in the screenshot below. See the Object Tree Legend table following the screenshot for a key to icon
meanings. Checkboxes in front of item icons can be used to select and unselect objects you want to change.

 CHAPTER 8, Smart Database Refactoring

 -157-

Object Tree Legend

The following types of checkboxes with optional overlay icons could be displayed in the object tree.

 Item is not selected for refactoring, no action will be taken for this item.

 Item is selected and ready for refactoring.

 Item may need refactoring, but SQL Assistant is unsure how to refactor it correctly. Your input in the
SQL editor is required before the object code can be altered in the database. You should select this
item and manually correct the code in the SQL editor box before advancing to Step 3.

 A reference to the object being refactored is found in the code. However, SQL Assistant assumes
that no changes are required in that item. This is an information message only. If you think that
changes are required, select this item and manually correct the code in the SQL editor box before
advancing to Step 3.

 For an expandable schema or database item, this type of checkbox indicates that only a subset of
"child" items has been selected in the object tree branch for this item. For a simple item, this type
of checkbox indicates that changes in the database completed successfully. This type of checkbox
displays only if you click the Back button to return to Step 2 to review and edit an initial refactoring
operation.

 Item changes in the database failed. This type of checkbox displays only if you click the Back
button to return to Step 2 to review and edit an initial refactoring operation.

 Tip: The item for which you invoked the refactoring operation is displayed in bold in the object tree.

Navigation Status Bar Legend

The navigation bar is available on the right side of the Refactoring Wizard dialog in step 2. The status bar
provides color coded interactive location indicators enabling you to quickly jump to a line of code where a

 CHAPTER 8, Smart Database Refactoring

 -158-

change is pending or where an important reference has been found. Click on a location indicator to jump to the
associated line of code.

The following color codes are used:

Gray Indicates certain references found in the code, typically references to refactored objects. No input is
expected in such places, this type of mark is simply used to help you visually locate refactored
object names

Blue Indicates places in the code that SQL Assistant is changing automatically. If necessary you can use
the embedded SQL editor to override the changes.

Red Indicates places in the code that SQL Assistant is unable to change automatically, typically due to
ambiguous definitions or situations in which a refactoring path is unclear. Your manual input is
required. You are expected to modify code in such places manually using the embedded SQL
editor.

Embedded SQL Editor

The Refactoring Wizard dialog features an embedded SQL Editor you can use to modify code before it is
executed. For more information on the supported features, see CHAPTER 3, Code Assistants and SQL
Intellisense.

Note that the editor supports a dual-mode interface:

 Read-only mode with change highlighting of proposed changes for the current refactoring
operation and selected item. In this mode, the right side status bar is used for quick change
navigation. Color-coded marks are used to indicate ending changes and other sensitive elements in
the code.

 Edit mode, a full featured SQL editor with SQL Intellisense and other editor features. This mode is
activated automatically as soon as you start typing anything. In this mode the right-hand side status
bar is used to show syntax check results. To switch back to Read-only mode with change
highlighting, select a different object in the object tree on the left.

 Important Notes:

 If you start modifying code of an object that is not selected for refactoring in the object tree, SQL
Assistant will automatically select it.

 You should review all selected objects and their pending changes before you click the Refactor button
on the Refactoring Wizard dialog.

 Tip: The Refactoring Wizard dialog window is resizable. A border of the window can be dragged to change
the size of the window. You can also use the dialog window Maximize button to open it full screen and allow
more room for the dialog controls, including the SQL Editor

 CHAPTER 8, Smart Database Refactoring

 -159-

Refactoring Log Legend

The refactoring log is displayed in step 3 of the Refactoring Wizard dialog. The following icons indicate
operation status conditions in the refactoring log.

 The operation or step completed successfully

 The operation or step failed

 Indicates code lines that generated specific error messages returned by the database server during
refactoring

Code Dependencies Analyzer

The Code Dependencies Analyzer is a powerful utility that can be used to quickly locate schema and code
dependencies for objects of the following type:

 Tables

 Views

 Stored Procedures

 User-Defined Functions

 Table Columns

 View Columns

 Procedure Parameters

 Function Parameters

In other words, the utility can be used to find out all objects that depend on the object selected for the
dependencies analysis. It is recommended to use the Code Dependencies Analyzer before dropping or
modifying a schema object in the database so that you can review the impact of the pending change and avoid
unnecessary application errors resulting from broken dependencies.

In a way, this utility is more sophisticated that many standard database dependencies viewers:

 It can find dependencies across databases.

 It can find dependencies for specific table and view columns.

 It can find dependencies for specific procedure and function parameters.

 It displays a list of found dependent objects and, for each object, displays precise locations of found
code references within the dependent code.

 It works anywhere on the selected code; you don't need to browse objects in database navigators to
pull their dependencies. You can click on an object, column, or parameter name referenced anywhere
in the code to immediately invoke the Code Dependencies Analyzer.

To open the Code Dependencies Analyzer:

1. Position the edit caret on certain types of code symbols, such as an object name, column name or
parameter name.

 CHAPTER 8, Smart Database Refactoring

 -160-

2. With the edit caret positioned over an appropriate code symbol, use the Ctrl+Shift+D hot key to open
the Code Dependencies Analyzer. The Code Dependencies Analyzer determines the reference type of
the symbol under the edit caret and starts the dependencies search operation. Alternatively, you can
right-click a code symbol in the code window and select the SQL Assistant Refactoring Show
Dependencies… command from the right-click menu. This will display the Code Dependencies
dialog.

3. In the Code Dependencies dialog, choose the dependencies search method and options, then click
the Next button to start the search.

4. Review the list of dependencies returned by the search. In the object tree-view displayed on the left
side of the screen, click an object to view its code in the SQL edit window on the right side. Note that
the code references found are underlined by wavy blue lines.

For ease of navigation, the navigation bar on the right displays color coded navigation marks. Each
mark represents an occurrence in code of a reference to the selected object. Clicking on a blue
navigation mark causes the editor to automatically scroll to the corresponding place in the code. Briefly
resting your mouse pointer over a navigation mark, causes a small help window to appear that
displays the line number where a reference to the selected object occurs.

5. After reviewing the list of dependencies, you can minimize the dialog and continue working with the
editor or you can click the Close button to close the dialog.

 Tip: The working of the Code Dependencies Analyzer and the types of results returned can be customized
in SQL Assistant Options dialog using the options provided within the Refactoring tab.

 CHAPTER 8, Smart Database Refactoring

 -161-

Code References Analyzer

The Code References Analyzer utility is an opposite of the Code Dependencies Analyzer. It can be used to
locate recursively all references an object depends on in order to work correctly. It is recommended to use the
Code References Analyzer utility before code deployments an application upgrades to ensure that all related
objects are deployed and available.

In a way, this utility is more sophisticated that many standard database dependencies viewers:

 It can find references across databases.

 It displays a list of referenced objects and, for each object, displays precise locations of the found code
references within the dependent code.

 It provides a function to generate database deployment script capturing all referenced objects.

To open the Code References Analyzer:

1. Position the edit caret on certain types of code symbols, such as an object name.

2. With the edit caret positioned over an appropriate object name, right-click the name and select the
SQL Assistant Refactoring Show References… command from the right-click menu. This will
display the Code References dialog.

3. In the Code Dependencies dialog, choose additional objects whose code references you want to
analyze, then click the Next button to start the search.

 Tip If you are working on a deployment script, select top level objects only.

4. Review the list of references returned by the search. In the object tree-view displayed on the left side
of the screen, click an object to view its references in the SQL edit window on the right side. Note that
the code references found are underlined by wavy blue lines.

For ease of navigation, the navigation bar on the right displays color coded navigation marks. Each
mark represents an occurrence in code of a reference to the selected object. Clicking on a blue

 CHAPTER 8, Smart Database Refactoring

 -162-

navigation mark causes the editor to automatically scroll to the corresponding place in the code. Briefly
resting your mouse pointer over a navigation mark, causes a small help window to appear that
displays the line number where a reference to the selected object occurs.

For a graphical diagram view visualizing the code references, click the Diagram tab.

5. The Deployment Script button can be used to generate a deployment script for all selected objects.

6. After reviewing the list of references, you can minimize the dialog and continue working with the editor
or you can click the Close button to close the dialog.

 Tips:

 The working of the Code References Analyzer and the types of results returned can be customized in
SQL Assistant Options dialog using the options provided within the Refactoring tab.

 To collapse and expand multiple levels, change display zoom and other options, use context specific
the right-click menus available in different panels of the Code References Analyzer dialog.

 Important Notes:

As of SQL Assistant version 12.4, the Code References Analyzer supports the following database systems
only:

 SQL Server 2008 R2 and later

 SQL Azure 11 and later

 Oracle 11g and later

 PostgreSQL 9.2 and later

 DB2 UDB 9.5 and later.

 CHAPTER 8, Smart Database Refactoring

 -163-

An error will be returned for all other database types and versions.

Extract View

This refactoring method allows you to convert complex queries in a large program unit into a set of separate
,reusable database views. This method operates on the selected code in the editor window.

To use the Extract View method:

1. In your SQL editor, highlight the code of the query you want to use for the new database view. Make
sure that the highlighted code begins with a valid SELECT statement.

2. Right-click on the highlighted code. In the right-click menu, choose the SQL Assistant Refactoring
 Extract View menu command. The Refactoring – Extract View dialog will appear. In this dialog,
you will find a preview of the CREATE VIEW statement that will be used to create the new view.

3. Enter the view name in the View Name field. SQL Assistant automatically updates the CREATE VIEW
code using the name entered in the View Name field

4. Click the OK button to create the new view. The CREATE VIEW statement will be executed in the
database. The Refactoring – Extract View dialog will disappear, and the highlighted query in the SQL
editor will be replaced by a SELECT statement from the new database view.

 Tips:

 The CREATE VIEW statement, including headers, comments and declaration, is based on the
refactoring template (view create). This template can be customized on the Code Refactoring tab in
SQL Assistant Options dialog.

 The code of the new SELECT statement, including column placement, comments, and so on, is based
on the (view call) refactoring template. This template can be customized on the Code Refactoring tab
in SQL Assistant Options dialog.

 You can click the Save As… button on the Refactoring – Extract View dialog to save a copy of the
CREATE VIEW statement in a SQL file. You can use that file for documentation purposes and also to
add the new code to your code source control system.

Extract Procedure

This refactoring method allows you to extract a section of a large, complex SQL script and save it as a separate
stored procedure (or function).

 CHAPTER 8, Smart Database Refactoring

 -164-

To use the Extract Procedure method:

1. In the SQL editor, highlight the block of code you want to convert to a separate stored procedure. The
highlighted code can include any number of SQL statements.

2. Right-click on the highlighted code. From the right-click menu, choose the SQL Assistant
Refactoring Extract Procedure command. The Refactoring – Extract Procedure dialog will
appear. This dialog displays a preview of the CREATE PROCEDURE statement that will be used for
the new procedure. Note that in PostgreSQL based targets, the actual command is CREATE
FUNCTION.

3. Enter the procedure name in the Procedure Name field. SQL Assistant automatically updates the
CREATE PROCEDURE code using the name entered in the Procedure Name field

4. Click the OK button to create the new stored procedure. This will execute the CREATE PROCEDURE
statement in the database (CREATE FUNCTION in PostgreSQL based targets). The Refactoring –
Extract Procedure dialog will disappear and the highlighted query in the SQL editor will be replaced
by a SQL statement with the call to the new stored procedure.

 Note: All variables that are referenced in the highlighted code but are declared outside of that code will be
converted to stored procedure parameters. All variables declared within the highlighted code remain in the new
procedure as local variables. You should review the proposed CREATE PROCEDURE code to verify it for
correct parameters and variable use, and if necessary, to correct the code before executing it.

 Tips:

 The CREATE PROCEDURE statement, including headers, comments and declaration, is based on
the refactoring template (procedure create). This template can be customized on the Code
Refactoring tab in SQL Assistant Options dialog.

 The code of the new procedure call, including the call statement, parameter placement, comments,
and so on, is based on the (procedure call) refactoring template. This template can be customized on
the Code Refactoring tab in SQL Assistant Options dialog.

 You can click the Save As… button on the Refactoring – Extract Procedure dialog to save a copy
of the CREATE PROCEDURE statement in a SQL file. You can use that file for documentation
purposes and also to add the new code to your code source control system

Rename Table or View

This refactoring method provides an easy way to rename existing tables and views in your database and to
automatically find and correct dependent database code, such as dependent tables, views, procedures,
functions, triggers and so on. It works on the selected object name.

To use this refactoring method:

1. In the SQL editor’s code window, right-click the name of the table you want to rename. In the right-
click menu, choose the SQL Assistant Refactoring Rename Table/View… command. The
Refactoring – Rename Table/View dialog will appear.

 CHAPTER 8, Smart Database Refactoring

 -165-

2. In the New table/view name field, enter the new table or view name.

3. In the Scan options box, select appropriate code dependency search options.

4. In the Rename options box, choose logging and backup options for the rename operation.

5. Click the Next button to advance to the next step.

6. Review pending changes. In the object tree-view displayed on the left hand side of the screen, click
individual objects. The pending code changes will appear in the SQL edit window on the right side of
the dialog. Note that the references to the old object name are displayed using strike-through gray
color font. The new name references are displayed next to old references but using black bold font.

If you find an object you don't want to change, deselect the check box in front of the object name in the
object tree window.

To assist you in navigating through the code, a navigation status bar with color coded navigation
marks is displayed on the right side of the code window. See the Refactoring Wizard Dialog topic in
this chapter for details on the supported types of marks, their colors, and use of other visual elements.

7. If you are satisfied with the proposed changes, click the Refactor button to begin the renaming

 CHAPTER 8, Smart Database Refactoring

 -166-

operation. This will advance the dialog to the next step, update code in the editor, and execute the
DDL statements required to update the database code and objects. Progress and status messages
will be logged to the screen.

8. Review all logged status messages to ensure that no errors occurred during refactoring.

9. Click the Close button to close the dialog.

 Important Notes:

 SQL Assistant performs intelligent rename operations. When renaming tables, SQL Assistant uses
SQL commands that allow the database server to automatically update all dependent referential
constraints and indexes, and to ensure that dependent tables remain intact. For dependent views and
procedural objects, SQL Assistant automatically updates their code using SQL ALTER commands
whenever possible. In the case where ALTER commands are not available, SQL Assistant uses DROP
and CREATE statements to recreate the object. It automatically executes GRANT commands to
restore object-level privileges dropped along with the old object.

 SQL Assistant does not support updating code dependencies in encrypted code objects including, but
not limited to, encrypted stored procedures in SQL Server or wrapped procedural objects in Oracle.

Rename Table or View Column

This refactoring method provides an easy way to rename columns in existing tables and views in your database
and to automatically find and correct dependent database code, such as dependent tables, views, procedures,
functions, triggers and so on. It works on the selected column name.

To use this refactoring method:

1. In the SQL editor code window, right-click the column name you want to rename. In the right-click
menu, choose the SQL Assistant Refactoring Rename Column… command. The
Refactoring – Rename Column dialog will appear.

 CHAPTER 8, Smart Database Refactoring

 -167-

2. In the New column name field, enter the new name.

3. In the Scan options box, choose appropriate code dependency search options.

4. In the Rename options box, choose logging and backup options for the rename operation.

5. Click the Next button to advance to the next step.

6. Review pending changes. In the object tree-view displayed on the left hand side of the screen, click
individual objects. The pending code changes will appear in the SQL edit window on the right side of
the dialog. Note that the references to the old column name are displayed using strike-through gray
color font. The new column name references are displayed next to old references but using black bold
font.

If you find an object you don't want to change, deselect the check box in front of the object’s name in
the object tree window.

To assist you in navigating through the code, a navigation status bar with color coded navigation
marks is displayed on the right side of the code window. See the Refactoring Wizard Dialog topic in
this chapter for details on the supported types of marks, their colors, and use of other visual elements.

7. If you are satisfied with the proposed changes, click the Refactor button to begin the rename
operation. This will advance the dialog to the next step, update code in the editor and execute the DDL
statements required to update the database code and objects. Progress and status messages will be
logged to the screen.

8. Review all logged status messages to ensure that no errors occurred during refactoring.

9. Click the Close button to close the dialog.

 Important Notes:

 SQL Assistant uses intelligent rename operations. For example, when renaming columns, SQL
Assistant uses SQL commands that allow the database server to automatically update all dependent
referential constraints and indexes and ensure that dependent objects remain intact.

However, not all database types and versions support intelligent rename operations. If your database
does not support them, you may need to manually drop and recreate the affected table indexes and/or

 CHAPTER 8, Smart Database Refactoring

 -168-

constraints.

 SQL Assistant does not support search and update operations for dependencies in encrypted code
objects including, but not limited to, encrypted stored procedures in SQL Server or wrapped procedural
objects in Oracle.

Rename Procedure or Function

This refactoring method provides an easy way to rename existing stored procedures and user-defined functions
and to automatically find and correct dependent database code such as dependent views, procedures,
functions, triggers, and so on. It works on a selected object name.

To use this refactoring method:

1. In the SQL editor code window, right-click the procedure or function name you want to rename. In the
right-click menu, choose the SQL Assistant Refactoring Rename Procedure/Function…
command. The Refactoring – Rename Procedure/Function dialog will appear.

2. In the New procedure/function name field, enter the new name.

3. In the Scan options box, choose appropriate search options for code dependencies.

4. In the Rename options box, choose logging and backup options for the rename operation.

5. Click the Next button to advance to the next step.

6. Review pending changes. In the object tree-view displayed on the left hand side of the screen, click
individual objects. The pending code changes will appear in the SQL edit window on the right side of
the dialog. Note that the references to the old object name are displayed using strike-through gray
color font. The new name references are displayed next to old references but using black bold font.

If you find an object that you don't want to change, in the object tree-view uncheck the check box
displayed in front of the object name.

For easy of navigation, use the left side object tree and right side status bar with color coded
navigation marks. See the Refactoring Wizard Dialog topic in this chapter for details on the supported
types of marks, their colors, and use of other visual elements.

7. If you are satisfied with the proposed changes, click the Refactor button to begin the renaming
operation. This will advance the dialog to the next step, update code in the editor and execute the DDL
statements required to update the database code and objects. Progress and status messages will be
logged to the screen.

8. Review all logged status messages to ensure that no errors occurred during refactoring.

9. Click the Close button to close the dialog.

 Important Notes:

 SQL Assistant uses intelligent procedure and function renaming operations if the database server
supports them. However, not all servers support this feature. In the case where intelligent renaming of
procedures and functions is not supported, SQL Assistant uses DROP and CREATE commands to

 CHAPTER 8, Smart Database Refactoring

 -169-

recreate the same procedure with a different name. It automatically executes GRANT commands to
restore object-level privileges dropped along with the old object.

 SQL Assistant currently does not support the renaming of user-defined functions referenced in
computed table columns, function-based indexes, and packages.

 SQL Assistant does not support search and update operations for dependencies in encrypted code
objects including, but not limited to, encrypted stored procedures in SQL Server or wrapped procedural
objects in Oracle.

Rename Procedure or Function Parameter

This refactoring method allows you to rename parameters declared in existing stored procedures and functions
and to automatically find and correct dependent database code such as dependent views, procedures,
functions, triggers, and so on. It works on the selected object name.

To use this refactoring method:

1. In the SQL editor code window, right-click the column name you want to rename. In the right-click
menu, choose the SQL Assistant Refactoring Rename Parameter… command. The
Refactoring – Rename Parameter dialog will appear.

2. In the New parameter name field, enter the new parameter name.

3. In the Scan options box, choose appropriate search options for code dependencies.

4. In the Rename options box, choose logging and backup options for the rename operation.

5. Click the Next button to advance to the next step.

6. Review pending changes. In the object tree in the left window, check each of the individual objects by
clicking on an object name and reviewing the object’s code in the right code window. Note that
references to the original column name are displayed using a gray, strike-through font. The new
column names are displayed next to the original ones in black, boldfaced font.

If you find an object you don't want to change, deselect the check box in front of the object’s name in
the object tree window.

To assist you in navigating through the code, a navigation status bar with color coded navigation
marks is displayed on the right side of the code window. See the Refactoring Wizard Dialog topic in
this chapter for details on the supported types of marks, their colors, and use of other visual elements.

If you are satisfied with the proposed changes, click the Refactor button to begin the renaming
operation. This will advance the dialog to the next step, update code in the editor and execute the DDL
statements required to update the database code and objects. Progress and status messages will be
logged to the screen.

7. Review all logged status messages to ensure that no errors occurred during refactoring.

8. Click the Close button to close the dialog.

 CHAPTER 8, Smart Database Refactoring

 -170-

 Important Notes:

 SQL Assistant uses ALTER commands to update the affected code.

 SQL Assistant does not support search and update operations for dependencies in encrypted code
objects including, but not limited to encrypted stored procedures in SQL Server or wrapped procedural
objects in Oracle.

Rename Local Variable

This refactoring method provides an easy way to safely rename variables declared within bodies of procedures
and functions in the SQL Editor. Using this method is safer and better than using text search and replace
operations because it affects only the body of the current procedure or function and because it renames only
the variable references, avoiding changes to any other text containing the same sub-strings.

To use this refactoring method:

1. In the SQL editor code window, right-click the variable name you want to rename. This could be any
reference to the variable anywhere in the code. In the right-click menu, choose the SQL Assistant
Refactoring Rename Local Variable… command. The Refactoring – Rename Local Variable
dialog will appear.

2. Enter the new name.

3. Click the OK button box to perform the refactoring.

Add Table Column

This refactoring method provides an easy way to add new columns to existing tables in your database and to
automatically find and correct dependent database code such as dependent views, procedures, functions,
triggers and so on. It works on the selected table name.

 CHAPTER 8, Smart Database Refactoring

 -171-

To use this refactoring method:

1. In the SQL editor code window, right-click the name of the table you want to modify. In the right-click
menu, choose the SQL Assistant Refactoring Add Column… command. The Refactoring –
Add Column dialog will appear.

2. Enter a new column specification in the New column specification field. The specification must
include the column name and data type. Other elements such as constraints, defaults, and so on are
optional. If the new column name contains spaces or other special symbols, the name must be
enclosed in name delimiters supported by your database. Examples:
IsCriticalError BIT NOT NULL DEFAULT 0
[Alert Email] VARCAHR(50)
`size_column` ENUM('small', 'medium', 'large') DEFAULT 'small'

3. In the Scan options box, choose appropriate search options for code dependencies.

4. In the Options box, choose logging and backup options for the rename operation.

5. Click the Next button to advance to the next step.

6. Review all references returned. In the object tree-view displayed on the left hand side of the screen,
click individual objects to review their specific changes and code references. The found code
references will appear in the SQL edit window on the right side of the dialog.

 Important Notes: Check all locations where the refactored table is referenced and verify that all
INSERT statements for that table reference specific column names (the code is not like INSERT INTO
[table] SELECT and also do not using wildcards in place of specific column names, for example.
INSERT INTO …SELECT *). The refactoring operations will likely succeed for that kind of code, but
the code might fail in the run-time.

If you find an object you don't want to change, deselect the check box in front of the object’s name in
the object tree window.

To assist you in navigating through the code, a navigation status bar with color coded navigation
marks is displayed on the right side of the code window. See the Refactoring Wizard Dialog topic in
this chapter for details on the supported types of marks, their colors, and use of other visual elements.

7. If you are satisfied with the proposed changes, click the Refactor button to begin the renaming
operation. This will advance the dialog to the next step, update code in the editor and execute the DDL
statements required to update the database code and objects. Progress and status messages will be

 CHAPTER 8, Smart Database Refactoring

 -172-

logged to the screen.

8. Review all logged status messages to ensure that no errors occurred during refactoring.

9. Click the Close button to close the dialog.

 Important Notes:

 SQL Assistant does not support search and update operations for dependencies in encrypted code
objects including, but not limited to encrypted stored procedures in SQL Server or wrapped procedural
objects in Oracle.

Drop Table Column

This refactoring method provides an easy way to drop existing columns from database tables and to
automatically find and correct dependent database code such as dependent views, procedures,
functions, triggers, and so on. It works on the selected column name. Whenever possible SQL
Assistant will simply remove the dropped column by altering its base table and in the dependent code
it will substitute all references to the dropped column with NULL values.

The following example illustrates the changes in the dependent code:

Before:

CREATE VIEW ActiveFilteredAccounts AS
SELECT ae.AccountID, ae.ApplicationOwner, ae.AccountType
FROM AccountEntityTable ae
 JOIN AccountFilterTable af
 ON ae.AccountID = af.AccountID
WHERE ae.[Active] = 1
ORDER BY ae.AccountID

If the ApplicationOwner column in table AccountEntityTable is selected to be dropped, the
following changes will be made in the dependent view ActiveFilteredAccounts:

After:

CREATE VIEW ActiveFilteredAccounts AS
SELECT ae.AccountID, NULL AS ApplicationOwner, ae.AccountType
FROM AccountEntityTable ae
 JOIN AccountFilterTable af
 ON ae.AccountID = af.AccountID
WHERE ae.[Active] = 1
ORDER BY ae.AccountID

Here, in the dependent view, the dropped column name is replaced with a NULL expression so that the view
code remains intact and so all of the view dependencies including dependent application code, dependent
stored procedures, etc.. can continue running..

 CHAPTER 8, Smart Database Refactoring

 -173-

To use the Drop Table Column refactoring method:

1. In the SQL editor code window, right-click the column name you want to rename. In the right-click
menu, choose the SQL Assistant Refactoring Drop Column… command. The Refactoring –
Drop Column dialog will appear.

2. In the Scan options box, choose appropriate search options for code dependencies.

3. In the Options box, choose logging and backup options for the pending rename operation.

4. Click the Next button to advance to the next step.

Review all returned references. In the object tree in the left window, check each of the individual
objects by clicking on an object name and reviewing the object’s code in the right code window.

 Important Notes: Check all locations where the refactored table is referenced. Verify that all
highlighted SQL statements no longer refer to the dropped column name.

If you find an object that you don't want to change, in the object tree-view uncheck the check box
displayed in front of the object name.

For easy of navigation, use the left side object tree and right side status bar with color coded
navigation marks. See the Refactoring Wizard Dialog topic in this chapter for details on the supported
types of marks, their colors, and use of other visual elements.

5. If you are satisfied with the proposed changes, click the Refactor button to begin the refactoring
operation. This will advance the dialog to the next step, update code in the editor and execute DDL
statements required for updating the database code and objects. The progress of work and status
messages will be logged to the screen.

6. Review all logged status messages to ensure that no errors occurred during refactoring.

7. Click the Close button to close the dialog.

 CHAPTER 8, Smart Database Refactoring

 -174-

 Important Notes:

 SQL Assistant does not support search and update operations for dependencies in encrypted code
objects including, but not limited to, encrypted stored procedures in SQL Server or wrapped procedural
objects in Oracle.

Add Procedure or Function Parameter

This refactoring method provides an easy way to add new parameters to existing procedures and functions in
your database and to automatically find and correct dependent database code such as dependent views,
procedures, functions, triggers, and so on. It works on the selected procedure or function name.

To use this refactoring method:

1. In the SQL editor code window, right-click the name of the procedure or function you want to modify. In
the right-click menu, choose the SQL Assistant Refactoring Add Parameter… command. The
Refactoring – Add Parameter dialog will appear.

2. Enter a new parameter specification into the New parameter specification field. The specification
must contain the parameter name and data type. Other elements such as default values, IN/OUT
modifiers, and so on are optional. Entry of parameter name prefix @ is optional. SQL Assistant will
add it automatically if the prefix is not specified. Examples:
@IsCriticalError BIT
AlertEmail VARCAHR(50)
size_column INT = 1

3. In the Scan options box, choose appropriate search options for code dependencies.

4. In the Options box, choose logging and backup options for the pending rename operation.

 CHAPTER 8, Smart Database Refactoring

 -175-

5. Click the Next button to advance to the next step.

6. Review all returned references. In the object tree in the left window, check each of the individual
objects by clicking on an object name and reviewing the object’s code in the right code window.

 Important Notes: SQL Assistant takes special care to update object references, adding where
necessary a NULL placeholder for the new parameter in all function and procedure calls. This method
should work for all input parameters, but may fail for output parameters if your database engine does
not support optional output parameters. Make sure to review the pending changes and validate them
for usability.

If you find an object you don't want to change, deselect the check box in front of the object’s name in
the object tree window.

To assist you in navigating through the code, a navigation status bar with color coded navigation
marks is displayed on the right side of the code window. See the Refactoring Wizard Dialog topic in
this chapter for details on the supported types of marks, their colors, and use of other visual elements.

7. If you are satisfied with the proposed changes, click the Refactor button to begin the renaming
operation. This will advance the dialog to the next step, update code in the editor and execute the DDL
statements required to update the database code and objects. Progress and status messages will be
logged to the screen.

8. Review all logged status messages to ensure no errors occurred during refactoring.

9. Click the Close button to close the dialog.

 Important Notes:

 SQL Assistant does not support search and update operations for dependencies in encrypted code
objects including, but not limited to, encrypted stored procedures in SQL Server or wrapped procedural
objects in Oracle.

 CHAPTER 8, Smart Database Refactoring

 -176-

Drop Procedure or Function Parameter

This refactoring method provides an easy way to remove parameters from existing procedures and functions in
your database and to automatically find and correct the dependent database code such as dependent views,
procedures, functions, triggers and so on. It works on the selected parameter name.

To use this refactoring method:

1. In the SQL editor code window, right-click name of the parameter that you want to drop. The
parameter may be in a procedure or function call or in a DDL statement. In the right-click menu,
choose the SQL Assistant Refactoring Drop Parameter… command. The Refactoring –
Drop Parameter dialog will appear.

2. In the Scan options box, choose appropriate search options for code dependencies.

3. In the Options box, choose logging and backup options for the pending rename operation.

4. Click the Next button to advance to the next step.

 CHAPTER 8, Smart Database Refactoring

 -177-

5. Review all returned references. In the object tree in the left window, check each of the individual
objects by clicking on an object name and reviewing the object’s code in the right code window.

 Important Notes: SQL Assistant takes special care of updating parameter references in
procedure and function calls. It automatically removes values and expressions for the removed
parameters. However, it does not change the business logic of the procedural code. If the logic
depends on the values of the parameters, especially in case of the output parameters, the refactoring
operation will succeed, but the code will fail in run-time because no variables will not be populated with
the expected values. Make sure to review the pending changes and validate them for usability.

If you find an object that you don't want to change, in the object tree-view uncheck the check box
displayed in front of the object name.

To assist you in navigating through the code, a navigation status bar with color coded navigation
marks is displayed on the right side of the code window. See the Refactoring Wizard Dialog topic in
this chapter for details on the supported types of marks, their colors, and use of other visual elements.

6. If you are satisfied with the proposed changes, click the Refactor button to begin the renaming
operation. This will advance the dialog to the next step, update code in the editor and execute the DDL
statements required to update the database code and objects. Progress and status messages will be
logged to the screen.

7. Review all logged status messages to ensure that no errors occurred during refactoring.

8. Click the Close button to close the dialog.

 Important Notes:

 SQL Assistant does not support search and update operations for dependencies in encrypted code
objects including, but not limited to, encrypted stored procedures in SQL Server or wrapped procedural
objects in Oracle.

 CHAPTER 8, Smart Database Refactoring

 -178-

Drop Procedure or Function

This refactoring method provides an easy and safe way to drop existing procedures and functions in your
database. It automatically finds and highlights dependent views, procedures, functions, triggers, and so on,
enabling you to review and, if necessary, modify all dependent procedural objects in a single place. It works on
the selected procedure or function name.

To use this refactoring method:

1. In your SQL editor code window, right-click the name of the procedure or function you want to drop. In
the right-click menu, choose the SQL Assistant Refactoring Drop Procedure/Function…
command. The Refactoring – Drop Procedure/Function dialog will appear.

2. In the Scan options box, choose appropriate search options for code dependencies.

3. In the Options box, choose logging and backup options for the pending rename operation.

4. Click the Next button to advance to the next step.

 CHAPTER 8, Smart Database Refactoring

 -179-

5. Review all returned references. In the object tree in the left window, check each of the individual
objects by clicking on an object name and reviewing the object’s code in the right code window.

 Important Notes: If SQL Assistant finds one or more objects that are dependent on the
procedure or function you want to drop, it displays their icons with an explanation point and highlights
their references with red, wavy lines. The dependent code cannot be changed automatically, as SQL
Assistant does not know how to modify the business logic of the dependent code. You will need to edit
the code manually and make any needed corrections. Alternatively, you may cancel the pending
changes and close the Refactoring Wizard dialog using the Close button.

If you find an object you don't want to change, deselect the check box in front of the object’s name in
the object tree window.

To assist you in navigating through the code, a navigation status bar with color coded navigation
marks is displayed on the right side of the code window. See the “Refactoring Wizard Dialog” topic in
this chapter for details on the supported types of marks, their colors, and use of other visual elements.

6. If you are satisfied with the proposed changes, click the Refactor button to begin the refactoring
operation. This will advance the dialog to the next step, update code in the editor and execute DDL
statements required for updating the database code and objects. The progress of work and status
messages will be logged to the screen.

7. Review all logged status messages to ensure that no errors occurred during refactoring.

8. Click the Close button to close the dialog.

 Important Notes:

 SQL Assistant does not support search and update operations for dependencies in encrypted code
objects including, but not limited to, encrypted stored procedures in SQL Server or wrapped procedural
objects in Oracle.

 CHAPTER 8, Smart Database Refactoring

 -180-

Drop Table or View

This refactoring method provides an easy and safe way to drop existing tables and views in your database. It
automatically finds and highlights dependent views, procedures, functions, triggers, and so on, enabling you to
review and, if necessary, modify all dependent procedural objects in a single place. It works on the selected
table or view name.

To use this refactoring method:

1. In the SQL editor code window right-click name of the table or view that you want to drop. In the right-
click menu, choose the SQL Assistant Refactoring Drop Table/View… command. The
Refactoring – Drop Table/View dialog will appear.

2. In the Scan options box, choose appropriate search options for code dependencies.

3. In the Options box, choose logging and backup options for the pending rename operation.

4. Click the Next button to advance to the next step.

 CHAPTER 8, Smart Database Refactoring

 -181-

5. Review all references returned. In the object tree in the left window, check each of the individual
objects by clicking on an object name and reviewing the object’s code in the right code window.

 Important Notes: If SQL Assistant finds one or more objects that are dependent on the table or
view you want to drop, it displays their icons with an explanation point and highlights their references
with red, wavy lines. The dependent code cannot be changed automatically as SQL Assistant does
not know how to modify the business logic of the dependent code. You must edit the code manually
and make any needed corrections. Alternatively, you can cancel all pending changes and close the
Refactoring Wizard dialog using the Close button.

If you find an object you don't want to change, deselect the check box in front of the object’s name in
the object tree window.

To assist you in navigating through the code, a navigation status bar with color coded navigation
marks is displayed on the right side of the code window. See the Refactoring Wizard Dialog topic in
this chapter for details on the supported types of marks, their colors, and use of other visual elements.

6. If you are satisfied with the proposed changes, click the Refactor button to begin the renaming
operation. This will advance the dialog to the next step, update code in the editor and execute the DDL
statements required to update the database code and objects. Progress and status messages will be
logged to the screen.

7. Review all logged status messages to ensure that no errors occurred during refactoring.

8. Click the Close button to close the dialog.

 Important Notes:

 SQL Assistant does not support search and update operations for dependencies in encrypted code
objects including, but not limited to, encrypted stored procedures in SQL Server or wrapped procedural
objects in Oracle.

 CHAPTER 8, Smart Database Refactoring

 -182-

Qualify Object Names

This simple refactoring method enables you to modify a SQL script so that all object names are qualified with
the schema name in the format, schema_name.object_name. For SQL Server and Sybase ASE, this method
also supports full name qualifications including the database name in the format,
db_name.schema_name.object_name.

The following example illustrates the changes

Before:
SELECT ae.AccountID, ae.ApplicationOwner, ae.AccountType
FROM AccountEntityView ae
 JOIN AccountFilterTable af
 ON ae.AccountID = af.AccountID
WHERE ae.[Active] = 1
 AND af.EnumName = 'balance'
ORDER BY ae.AccountID

After:
SELECT ae.AccountID, ae.ApplicationOwner, ae.AccountType
FROM SampleServiceCompany2008.dbo.AccountEntityView ae
 JOIN SampleServiceCompany2008.dbo.AccountFilterTable af
 ON ae.AccountID = af.AccountID
WHERE ae.[Active] = 1
 AND af.EnumName = 'balance'
ORDER BY ae.AccountID

 Important Notes:

The Always Fully Qualify Object Names option controls how object names are qualified by this refactoring
method. If the option value is one of the With schema name… values, only the schema name is added to
object names. If the option value is \With database and schema names, both database name and schema
name are added to object names.

For more information on changing the Always Fully Qualify Object Names option, see the Customizing Code
Auto-completion Options topic in CHAPTER 48

 CHAPTER 8, Smart Database Refactoring

 -183-

To use Qualify Object Names refactoring method:

1. In the SQL editor, right-click and choose the SQL Assistant Refactoring Qualify Object
Names… command. SQL Assistant will analyze the code in the editor and display the Text Compare
dialog, showing the code before and after the changes.

Color legend: Text lines with light green background indicate lines updated using Qualify Object
Names refactoring. Sections of text highlighted with bright green background indicate the actual
changes. The change status bar on the right represents change map for the entire text.

2. Review the proposed changes. If you are satisfied with the results, click the OK button.

Note: changes are applied to the code in the target SQL editor only .Use the code execution facility in
the target editor, or SQL Assistant's code execution facility, to apply the changes to your database.

Reformat and Beautify Database Code

Formatting code of an existing database objects, such as view or procedural objects, can be done in four
simple steps:

1. Extract the DDL code of an existing database object using the Procedural Code View methods
described in CHAPTER 10, One-click DDL Code View. Copy the extracted code into the SQL editor.

2. Reformat the extracted code using the methods described in CHAPTER 5, Code Formatter and
Beautifier.

3. In the code, replace the first CREATE keyword with the ALTER keyword (or CREATE OR REPLACE
keyword group in Oracle and PostgreSQL).

4. Execute the updated code to modify it in the database. You can use your SQL editor's code execution
facility, if available, or you can use SQL Assistant's code execution facility. See CHAPTER 14,
“Executing SQL Scripts for more details.

 CHAPTER 8, Smart Database Refactoring

 -184-

Batch formatting of multiple database objects can be done in five steps:

1. Extract to flat text files the DDL code that defines the database objects. You can use methods
available in your SQL development environment or database administration tool. For example, in SQL
Server Management Studio, you can use the right-click menu in the Object Explorer for a database
and then choose the Tasks/Generate Scripts... menu to reverse-engineer existing objects and save
the generated SQL code. Similarly, in DB Tools for Oracle, you can use the Tools/Reverse-engineer
Schema menu. Similar methods are available in other tools.

2. Open the generated script in SQL Editor.

3. Reformat the extracted code using the methods described in CHAPTER 5, Code Formatter and
Beautifier.

4. Use the editor's search and replace function to replace in the code every occurrence of the CREATE
PROCEDURE, CREATE FUNCTION and similar commands with their ALTER PROCEDURE, ALTER
FUNCTION equivalents (replace with CREATE OR REPLACE in Oracle and PostgreSQL).

5. Execute the updated code to modify the database objects. You can use your SQL editor's code
execution facility, if available, or you can use SQL Assistant's code execution facility. See CHAPTER
14, Executing SQL Scripts for more details.

CHAPTER 9, Interactive SQL Reference System

 -185-

CHAPTER 9, Interactive SQL Reference System

Overview

SQL Assistant features a handy interactive SQL reference system. Different SQL Reference versions are
provided for different versions of Oracle, SQL Server, DB2, MySQL, and PostgreSQL database servers so that
you can lookup and interactively build SQL commands fully compatible with your database server type and
version.

The SQL Reference consists of two main parts:

1. Table of Contents, Statements and Keywords Indexes

2. Visual SQL Command Builder and Lookup

The following topics in this chapter describe how to open and use different parts of the SQL Reference system.

Invoking the SQL Reference System

SQL Reference can be invoked at any time using the keyboard hot key assigned to it. The default hot key is
Ctrl+F1. If this key is already reserved for some function in your SQL editor or development environment, you
can assign a different hot key in SQL Assistant options. For more information, see the Customizing Hot Keys
topic in CHAPTER 48.

SQL Reference can be also opened using SQL Assistant's menu available in the system tray or from menus
available in the target editor. To use the target editor's menus, the menu integration option must be enabled.
For details, see the Manually Invoking SQL Assistant Popups topic in CHAPTER 3.

CHAPTER 9, Interactive SQL Reference System

 -186-

Using the SQL Reference Index and Table of Contents

Depending on which editor is used, the SQL Reference Table of Contents may appear on the left or right hand
side of the target editor window. The visual SQL Command Builder may appear at the bottom of the editor
window or as a popup below the editing caret.

To display the SQL Reference Index and Table of Contents

1. Press the default Ctrl+F1 hotkey.

2. If Step 1 causes only a context sensitive SQL Reference topic popup to appear on the screen,
click the Home icon in the top-right corner of the topic popup.

To select a specific SQL command, function or topic:

1. In the SQL Reference Table of Contents, click hyperlink for the topic you want to view. If that
topic contains subtopics, a list of hyperlink subtopics will appear under the selected topic name.

2. In the Subtopics list, select the required command or function. Visual SQL Command Builder
window will appear at the bottom of the editor screen. You can use this window to review the
syntax or you can use it to interactively build the required command and paste it into the editor

 Tip: If you are not sure which topic or subtopic contains the information you are looking for, you can use
either the Statements or the Keywords Index to quickly determine the correct topic. These Indexes are available
as the last two items below the Table of Contents.

Persisting SQL Reference Table of Contents

By default, the SQL Reference Table of Contents window is not persistent and does not display automatically
in target editor's code windows. You can manually open the Table of Contents by following the steps described
in the Invoking SQL Reference System topic.

If you want the SQL Reference Table of Contents window appear automatically in every code editor window,
click the pushpin icon in the right-top corner of the SQL Reference Table of Contents window. This will
make the Table of Contents pane persistent in the current target editor and all future instances of the same
editor type and its code windows.

To disable the Table of Contents persistence, click the pushpin icon again. Note that the persistence state is
indicated by the toggled state of the pushpin icon.

Searching Contents

To quickly find stuff in SQL Reference:

1. Open SQL Reference window or SQL Command Syntax window. For example, you can use

CHAPTER 9, Interactive SQL Reference System

 -187-

Ctrl+F1 hot key or use available SQL Assistant commands in your editor's right-click menu.

2. Click the find icon in the right-top corner of the SQL Reference Table of Contents or click
the find icon in the top-right corner of the SQL Command Syntax window.

3. Type the text you want to find. SQL Assistant will automatically scroll the Table of Contents and
select the first topic or subtopic containing this text. In case the text is found in a second-level or
third-level subtopic, it will automatically expand the entire patch topic and select the appropriate
subtopic.

4. Click on one of the available matches to have the associated topic or subtopic to appear in SQL
Command Syntax window.

Resizing Table of Contents

To resize the SQL Reference Table of Contents pane, drag the vertical bar separating the pane and the code
editor. Note that when you place mouse pointer over the edge of the Bird's Eye View pane the cursor shape
changes to resize shape as on the following screenshot.

Make sure the cursor takes the right shape before dragging the pane edge.

Using SQL Command Syntax and Functions Lookup

To quickly check syntax of a known SQL command:

Method 1

1. Pres Ctrl+F1 to open the SQL Reference system.

2. Click the Statement Index hyperlink. The Statement Index will expand.

3. In the expanded Index locate and click the command whose syntax you want to lookup. Visual
SQL Command Builder and Lookup windows will appear at the bottom of the editor screen.

Method 2

1. Pres Ctrl+F1 to open SQL Reference window.

2. In that window, type the command whose syntax you want to check. The SQL Reference will
automatically locate that command in the Table of Contents and scroll it so the required
commands appears on top of the visible list of items.

3. Click the command whose syntax you want to lookup. Visual SQL Command Builder and Lookup
window will appear at the bottom of the editor screen.

If you do not know the exact command or function name, you can use hyperlinks in the Table of Contents to

CHAPTER 9, Interactive SQL Reference System

 -188-

browse topics and subtopics. For example, if you are looking for the topic “Log Shipping Procedures” in
Microsoft SQL Server but are not sure about their names or syntax:

1. Pres Ctrl+F1 to open SQL Reference window.

2. Click the System Stored Procedures hyperlink. The Topic will expand

3. Locate the appropriate procedure; for example, sp_add_log_shipping_plan_database and click on
the hyperlink. The procedure syntax and parameters appear in a new window at the bottom of the
editor screen.

To scroll the Table of Contents window, drag and its scrollbar handles as pointed on the picture above.

To resize the Table of Contents window drag its bottom-right corner as needed.

To pick a different version of the SQL Reference, click the drop-down list displayed at the top of the Table of
Contents window, then select the required version.

Working with the Visual SQL Command Builder Interface

The previous topic describes how to locate SQL commands and functions in the SQL Reference system and
how to open the Visual SQL Command Builder window. Once you have the Visual SQL Command Builder
open, you can use it to graphically build SQL commands or to simply paste command syntax into the editor
window.

Most SQL commands support multiple option groups and syntax elements. For example, the ALTER TABLE
command can be used to add new referential constraints, to drop a column, to alter table storage attributes and
for many other actions each requiring a different command syntax with different group of options.

Syntax groups are displayed as parallel horizontal chains of keywords and hyperlinks. If these syntax groups
are non-mutually exclusive and can be used together, a "loop-back line" is displayed around them. The
selected syntax group is displayed in bright green color. All other available syntax groups are displayed in grey
color.

CHAPTER 9, Interactive SQL Reference System

 -189-

To generate and paste code for a specific syntax group, double-click the last syntax element in the group.

To completely replace text of a previously pasted syntax group, simply click the last element of the required
group.

To add another syntax group to already pasted text without replacing the previous group, click the circle
with comma symbol displayed in a middle of the "loop-back line,"

If you want to add new syntax group in front of the previously pasted group use the little yellow arrows
navigation links to navigate syntax groups and highlight their text in the editor.

To delete unneeded group from the text in the editor, single click on that option name displayed in Visual SQL
Command Builder window and then click the little red minus sign.

If a syntax option contains multiple sub-options, its name is displayed as an underlined hyperlink. If you click on
such name the Visual SQL Command Builder window will refresh and show available sub-options.

Use yellow arrows in the top-left corner of the Visual SQL Command Builder window to navigate displayed
screens.

To synchronize the current topic with the Table of Contents click the little home icon in the top-right corner of
the Visual SQL Command Builder window.

Once you got the correct command syntax pasted, edit non-syntax elements such as specific object names,
column names, parameters and so on. You can edit such elements directly in the editor, or you can edit them
within the Visual SQL Command Builder Interface.

 Tip: Note different shapes of syntax elements displayed in the Visual SQL Command Builder Interface. The
elements in rectangular boxes represent SQL keywords. The elements in round-corner boxes represent
editable content. For example, the "table" and "constraint_name" elements on the previous screenshot are
editable elements. If you click them, you can use in place editing to enter table and constraint names. As you
type the names within round-rectangles, the Visual SQL Command Builder enters them same names into the
editor. The elements in double-edged rectangular boxes represent SQL constructs whose syntax is
documented in a separate SQL Reference topic and has its own Visual SQL Command Builder interface.
Elements in circles represent non-keyword elements

 - a single rectangular box for keyword elements. Clicking this box pastes keywords and all it
preceding dependent keywords into the editor.

 - a round-corner box for user entered values such as table and column names, constraint
names, column data type precisions, etc… After clicking box, you can edit the value within the box.

 - a double-edged rectangular box for nested SQL constructs. Clicking this box opens
another topic.

 - a circle for non-keyword type of syntax elements, such as brackets, column separating commas,
etc… Clicking this circle pastes the circle content and all it preceding dependent keywords into the editor.

CHAPTER 9, Interactive SQL Reference System

 -190-

In place code editing interface:

Scrolling Content

To scroll the Visual SQL Command Builder window content, use the mouse to drag the scroll bar or click the
small arrows at the top and bottom of the scroll bar. See the screenshot at the beginning of the Working with
SQL Assistant Popups topic for information on where to locate scrollbar handles.

Resizing the Visual SQL Command Builder window

To resize the Visual SQL Command Builder window, drag the resizer handle in the bottom-right corner of the
window. See the screenshot at the beginning of the Working with SQL Assistant Popups topic for information
on where to locate the resizer handle.

Moving the Visual SQL Command Builder window

If the Visual SQL Command Builder window covers part of the editor window that you want to see, click on an
empty area within the Visual SQL Command Builder window, and while holding the left mouse button
pressed, drag the window to the part of the screen where it is convenient for you.

Navigating Recently Visited Topics

To move between recently visited SQL Reference topics, use the Back and Forward arrows displayed in
the left top corner of SQL Reference topic window. You can also use Ctrl+ Left Arrow and Ctrl+ Right Arrow
keyboard shortcuts. Note that for the keyboard shortcuts to work correctly, the input focus must be in the SQL
Reference topic window, but not within round-corner rectangles in the active edit mode.

 CHAPTER 9, Using Code View

 -191-

CHAPTER 10, One-click DDL Code View

Overview

Any SQL developer who programs stored procedures, or functions or anyone who simply writes SQL code
using SELECT statements querying database views, frequently needs to review the source code of referenced
objects to understand the business logic encapsulated in that object. Typical methods used to access the
source code involve using some kind of the database browser utility which may be either external to the editor
or integrated with the editor. Typically, these browser utilities require many mouse clicks or keystrokes to find a
particular object and then open the DDL of the object in a separate editor window or even save it to a file and
then open. This is a very time consuming process, especially when working with large systems containing many
thousands of objects.

SQL Assistant supports an elegant single click method to lookup object source code without the need to leave
the editor. This method is based on what we call the "hot mouse tracking" feature. Hot tracking is the visual
effect whereby text under the mouse pointer reacts to pointer movement and turns into a hyperlink. To activate
the hot mouse tracking feature, hold down the Ctrl key and then move the mouse pointer over the name of the
object whose source code you want to preview. The object name under the pointer will turn to a hyperlink. Click
the hyperlink to display the object’s source code in the Code View window.

SQL Assistant supports two additional methods for invoking the Code View:

 Highlight the word or simply click the word referring to a procedural object or view in the database,
then click the Target / Show Object DDL command in SQL Assistant's system tray icon menu (see
the Using System Tray Icon Menu topic for details)

 Highlight the word or simply click the word referring to a procedural object or view in the database,
then click the SQL Assistant / Show Object DDL command in the target editor's context or top-level
menus. This method is available only if the menu integration option is enabled (see the Using Context

 CHAPTER 9, Using Code View

 -192-

and Top-level Menus topic for details)

 Important Note:

The Show Object DDL menu can be used with procedural objects of different types including:

 Views (in all supported database systems) See notes for Oracle versions 7 and 8 below.

 Stored procedures (in all supported database systems)

 User defined functions (in all supported database systems)

 Oracle packages (applicable to Oracle database systems only)

 Oracle types (applicable to Oracle database systems only)

 SQL Server triggers (applicable to SQL Server database systems only)

 Notes for users of Oracle 8.x:

In Oracle systems, view definitions are stored in a system table in LONG data type column and therefore
cannot be queried using regular catalog queries. The following technique can be used to add support for Oracle
views to the Code View:

1. First create a new user-defined function in your Oracle database as in the example below:

 CREATE OR REPLACE FUNCTION view_text(v_owner VARCHAR2, v_name VARCHAR2)
 RETURN VARCHAR2
 AS
 v_long LONG;
 v_len NUMBER;
 v_text VARCHAR(4000) := 'CREATE OR REPLACE VIEW ' || v_owner || '.'
 || v_name || ' AS' || CHR(10);
 BEGIN
 SELECT text, text_length INTO v_long, v_len
 FROM all_views
 WHERE owner = v_owner AND v_name = view_name;

 v_text := v_text || SUBSTR(v_long, 1, 4000 - LENGTH(v_text));
 IF v_len > 4000 THEN
 v_text := SUBSTR(v_text, 1, 3991) || CHR(10) || CHR(10) || 'more...';
 END IF;

 RETURN v_text;
 END;

2. Double-click the SQL Assistant icon in the system tray to open the Options dialog, then add the following
text to the end of the DDL Code (Oracle) query in the DB Queries option group:

UNION ALL
SELECT view_text(owner, view_name)
FROM all_views
WHERE owner = :OWNER AND view_name = :OBJECT

3. Close the Options dialog and wait several seconds for SQL Assistant to reload options in all open editors
and for the new settings to take effect. For more information on how to customize SQL Assistant database
queries, see the Customizing Database Catalog Queries topic in CHAPTER 48.

 CHAPTER 9, Using Code View

 -193-

Working with the Code View Interface

Navigating Code Views

The previous topic describes how to open the Code View window. You can use the same methods to view
code of a different procedural object while the Code View window is already open. Every time you invoke Code
View, the view content is automatically refreshed with the source code of the requested object. The Code View
window keeps track of requested objects and allows you to navigate their code segments much like you
navigate pages in a web browser. Use the yellow arrows in the top right corner of the Code View window to
navigate back and forth between screens.

Code View window navigation history is only available while the window is open. If you close it and then open
the Code View again, the previous navigation history is gone.

 Tip:

You can use the same methods within the Code View window to lookup the source code of objects referenced
in the displayed code. This way you can drill-down from the top level source code of a procedure to source
code of other objects referenced within that object code. The navigation buttons in the top-right corner can be
used to go back to the source code of the previously viewed object.

Scrolling Content

Use the standard scroll bars available in the Code View window to scroll the content. In addition you can use
regular keyboard navigation keys and the mouse wheel control if available.

Resizing Content

To resize the Code View window, drag the top edge of the window up or down. Note that when you place
mouse pointer over the top edge of the Code View window the cursor shape changes to resize shape as on
the following screenshot.

Make sure the cursor takes the right shape before dragging the window edge.

Copying Code

You can use the 'Copy to Clipboard' and 'Copy to Editor' methods to copy the entire content of the Code View
window or selected portions only. Use the icon in the toolbar area of the Code View pane to copy content of
the Code View to the clipboard, or use the icon to copy it directly into the editor. If no text is highlighted in the
Code View, the entire content is copied; otherwise only the highlighted text is copied to the Clipboard or Editor.

 CHAPTER 9, Using Code View

 -194-

 Important Note: The 'Copy to Editor' method replaces the entire editor content with the content of the
Code View pane. To undo that action, use standard Undo function available in your editor.

Comparing Code Between Code View and Editor

While working on modifying an existing stored procedure or view you may want to compare the current code in
the editor against the version stored in the database. Using the technique described in this chapter open the
procedure code in the Code View pane. Click the icon in the in the toolbar area of the Code View pane. This
open the Code Compare utility which will show the code differences in textual, logical and program flow
diagram formats. For more information see CHAPTER 25, Code Compare Utility. The Code

Comparing Code Between Code View and a File

The usage is the same as comparing code in Code View against code in the editor, which is described in the
previous topic, except that in this case the code is compared against its version saved in a file. Click the icon
in the in the toolbar area of the Code View pane. You will be prompted to select a file to compare to, and then
the comparison results will be displayed in the Code Compare utility.

Customizing DDL Code Reverse-Engineering for Code View

SQL Assistant supports multiple methods for reverse-engineering DDL code of schema objects. Each method
has it’s own advantages and disadvantages. For example, using SQL scripts from DDL Code queries from DB
Options tab allows fastest code generation, but the queries do not support all types of schema objects. In
comparison using database native API and utilities provides the most coverage, but it’s also the slowest method
which may be performance-wise prohibitive when reverse-engineering DDL code of thousands of schema
objects.

 CHAPTER 9, Using Code View

 -195-

You can choose the most efficient method for your database and environment in SQL Assistant options. You
can also configure SQL Assistant to use your own SQL script or external script files and command line utilities.
To change the method:

1. Open the Options dialog and select DB Options tab.

2. Expand SQL Assistance section on the left and choose your database type.

3. Change DDL Extraction Utility option. The following values are supported:

Let SQL Assistant choose best method – Enables SQL Assistant to choose the best method based
on the object type and environment. For example, for SQL Server, it would use the programmatic
SMO interface to reverse-engineer full table DDL, and query dbo.syscomments and other system
catalog views to retrieve code of stored procedures and triggers.

Using SQL scripts only – Instructs SQL Assistant to use DDL Code queries only for reverse-
engineering schema objects.

Using database command line tools and APIs only – Instructs SQL Assistant to use database
native tools and APIs only for all kinds of schema objects. For some database types this might be the
slowest method, however it ensures full compatibility with the database engine and version.

Custom utility – Enables you to specify your own batch script or command line utility for reverse-
engineering schema objects.. For details on how to use and customize this method, review several
sample batch scripts provided in the DDL subfolder under SQL Assistant installation folder.

4. Click the Apply button to save your changes.

CHAPTER 11, Data Display and Editing

 -196-

CHAPTER 11, Data Display and Editing

Overview

The Table Data Preview function enables you to pick at the data in a table or view referenced in the code with a
single click without a need to leave the editor or to type and execute the complete SELECT statement. This
method is based on what we call the "hot mouse tracking" feature. Hot tracking is the visual effect whereby the
text under the mouse pointer reacts to pointer movement and turns into a hyperlink. To activate that feature,
hold down the Ctrl key and then move the mouse pointer over the name of the object whose properties, source
code, or data you want to preview. The object name under the mouse pointer will turn to a hyperlink. Click that
hyperlink to display sample data in a data grid window.

 Tip: For performance reasons, only the first 100 records are displayed in the Table Data Preview. To see
the complete table content, right-click the data grid and choose the Retrieve All command from the popup
menu. If you would like to filter the data or display the data in a certain order, use SQL Assistant’s built-in facility
for executing SQL queries.

SQL Assistant supports two additional methods for invoking Table Data Preview:

 Highlight the word or simply click the word referring to a table or view object, then click the Target /
Show Table Data command in the system tray icon menu (see the Using System Tray Icon Menu
topic for details)

 Highlight the word or simply click the word referring to a table or view object, then click the SQL
Assistant / Show Table Data command in the target editor's context or top-level menus. This method
is available only if the menu integration option is enabled (see the Using Context and Top-level Menus
topic for details)

CHAPTER 11, Data Display and Editing

 -197-

 Important Note:

The Show Table Data menu can be used with objects of different types including:

 Tables (in all supported database systems)

 Views (in all supported database systems)

 Aliases (supported in Oracle and SQL Server for aliases referring to table and view objects)

 Materialized Views (applicable to database systems supporting materialized views)

Working with Data Grid Interface

NULL Values

SQL Assistant renders cells containing NULL values as empty cells. A small green mark is displayed in the top
left corner of a NULL cell to differentiate it from cells containing empty strings or spaces.

If you mouse over a cell with a green mark, you should see a popup hint with word "NULL."

Long and Multi-line Text Values

Long values that exceed the column width are displayed as truncated values. Truncated values are followed by
three dots (called ellipses) to indicate the data overflow effect. To see the entire value, resize the column.

For multi-line text values containing end-of-line and carriage return characters, only the first line is displayed. A
small red mark is displayed in the top-left corner of a cell containing multi-line text to differentiate it from cells
containing single-line values. To see the entire text value, double-click the cell. The text will be displayed in a
separate Cell Value window. See the Expanded Cell View topic below.

If you mouse over a cell with a red mark, you will see a popup hint with instructions for displaying the entire

CHAPTER 11, Data Display and Editing

 -198-

value.

 Tip: To resize a column to display the entire content of all cells, double-click the right-edge of the column
header. SQL Assistant resizes the column to fit the content of each cell.

Expanded Cell View

The returned query results do not always fit well in the data grid cells. The values can be longer than the
available space or contain multiple text lines. For a better view of the results, double-click the cell whose value
you want to see. This will open the Cell Value popup window. To see a value in some other cell, double-click
that cell. There is no need to close the Cell Value popup window, it will refresh automatically.

 Tips:

 The title bar of the Cell Value popup window indicates the row and column of the cell containing the
value.

 The popup window can be moved and resized as needed. It will remember its size and position and
stay on top of other windows until it is closed.

 If the value displayed in the Cell Value popup window contains long lines, select the Line Wrap check
box to make text wrap at the right edge of the display area.

Scrolling Content

Use the standard scroll bars in the data grid to scroll the content. You can also use regular keyboard navigation
keys and the mouse wheel for scrolling.

Resizing Content

To resize individual columns in the data grid, drag the right-edge of the column header left or right. Note that
when you place mouse pointer over the right edge of a column header the cursor shape changes to resize
shape as on the following screenshot.

CHAPTER 11, Data Display and Editing

 -199-

Make sure the cursor takes the right shape before dragging the column edge.

 Tip: Long values that exceed the column width are displayed as truncated values. Truncated values are
followed by three dots (called ellipses) to indicate the data overflow effect. To see the entire value, resize the
column.

Copying Data to the Clipboard

You can use the 'Copy to Clipboard' and 'Copy to Editor' methods to copy the entire content of the data grid or
selected portions only. Use the right-click menu over the data grid to activate the Copy function or use the
Ctrl+C keyboard shortcut. The copied text can be then pasted into the target editor or any other program using
standard Edit / Paste menu or Ctrl+V hot key.

 Tips: The grid supports both regular column-wise and row-wise data selection and irregular data selection
of multiple regions:

 To select an entire row of data, click the row header of the cell containing the row number

 To select an entire column, click the column header

 To select the entire grid content, click the top left cell in the row headers column. Alternatively, you can
right-click on the grid, then click the Select All command in the right-click menu.

 To select an individual cell, just click on that cell.

 To quickly select several adjacent cells, use "mouse lasso" effect over these cells. Click on the starting
cell and then, while holding down the mouse left button, drag it around cells you want to select.

 To select any combinations of the above, for example, to select several columns, hold down the Ctrl
key on the keyboard and then select the additional areas using methods described above.

Copying Data to a New Excel Worksheet

The data grid supports enhanced copying data to Microsoft Excel function that can be used to copy the entire
content to a well-formatted Microsoft Excel worksheet. Use the right-click menu over the data grid to activate
the Open in Excel function.

1. Right-click the data grid to activate the context menu.

2. In the context menu choose Open n Excel command

 Tips: If Microsoft Excel is not running, a new instance will be started automatically

CHAPTER 11, Data Display and Editing

 -200-

Saving Data to Files

The data grid supports data export functions that can be used to save the content to a file.

1. Right-click the data grid to activate the context menu.

2. In the context menu choose the Save All as… command

3. Use standard system file browse dialog to choose destination directory and the name of the
output file.

4. In the same dialog choose file output format. The extension given to the output file will be used to
for the output format. You can use one of the following values:

 Comma separated format (CSV)

 Tab-separated format (TXT),

 Space-padded table column layout format (TBL)

 Excel workbook (XLS or XLSX)

 Extensible markup language file format (XML)

 JavaScript object notation format (JSON)

 Apache Parquet files (PARQUET)

5. Click the Save button to save the file. If the file already exists, SQL Assistant will prompt to
overwrite the file.

 Note: In order to save data to one of Excel supported formats, Microsoft Except version 2000 or later must
be installed on your system.

Printing Data and Saving it as Reports

The data grid enables saving data to PDF reports as well as printing it with a variety of page control options.

1. Right-click the data grid to activate the context menu.

2. In the context menu choose the Print Report/PDF… command. This will generate a report and
display it in the Print Preview dialog as in the following example.

CHAPTER 11, Data Display and Editing

 -201-

3. Click the Print toolbar icon in the Print Preview dialog to print the report.

4. Click the PDF toolbar icon in the Print Preview dialog to save report to a PDF file. If the file
already exists, SQL Assistant will prompt to overwrite the file.

5. To close the report, click the Close button in the top right corner of the dialog

 Tips:

 Width of columns in the report matches width of columns in the data grid from which the report
was generated. To adjust the width, resize columns in the data grid and then regenerate the
report using the same steps as above.

 The report title matches the name of the table data preview (or query results) tab. To change the
title, you can rename the tab. Right-click the tab and choose the Rename command from the
context menu.

Scripting Data as SQL INSERT Commands

The data grid provides an alternative interface for scripting table and query results data. See CHAPTER 13,

CHAPTER 11, Data Display and Editing

 -202-

Scripting, Exporting, and Importing Data for more information.

To access the scripting interface from the data grid:

1. Right-click the data grid to activate the context menu.

2. If you plan on executing the script immediately or copying it to another program, in the content
menu choose Save as Script … command. This will display the options dialog in which you can
choose where to output the generated script and additional options for the data formatting.

 Important Note: The Save as Script command scripts out the complete window content,
which in the case of the data grid, may or may not be the complete table data.

Loading All Records

By default, the Table Data Preview shows only the first 100 records of the selected table. To make SQL
Assistant display the complete table data, right click anywhere in the data grid and select the Retrieve All
command from the right-click menu.

Sorting Content

The data displayed in the data grid appears in the order returned by the database. Occasionally you may want
to sort its content based on a specific column. To sort the data based on a specific column, move the mouse
pointer over the column header until a small green arrow (the sorting hot-spot) appears. The data is sorted in
ascending order based on the content of that column. Click the sorting hot-spot again to sort in descending
order. A third click restores the original order.

The same technique can be used to sort by multiple columns. After you click the sorting hot-spot in one of the
columns, hold down the Ctrl key and click the sorting hot-spot in another column to apply two-columns based
sorting. Repeat the same if you need to add more columns.

 Note: The sorting hot-spot is displayed as a small green arrow near the column header's right edge. This
arrow appears only when the mouse pointer is over the column header. If you click anywhere in the column
header away from the sorting hot-spot, the content of the column is selected, but the sort order is not
changed.

CHAPTER 11, Data Display and Editing

 -203-

The current sort order is indicated by a fixed green arrow which is permanently displayed over the column
header. Refer to the following sample screenshot for details.

You can also sort data in the data grid using the context menu. To use this method, right click on the column
you want to sort on and select one of the following options from the Sort submenu:

 Ascending – sorts data in ascending order based on the content of the column under the mouse pointer.

 Descending – sorts data in descending order based on the content of the column under the mouse
pointer.

 Original – restores the original sort order in effect when the data was retrieved from the database. Note
that this option is enabled only when you right-click a column which has been previously selected for the
sorting.

Filtering Content

The data grid supports spreadsheet style Auto-filter interface turning values in the grid columns into specific
filters based on the cell content. The auto filter supports multi-column filtering as well. To Filter the data:

1. Right-click the data grid and in its context menu choose the Auto-filter command. The grid column
headers will change to dropdown menus.

2. Column headers will display drop-down arrow to the right If you click the arrow control, you will see all
the values for that particular column.

CHAPTER 11, Data Display and Editing

 -204-

 Important Note: The displayed list is dynamic. If you choose some filter values in a particular
column, then click the arrow control for some other column, the list for that other column will show only
values that are still visible.

To show all values for a particular column, click the arrow control, and then select the special All value
displayed close to the top of the list. In case you also applied custom filters, click the Delete Filter top
most item.

If you rather prefer to filter values using a value range or some other conditional criteria, select the
Custom Filter item in the same drop-down items.

 Note: Different kinds of conditions are available for different data types. The example above
shows conditions available for an numeric column. More choices are available for text based columns
including advanced regular expressions. For additional information about regular expressions syntax
see Using Regular Expressions topic in CHAPTER 34, Integrated SQL Editors.

 Tip: Different icons are used for filtered columns to indicate where filters have been already applied.
Headers of filtered columns show while unfiltered columns show .

To turn off the Auto-filter feature, deselect Auto-filter from the same context menu.

Finding Data Values

You can use Find Text... and Find Text Again commands within the data grid to search for the data in the data
grid. To access the search interface from the data grid:

1. Right-click the data grid to activate the context menu.

2. In the context menu choose Find Text... command. The Search in Table dialog will appear.

CHAPTER 11, Data Display and Editing

 -205-

The following search options are supported:

Text to find – A regular expression or plain text to find in the table.

Regular expression – If this checkbox is checked, the value of the Find text field is treated as a regular
expression. If not checked, the value is treated as a plain text.

 Tip: When using plain text searches, you can refer to special symbols using backslash as the escape
symbol. For example, to refer to a tab character, specify \t. When using regular expression, use regular
expressions compatible syntax to refer to special symbols.

Case sensitive – If this checkbox is checked, the search is case sensitive. This property is only used with plain
text searches (e.g. when the Regular expression checkbox is not checked)

Whole cells only – If this checkbox is checked, the search is performed only for cell with values exactly the
same as the text in the Find Text, otherwise a substring search is performed on cell values. This property is
only used with plain text searches (e.g. when the Regular expression checkbox is not checked).

Direction – The search direction. This is used together with the Scope and Origin options.

Forward – The search is started forward. Note the search is run in columns left to right and rows top to
down.

Backward – The search is started backward. Note the search is run in columns right to left and rows
bottom to top.

Scope – The search scope.

Whole table – the entire data grid is searched.

Selected range – only the selected cells are searched. See tips section in this chapter in the Copying Data
to the Clipboard topic for description of methods that can be used to select a regular shaped or irregularly
shaped region containing multiple cells.

Origin – The search starting point:

From current cell - the search is started from the cell with the input focus in the direction specified by the
selected Direction option.

Entire range - the search is started from the top left cell of the selected cell range or the first cell of the
table if no cell range is selected.

 Tip: Press F3 key to quickly find next sell matching the same search criteria. This is a shortcut for the Find
Text Again menu..

CHAPTER 11, Data Display and Editing

 -206-

Finding Columns

Sometimes results of a query or quick table data preview contain many columns spawning multiple horizontal
pages, and It is difficult to spot the required column or columns when looking at the grid. In such situation you
can use the Find Column… command to quickly locate the required columns.

1. Right-click the data grid, and choose Find Column… command in the context menu. This command
opens Find Column dialog listing all columns in the selected grid.

2. To narrow the list you can start typing the name of the column you looking for.

3. To sort column names alphabetically click the right side of Name header.

4. Double-click the required column name to highlight it in the data grid.

 Tip: The behavior of the Find Column command when used with SQL Server Management Studio grids is
a bit different. It opens a different kind of Find Columns dialog containing additional options for supporting
column searches across multiple grids that may appear after executing single or multiple SQL commands
single.

Active document only – this option refers to the active tab. If unchecked, the column search is applied to all
data grids currently available in all open SQL Server Management Studio tabs.

Active grid only – If checked, searches only the active grid, otherwise searches all grids available in the result
set.

Matching method – the method to use when matching column names to the text you typed n the filter box.

CHAPTER 11, Data Display and Editing

 -207-

Freezing Grid Columns

There are use cases in which you might have a large number of grid columns on limited screen space, and you
may want to make a small subset of them static when scrolling the other horizontally to bring them in the
viewable area. You can use the Fix Columns… feature to divide the data grid into left and right panes. If the
data grid is divided, the left pane is static containing the frozen columns, and right pane is scrollable containing
the other columns.

To freeze a column

To divide the data grid or move a column to the left pane, right-click the column header and then select the Fix
Column menu. The selected column is moved to the left most position of the left pane. If you need to reposition
the frozen column, unfreeze them first and then select them in a different order or freeze them all at once.

 Tip: If you right click column header of a frozen column, you will notice that a checkmark is shown in front
of the Fix Column menu indicating that the column is already frozen.

To freeze a group of columns

While holding down the Ctrl key, click the column header of each column you want to freeze. The selected
columns will have their background highlighted. Right click the header of any of the selected column and then
select the Fix Column menu. All selected columns are moved to the left static pane.

To unfreeze a column

Right click the column header of each column you want to unfreeze and then select the Fix Column menu
again. The selected column is moved to the right scrollable pane.

Changing Data

Activating Edit Mode

If the data in the data grid is for a table with primary key, you can make changes in the data and save them
back to the database. To activate the Edit mode, click the cell whose data you want to change and press F2
key. Alternatively, you can right-click the cell and select Edit command from the context menu.

Once the Edit mode is activated, you can make changes in other cells as well.

Note that the changes are not immediately saved to the database. They are saved only when you select the
Save Changes menu.

CHAPTER 11, Data Display and Editing

 -208-

 Tip: Cells with modified and unsaved yet data have yellowish background for easy of data change
identification, as demonstrated on the example screenshot below.

Cell Value Manipulations

Use regular data input methods to edit cell values. To copy, cut, or paste entire cell value or a part of it, use
appropriate commands in the cell’s right-click menu.

To set a cell value to NULL value, select the cell, be sure it’s not in the Edit mode, and then press the Del key.

.

Row Manipulations

To insert a blank row at the end of the data-grid, use the Ins key, or right click the data grid and select Add
Row command from the context menu.

To delete one or more rows, select the rows to be deleted and then press Ctrl+Del keys, or right click the
selected rows, and from the context menu select Delete Rows menu.

Note that like cell changes, row changes are not immediately saved to the database. They are saved only when
you select the Save Changes menu.

 Tip: You can copy data to the data-grid from other applications, for example, from Microsoft Excel, using
the Windows clipboard. If the clipboard contains a set of tab separated values in one or more rows, the content
is pasted as new rows appended to the end of the data-grid. If the shape of the data in the clipboard does not
match columns in the data-grid, the values from the clipboard are pasted cell by cell. To use this method, press
Ctrl+V, or use the right-click menu in data grid and select the Paste command.

Undoing Changes

Before the changes are saved to the database, you can undo them incrementally much like you undo changes
in the editor. To undo the changes, press Ctrl+U, or use the right-click menu in data grid and select the Undo
command.

Saving and Scripting Changes

To save your changes to the database table, right click the data grid and select Save Changes command from
the context menu.

To save your changes as a set of SQL commands without actually updating the database, right click the data
grid and select Save Changes as Script... command from the context menu. The Save As dialog will appear

CHAPTER 11, Data Display and Editing

 -209-

enabling you to select the SQL script file name.

Customizing Fonts

To change the font used in the data grid

1. Open SQL Assistant's main Options dialog.

2. On the Targets tab select Common section and then click the [...] button on the right side of the
Table Pan Font option. The standard Font Properties dialog will appear.

3. Choose desired font family and size and then click the OK button to close the dialog.

 Tip: Only the font family and size are used, all other font properties shown in the Font Properties
dialog are ignored.

Customizing Data Display Formats

Column Specific Formats

To change how the values appear in the data grid for specific columns, right-click anywhere within the grid and
select the Display Format… menu. The Display Format dialog window will appear.

In the Category list, the dialog lists all columns available in the grid and their data types. In the format list it lists
the default format used fro the data type as well as all previous customized formats you have used before so
that you can quickly pick from that list the one you want to use. Use the controls and options in the Format
Settings section to define a new format. Click other columns in the Category and if required modify their formats
too or select formats from the Format list. When ready, click the OK button to close the dialog and apply new
display formats to the data in the data grid.

 Tip: The customized display formats apply to columns referenced in the current data grid. The customized
display formats are sticky. If you execute a query retuning data from the same table and columns, if SQL
Assistant can match them to the columns whose display formats have been previously customized, it will

CHAPTER 11, Data Display and Editing

 -210-

automatically apply the customized formats.

Clearing saved customizations

If you want to clear the saved format, right-click in any data grid, choose the Display Format… menu and then
simply delete them from Display Formats dialog.

Data-type Specific Formats

Using the global options you can customize display formats for various data types that apply to all data grids
and all columns with the same data type unless their column specific format is customized as described above.

1. Open the Options dialog.

2. On the Targets tab, click the Common section on the left hand side of the dialog.

3. On the right hand side expand the data grid section.

4. Click the Display format option, and then click the […] button on the right end of the line.

5. Customize formats as needed

6. Click the Ok button to close the Display Formats dialog

7. Click the Ok button to close the Options dialog.

CHAPTER 11, Data Display and Editing

 -211-

Conditional Formatting

Conditional formatting in the data grids enables you to highlight cells with a certain background or font color,
depending on the specified condition. You can use that feature to make some data cells to stand out and to
emphasize data patterns.

Multiple conditional formatting rules can be used in the same data grid. For example, you can apply different
formatting rules to different columns. Or you can apply multiple conditional rules to the same column to produce
composite highlighting effects.

Applying Conditional Formatting Rules

1. Right-click the data grid column to which you want to apply conditional formatting.

2. In the popup menu select the Conditional Formatting menu. A submenu will expand to the right.
Select the type of conditional formatting rule you want to apply.

3. In case the selected rule requires additional input, for example, if you selected a rule for highlighting
values greater than certain number, specify the value.

4. You can customize cell background and text colors.

5. Click the OK button.

 Tips:

 If the selected column has been already formatted, the new rule by default will be combined with
the previously applied rules, as in the example below. To replace the existing conditional
highlighting, select the Override previous rules checkbox in the Rule properties dialog.

 If you only want to change cell text color, but not its background, choose None color value in the
Background color drop-down list.

 The color drop-down lists contain common colors from the basic palette as well as various

CHAPTER 11, Data Display and Editing

 -212-

Windows system colors. If you want to choose a custom color, pick the special Custom … color
value

Highlighting Cells with Unique or Duplicate Values

To highlight cells with unique values, choose the formatting rule named Format only unique or duplicate
cells and then in the Format all drop-down list, choose the Unique values option.

Similarly, to highlight cells with non-unique values, choose the formatting rule named Format only unique
or duplicate cells and then in the Format all drop-down list, choose the Duplicate values option.

Clearing Rules

1. Right-click a column with conditional highlighting.

2. In the popup menu select the Conditional Formatting menu. A submenu will expand to the right.

3. Select Clear Rules menu and then choose whether to clear conditional formatting in the selected
column only, or in the entire data grid.

 Tip: If you have multiple conditional formatting rules applied to a single column and you want to
remove or change only a subset of the applied rules, use the Manage Rules submenu. See the following
topics for more information on formatting rules management.

Using "Stop if True" Option

The Stop If True option can be used with multiple rules applied to the same column(s). It prevents the
current rule from processing other rules when a condition in the current rule is met. In other words, if two or
more rules are set for the same columns and Stop if True is enabled for the first rule, the subsequent rules
are disregarded after the first rule is activated.

 Tip: The rule order is important when Stop If True option is used. To change the order, use the Arrow
Up and the Arrow Down icons in the right-top corner of the Conditional Formatting Rules

CHAPTER 11, Data Display and Editing

 -213-

Manager dialog. The dialog is accessible through the Conditional Formatting -> Manage Rules… menu.

Managing Rules

Use the Conditional Formatting Rules Manager dialog to modify criteria for a formatting rule already
applied to the current data grid column, and to quickly add multiple rules in case you want to highlight
different cells based on a set of specific values, rather than a single value range, and to selectively clear
some of the rules already applied to the current column. The dialog is accessible through the Conditional
Formatting -> Manage Rules… menu. A screenshot of the Conditional Formatting Rules Manager
dialog can be found in the previous topic. The New Rule… and the Edit Rule… buttons will open the
Formatting Rule dialog, which can be used to enter new or edit an existing rule definition

Saving and Reusing Rules

You can save customized rules and rule collections to .CFR files using the Conditional Formatting Rules
Manager dialog. The dialog is accessible through the Conditional Formatting -> Manage Rules… menu.

The Save and Load toolbar icon are located in the top-right corner of the dialog.

Data Grid Limitations

The maximum size of a text-based or binary column displayed in the data grid depends on the selected
connectivity interface and the underlying database driver. For example, some ODBC drivers limit text values to
the first 255 characters. For any column that exceeds this limit, some values might appear truncated.

The nature of the data stored in BLOB and similar binary columns is unknown to SQL Assistant. The values
stored in such columns are displayed as hex encoded strings. The values in CLOB, JSON, XML columns are
displayed as a normal human readable text.

The amount of data that can be loaded using the Retrieve All command in the right-click menu is limited by the
amount of free memory available to your computer at the time of code execution.

The Edit mode does not support all data types. Only the simple data types and data that your database can
automatically convert from text values to the table specific data type values can be edited in the data grid.

CHAPTER 12, Working with Workspace Database

 -214-

CHAPTER 12, Working with Workspace
Database

Overview

SQL Assistant automatically creates a new workspace database for you when you invoke any related feature
very first use. SQL Assistant uses internally integrated SQLite database engine. The Workspace Database
provides persistent storage for saving various data objects and data sets, it also provides advanced SQL
querying interface for retrieving and working with the saved data. The workspace database is always available,
you do not need to start and stop it like other database servers.

Saving Query Results to Workspace Database

You can save data from any data grid populated with results of your database queries to the workspace using
the following simple method:

1. Right-click the data grid to display its content menu and then select Save to Workspace Database…
menu.

2. Click Ok to save it using the automatically suggested name, or change the name to your liking and
then click Ok to save the results to a new table in the Workspace Database.

Executing Queries and Reports Against Saved Data

In SQL Assistant Integrated Development Environment select File -> Open Workspace Database menu. This
will open new SQL editor tab connected to the Workspace Database. Use familiar SQL queries to retrieve and
modify the data in the Workspace Database as you would use with any other database server. Use SQLite
compatible SQL syntax when working with the Workspace Database,. The SQL Assistant advanced SQL
Intellisense and other built-in features will assist you with coding and testing your queries.

In addition to SQLite standard set of functions the integrated engine provides several extensions that enable
you to use regular expressions, JSON operators, external file tables. For more information see:

SQLite language expressions - https://www.sqlite.org/lang_expr.html

JSON functions and operators - https://www.sqlite.org/json1.html

Attaching CSV Files as External Tables

You can attach CSV files to the Workspace Database and turn them into external file tables that can be queried
using regular SQLite compatible SQL queries. The file tables are read-only tables. Unlike data in regular tables
their contents cannot be modified in the attached files through this interface. Use the integrated Data File
Query utility to manipulate data in external files.

https://www.sqlite.org/lang_expr.html�
https://www.sqlite.org/json1.html�

CHAPTER 12, Working with Workspace Database

 -215-

To attach a CSV file as external table:

1. In SQL Assistant Integrated Development Environment open the Workspace Database using File ->
Open Workspace Database menu.

2. In the Database Explorer right-click any empty area. The context menu will appear. In the context
menu select Register CSV File as External Table menu. Follow the prompts to select CSV file and
file specific options.

3. You can now enter and execute SQL queries to retrieve data from the attached file, including queries
that join that external table with other existing regular and external tables in the Workspace Database.

Exporting Data from Workspace Database

The data stored in the Workspace Database can be exported to files and to other databases using a variety of
built-in methods. See CHAPTER 13, Scripting, Exporting, and Importing Data for specific details.

Backing Up and Restoring Workspace Database

The Workspace Database is located by default in %APPDATA%\SQL Assistant\Workspace folder on the
system where SQL Assistant is installed.

Offline Database Backup

1. To backup the database in offline mode, close all instances of SQL Assistant and other development
tools you use SQL Assistant with.

2. Copy all files from the Workspace folder to a network drive or other safe location.

Online Database Backup

1. To backup the database in online mode without closing anything, in SQL Assistant Integrated
Development Environment open the Workspace Database using File -> Open Workspace Database
menu.

2. In the Database Explorer right-click the "main" schema. The context menu will appear. In the context
menu select Backup and Restore -> Backup … menu. The SQLite Database Backup dialog will
appear.

3. In the backup dialog choose destination folder and name for the backup database. Click the Backup
button to start the backup operation.

Database Restore

1. Currently the Workspace Database can be restored in offline mode only. You have to close all
instances of SQL Assistant and other development tools you use SQL Assistant with.

2. Copy workspace database files from the backup location to the %APPDATA%\SQL
Assistant\Workspace folder replacing the existing files.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -216-

CHAPTER 13, Scripting, Exporting, and
Importing Data

Overview

Moving data around is a common requirement faced by many database developers and DBAs. Whether you
are migrating data to another database server, rebuilding tables, or just creating test data, SQL Assistant
provides several useful methods and utilities for helping with various types of data migration. As a true cross-
database tool, it also supports copying data between different types of database systems. This can be achieved
by exporting data to database type independent flat files, like XML, JSON, TXT, CSV, or XLS/XLSX files, and
then importing them into the target database. as well as scripting data using SQL INSERT statements in a
database specific format and then executing the resulting scripts in the target database system.

Exporting Table Data to Flat Files, Excel Files, and Apache
Parquet Files

SQL Assistant has a data export facility that is available from the right-click menu in the target editor and in the
Database Explorer. This method can be used for exporting a single table or view data to TXT, TBL, XML,
JSON, XLS, and CSV. To use this facility:

1. Select a table in the Database Navigator or select a table or view name appearing within the code in
the target editor.

2. Right click the selected name and in the popup menu select SQL Assistant Import / Export Data
menu branch and then select Export To... command. The Save To file dialog will appear.

3. Choose output file format and name and then click OK. The Save To dialog will disappear and the
SQL Assistant - Table Data Export dialog will appear.

4. Choose additional export options if required, and then click the Export button.

Exporting Multiple Tables in a Schema or Database

This function enables you to export data from multiple tables and/or views at once. It works very
similar to the function described in the previous topic.

1. Select a schema or database in the Database Navigator or select a schema or database name
appearing within the code in the target editor.

2. Right click the selected name and in the popup menu select SQL Assistant Import / Export Data
menu branch and then select Export To... command. The Save To file dialog will appear.

3. Choose output file format and base file name then click OK. The Save To dialog will disappear and the
SQL Assistant - Table Data Export dialog will appear.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -217-

4. Choose specific tables and views. Note that all tables and views in the chosen schema are selected by
default.

5. Choose additional export options if required, and then click the Export button.

 Note: SQL Assistant will export each table to a separate file with the choose file format and extension. File
names will be the same as the table names appending with the base file name you selected in step 3.

Exporting Query Results to Flat Files

SQL Assistant has a data export facility that is available from the right-click menu in SQL Assistant's Table Data
Preview pane as well as in the Query Results pane. This method can be used for exporting a single table or
view data as well as query results to TXT, TBL, XML, JSON, and CSV. For more information, see the Saving
Data to Files topic in CHAPTER 11, “Using Table Data Preview.”

 Tip: You can customize data formatting before exporting data as described in CHAPTER 11, Table Data
Preview and Editing, in Customizing Data Display Formats topic.

Exporting Query Results to Excel

This method can be used for exporting table and query results data into Microsoft Excel files

The data export facility is available via right-click menu in SQL Assistant's Table Data Preview pane and in
Query Results pane used for displaying results of SQL code execution. For more information see Saving
Content to Files topic in CHAPTER 11, Using Table Data Preview.

1. In the target editor execute query or stored procedure returning one or more result sets using
Ctrl+Sfit+F9 hot key or using SQL Assistant's Execute SQL Code command in the right-click menu .

2. Right-click the returned data in the Data Preview tab and choose Open in Excel command.. SQL
Assistant will start Microsoft Excel and copy formatted data from the Preview tab to new Excel
worksheet.

3. You can use Save function in Excel to save the data to an Excel native file type or to any other Excel
support file type.

 Important Note: Microsoft Excel must be installed on your computer in order to use that function

 Tip: You can customize data formatting before exporting data as described in CHAPTER 11, Table Data
Preview and Editing, in Customizing Data Display Formats topic, or you customize it directly in Excel after the
results are copied over to Excel.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -218-

Exporting Data to Other Programs Using Clipboard

This method can be used for exporting table and query results into other programs

The data copy facility is available via right-click menu in SQL Assistant's Table Data Preview pane and in Query
Results pane used for displaying results of SQL code execution. For more information see Copying Content to
Clipboard topic in CHAPTER 11, Using Table Data Preview.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -219-

Exporting Tables, Schemas, and Databases to XML and
JSON Files

Overview

The XML/JSON Data Export utility can be used for exporting large amounts of data from many tables into
hierarchical XML or JSON files. The utility provides simple to use graphical interface for mapping database
data to XML or JSON schema elements. The export can be run immediately or scheduled to run unattended
later using SQL Assistant's command line utilities.

The XML/JSON Data Export utility can export data in 2 modes: flatted 3-level data schema and hierarchical
multi-level data schema. The following topics describe the supported modes.

Export to Flattened 3-Level XML or JSON Data Schema

The flattened data export can be used to export one or more tables to a single XML or JSON file. The tables
are exported entirely. With the flattened export the output file will contain only 3 levels with a separate node for
each database in the selection containing sub-nodes for each schema which in turn will have sub-node for each
table within its schema. In other words, all databases will appear as 1st-level nodes, all schemas as 2nd-level
nodes and all tables as 3rd-level nodes. For example:

XML Schema Sample Content

Root
 Database 1
 Schema 1.1
 Table 1.1.1
 ... data record ...
 Table 1.1.2
 ... data record ...
 ...
 Schema 1.2
 Table 1.2.3
 ... data record ...
 Table 1.2.4
 ... data record ...
 ...
 ...
 Database 2
 Schema 2.1
 Table 2.1.1
 ... data record ...
 ...
 Schema 2.2.
 ...
 ...
 ...

 Important Note: In the flattened export mode, tables metadata is saved in the header nodes of the export
file. If the generated output file is imported into a different database using the XML/JSON Data Import utility, it
can accurately recreate the original tables in the destination database using the saved metadata. This improves
cross platform data transporting using industry standard XML and JSON file formats. In the hierarchical export

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -220-

mode the metadata is not saved. When importing data files without the metadata, SQL Assistant analyzes first
100 records of the actual data values and based on that analysis suggests column data types for the
destination tables. Because the suggestions are based on a relatively small data sample, they might be
sometimes incorrect. You should review them and correct as required before importing the data.

To generate flat 3-level XML or JSON file:

1. In the target editor open SQL Assistant menu or use the right-click menu for SQL Assistant's system
tray icon. Navigate to SQL Assistant Import / Export Data menu branch and then select Export
to XML or JSON Data Schema menu. The Export Data to XML or JSON Schema dialog will
appear.

2. In the Destination File field enter output file name, or use the Browse […] button next to that field to
select the output file using the system's standard file browse dialog.

 Note: The output file format depends on the file extension. If you choose XML, the output
data will be written in XML format. If you choose JSON, the output data will be written in JSON format.
If you choose anything else, then XML format is assumed.

3. Click the Plus Sign icon in the right top corner (to the right of the Tables list) to select tables to
export. The Select Objects dialog will appear.

4. Select one or more tables and click the OK button. The Export Data to XML or JSON Schema dialog
will be populated with the selected objects and the corresponding data file structure.

5. Optional step - you can use the Arrow Up and Down icons next to the Table list to rearrange
table order in the export file.

You can use the same icons in the Columns list to rearrange columns in the output.

 Note: The content of the Columns list matches the selected table in the Tables list. It is a master-
detail view.

6. Optional step - you can use the Delete icons to remove tables or some of their columns from the
export

7. Optional step - on the Options tab choose data formatting, error handling, and logging options. Refer
to Scripting out Table Data topic in this chapter for specific details.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -221-

8. Click the Save icon to save the project. You will be prompted for the project file name.

9. If you wish to run the export immediately, click the Export button.

If you wish to schedule a recurring export process, or a later run, use the Schedule... button, or use
the sacmd command line utility provided with SQL Assistant. The command line for the export is
sacmd xmlexp:"<project-file>;<data-file>" conn:"connection-name>"
In the command above replace <project-file> with the full file path name of the project settings file,
replace <data-file> with the full path and name of the XML or JSON output file, replace <connection-
name> with the name of preconfigured database connection saved in SQL Assistant options.

 Tip: Use Open Project icon to load previously saved XML/JSON Export and XML/JSON Import projects
into the dialog.

Export to Multi-Level Hierarchical XML or JSON Data Schema with Nested
Tables

This type of data export can be used to export one or more tables to a single XML or JSON file. With this type
you can hierarchically nest tables within other tables, as well as you can specify additional data filters. Typically
the structure of the generated output files will follow your database referential integrity design. Table
referenced by referential constrains will be represented in the output file as sub-nodes of their parent tables
within the associated parent records. For example:

XML Schema Sample Content

root
 (optional level) Database 1
 (optional level) Schema 1.1
 Table 1.1.1
 ... data record ...
 Nested Table 1.1.1.1
 ... data record ...
 Nested Table 1.1.1.1.1
 ... data record ...
 Nested Table 1.1.1.1.2
 ... data record ...
 Nested Table 1.1.1.2
 ... data record ...
 Table 1.1.2
 ... data record ...
 Nested Table 1.1.2.1
 ... data record ...
 Nested Table 1.1.2.2
 ... data record ...
 ...
 (optional level) Schema 1.2
 Table 1.2.3
 ... data record ...
 Table 1.2.4
 ... data record ...
 ...
 ...
 (optional level) Database 2
 (optional level) Schema 2.1
 Table 2.1.1
 ... data record ...
 Nested Table 2.1.1.1
 ... data record ...
 ...
 (optional level) Schema 2.2.
 ...
 ...

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -222-

 ...

 Important Note: In the flattened export mode, tables metadata is saved in the header nodes of the export
file. If the generated output file is imported into a different database using the XML/JSON Data Import utility, it
can accurately recreate the original tables in the destination database using the saved metadata. This improves
cross platform data transporting. In the hierarchical export mode the metadata is not saved. When importing
data files without the metadata, SQL Assistant analyzes first 100 records of the actual data values and based
on that analysis suggests column data types for the destination tables. Because the suggestions are based on
a relatively small data sample, they might be sometimes incorrect. You should review them and correct as
required before importing the data.

To generate multi-level XML or JSON file:

1. In the target editor open SQL Assistant menu or use the right-click menu for SQL Assistant's system
tray icon. Navigate to SQL Assistant Import / Export Data menu branch and then select Export
to XML or JSON Data Schema menu. The Export Data to XML or JSON Schema dialog will
appear.

2. In the XML/JSON File field enter the required output file name or use the Browse […] button next to
that field to select the output file suing the system's standard file browse dialog.

 Note: The output file format depends on the file extension. If you choose XML, the output
data will be written in XML format. If you choose JSON, the output data will be written in JSON format.
If you choose anything else, then XML format is assumed.

3. Uncheck the Flat Export checkbox.

4. Click the Plus Sign icon in the right top corner (to the right of the Tables list) to select tables to
export. The Select Objects dialog will appear.

5. Select one or more tables and click the OK button. The Export Data to XML or JSON Schema dialog
will be populated with the selected objects and the corresponding data structure.

6. Edit XML path values for each node in the Path column, for example, if you want to export Orders and
Order Details tables, you can enter path for the OrderDetails table relative to the Order table
Path for Order table: root/Northwind/dbo/Orders
Path for Order Details table: root/Northwind/dbo/Orders/Order_Details

Here is a sample of how it may look like in the Export Data to XML or JSON Schema settings

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -223-

7. In the Condition column enter record linking conditions. Typically you would use the existing
referential constraints to link records from child tables to parent tables. For example, if you want to
export Orders and Order Details tables, you can link records in the Order Detail table as [Order
Details].OrderID = [Order].OrderID.

 Important Notes: The record linking conditions are used in WHERE clauses of SQL queries SQL
Assistant executes internally for retrieving table data. Failure to provide correct record linking
conditions may lead to unpredictable results. It's very important to enter the correct conditions.

 Tip: The condition specified in the base table can be used to filter the export results. For example,
in the sample setup pictured above, as a condition for the Customers table you can specify
[Customers].City = 'London' to export customers residing in London.

8. Optional step - you can use the Arrow Up and Down icons next to the Table list to rearrange
table order in the export file. The order of tables in the list impacts tables at the level only, it does not
impact tables set as child tables. In the sample setup pictured above, moving Order Details table
above Order table makes no difference.

You can use the same icons in the Columns list to rearrange columns in the output.

 Note: The content of the Columns list matches the selected table in the Tables list. It is a master-
detail view.

9. Optional step - you can use the Delete icons to remove tables or some of their columns from the
export

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -224-

10. Optional step – In the Columns list you can specify how to output column values to XML files. Every
XML item can have one or two types of optional elements: attributes and a value. If the column's
Attribute checkbox is not ticked, which is the default, every column value will be output as an XML
value, otherwise as an attribute within XML element for the table row. The following example
demonstrates how attributes and value are written to XML files.

The Attribute flag is not applicable to JSON export files and so it has no effect on the JSON output
data format.

11. Optional step - on the Options tab choose data formatting, error handling, and logging options. Refer
to XML Import/Export Options topic in this chapter for specific details.

12. Click the Save icon to save the project. You will be prompted for the project file name.

13. If you wish to run the export immediately, click the Export button.

If you wish to schedule a recurring export process, or a later run, use the Schedule... button, or use
the sacmd command line utility provided with SQL Assistant. The command line for the export is
sacmd xmlexp:"<project-file>;<data-file>" conn:"connection-name>"
In the command above replace <project-file> with the full file path name of the project settings file,
replace <data-file> with the full path and name of the XML or JSON output file, replace <connection-
name> with the name of preconfigured database connection saved in SQL Assistant options.

 Tip: Use Open Project icon to load previously saved XML/JSON Export and XML/JSON Import projects
into the dialog.

Scripting out Table Data

To script out INSERT statements for data from a database table or a database view

1. In your SQL script, right-click on the table or view that you want to script out. In the simplest case,
use an empty editor and enter the required table or view name then right-click that name.

2. In the context menu, choose SQL Assistant menu branch, then in that branch select Script Table
Data… command.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -225-

3. The SQL Assistant – Table Data Export dialog will appear on the screen

4. On the Objects tab, select one or more tables whose data you want to script out to a SQL file.

5. On the Export Options tab, specify the required output format properties for date, time, text and
binary values.

 Important Note: that format properties are database type dependent and computer locale
dependent. For example, the default format for date values in SQL server is locale specific. If a
table data is scripted out on a computer located in the USA, using dates in MM/DD/YYYY format,
the resulting SQL script cannot be executed on a SQL Server located in a European country
where the required date format is DD/MM/YYYY. Another example is cross-platform data export.
For example for Oracle databases the default date format is DD-MMM-YYYY. If you are going to
export data from a SQL Server database and import it into an Oracle database, for the date
format you should pick the format of the target Oracle system, which is DD-MMM-YYYY.

See the following sections for details on supported scripted data format masks.

6. Click the Export button to start the process

Handling Date and Time Values

The SQL Assistant – Table Data Export dialog contains several predefined values for date and time format
masks which you can choose from the Date Format and Time Format drop-down lists. If necessary, you can
overwrite the predefined values and enter custom format mask values.

In case you need a custom format mask, use the following elements to construct a format mask. Note that if
you use spaces to separate the elements in the format mask, these spaces will appear in the same location in
the output string for the date value. The letters must be in uppercase or lowercase as shown in the following
table (for example, "MM" not "mm"). Characters in the format mask that are enclosed in single quotation marks
will appear in the same location and unchanged in the output string.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -226-

Value Description

D Day of month as digits with no leading zero for single-digit days.

Dd Day of month as digits with leading zero for single-digit days.

Ddd Day of week as a three-letter abbreviation. The function uses the
LOCALE_SABBREVDAYNAME value associated with the specified locale.

Dddd Day of week as its full name. The function uses the LOCALE_SDAYNAME value associated with
the specified locale.

M Month as digits with no leading zero for single-digit months.

MM Month as digits with leading zero for single-digit months.

MMM Month as a three-letter abbreviation. The function uses the LOCALE_SABBREVMONTHNAME
value associated with the specified locale.

MMMM Month as its full name. The function uses the LOCALE_SMONTHNAME value associated with
the specified locale.

y Year as last two digits, with a leading zero for years less than 10. The same format as "yy."

yy Year as last two digits, with a leading zero for years less than 10.

yyyy Year represented by full four digits.

gg Period/era string. The function uses the CAL_SERASTRING value associated with the specified
locale. This element is ignored if the date to be formatted does not have an associated era or
period string.

Value Description

h Hours with no leading zero for single-digit hours; 12-hour clock

hh Hours with leading zero for single-digit hours; 12-hour clock

H Hours with no leading zero for single-digit hours; 24-hour clock

HH Hours with leading zero for single-digit hours; 24-hour clock

m Minutes with no leading zero for single-digit minutes

mm Minutes with leading zero for single-digit minutes

s Seconds with no leading zero for single-digit seconds

ss Seconds with leading zero for single-digit seconds

t One character time marker string, such as A or P

tt Multicharacter time marker string, such as AM or PM

 Note: When choosing the output data and time formats, keep in mind that the formats must be compatible
and understood by the target database server, not the source server. In other words, understood by the server
against which you are going to run the generated SQL script.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -227-

Handling Special Symbols in Text-based Values

In many cases, special symbols contained in the text-based data values cannot be scripted out as is. In such
cases, SQL Assistant automatically generates appropriate SQL expressions in the output SQL script. Special
symbols include all symbols not represented as digits and letters in the standard ASCII characters table.

You can choose one of the predefined functions CHAR(%) or CHR(%), or you can enter your own. Note that
you can also refer to user-defined SQL functions. The % symbols in the format mask represent ASCII code
placeholder. This symbol is required.

For example, text-based value 'Peter<end-of-line>Pan' contains end-of-line symbol having ASCII code 10 in the
middle of the value. If you choose to use CHAR(%) function and || concatenation operator, the output SQL file
will have that value scripted as 'Peter' || CHAR(10) || 'Pen'

 Note: The format of text- based expressions is database type dependent. When choosing the output
format, keep in mind that the format must be compatible and understood by the target database server, not the
source server. In other words, understood by the server against which you are going to run the generated SQL
script.

Handling Binary Data Values

Because SQL scripts do not support binary data in row formats, binary data must be converted to some other
format or be ignored. SQL Assistant offers the following 2 options for scripting out binary data:

 Export as NULL – in other words, ignore binary data values, and in the generated scripts replace
them with NULL values.

 Export as HEX Data (0x…) – encode binary values as HEX code strings. In this case, the target DMS
must be able to understand HEX code values and be able to convert them back to binary values.

Importing Data from Excel and Flat Files

To import data from one or more worksheets from Excel file or any other file that can be opened in Excel.

1. Right-click in the target editor and in the context menu choose SQL Assistant menu branch then
expand Import / Export Data menu branch and select Import CSV, Excel, Other Files… … menu
command. Alternatively you can invoke the same command from SQL Assistant's system tray icon
right-click menu. The Import Data project wizard dialog will appear. Click the Next button. The
standard system Open File dialog will appear on the screen.

2. Browse and select a file that can be opened in Microsoft Excel. You can select XLS, XLSX, CSV, TXT,
XML or a file with other extension supported by Excel. As long as the data file can be opened in Excel,
its content can be loaded into the database.

3. Wait for a few seconds while Excel is reading the selected file. The larger the file, the longer it may
take to load it. Once the content is loaded into Excel, SQL Assistant will popup Import Excel Data
dialog. See Import Excel Data Dialog sub topic for detailed description of the dialog, its usage and

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -228-

controls.

4. In the Tables table choose worksheets to import and map them to new or existing database tables.

5. In the Tables table click the first selected worksheet and in the Columns table choose columns to
import. Map worksheet columns to database columns and if necessary adjust their data types.

6. Repeat step 5 for other selected worksheets. When done with the table and column mapping, proceed
to the next step.

7. To start the data import immediately, click the Import button. To postpone the load for later
processing or manual execution, click the Save Script button to generate SQL script with the required
INSERT and other statements.

 Important Note: Microsoft Excel must be installed on your computer in order to use that function

Import Excel Data Dialog Usage and Controls

The following sample screenshot demonstrates Import Excel Data dialog..

The dialog contains two tabs:

The Data tab provides you with a list of loaded Excel worksheets and their columns. It enables you to map
worksheets to existing or new database tables, choose worksheets and columns to import into the database.

1. Tables table – this table contains list of worksheets in the chosen Excel file and their mapping to
database tables. To select which worksheets to load, use the left-most column with checkboxes.

Worksheet Name column – this informational column contains Excel worksheet number and label
which can be used to visually identify worksheet in the chosen Excel file.

Rows column –this informational column indicates how many rows are available in the worksheets
and can be loaded into the database.

Table name column – the value in this column references target table name in the database. To
change the name, click on the relevant table cell, the value in the sell should appear highlighted. You
can type or paste table name or you can click the browse […] button displayed next to the table
name to select the target table using graphical Select Table dialog. Note that the browse […] button
appears only when the table name cell is focused. If the required target table does not exist, simply
type its name in the column cell. SQL Assistant will create that table automatically.

 Tip: To create a table in non-current schema or database, specify the complete fully qualified

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -229-

table name.

Header column – tick checkbox in the Header column if the worksheet contains a header row with
column names and that row should be skipped.

 Tip: SQL Assistant recognizes single row headers only. If your Excel file contains multi-row
headers or irregularly shaped headers, copy worksheet data into new worksheet and format header
rows as required for the import.

Truncate column – tick checkbox in the Truncate column if loading data into an existing table and
you want the table content to be replaced.

2. Columns table – this table contains columns found in the selected worksheet and their mapping to
database table columns. Note that the content of the Columns table matches the selected worksheet
in the Tables table. It is a master-detail view.

Source column – the number and label of the Excel column within the selected worksheet. In case
the Excel worksheet has no header row and the Header checkbox is not ticked in the Tables column,
SQL Assistant will use alphabetic column names, for example, A, B, C, D

 Tip: You can use the checkbox to the left of the Source column to select which worksheet
columns to import and which to skip.

Data Type column – this informational column indicates column data type in Excel file based on SQL
Assistant's analysis of the worksheet data.

Column Name column – the names in this column reference columns in the selected target table. In
case the selected worksheet is mapped to a non-existing table, you would need to enter new column
names or use the suggested names. In case the selected worksheet is mapped to an existing table, a
drop-down list will appear when you click the Column Name cell and which you can use to map
worksheet column to an existing table columns.

Column Type column – the data types in this column reference data types of the matching columns in
the selected target table. In case the selected worksheet is mapped to a non-existing table, you would
need to enter the required data type or use the suggested data type. In case the selected worksheet is
mapped to an existing table, the values in the Column Type cannot be changed manually; they are
populated with the data types of the mapped table column picked in the Column Name cells.

The Options tab provides additional data processing, error handling, and logging options.

Save Log File -– If this option is checked, SQL Assistant writes processing status messages to the log
file specified in the Log property.

Log – The name of the output log file. This name must be specified if Save Log Option is checked.

Commit Inserted Data After n Rows – This option is effective with database connections that require

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -230-

explicit commits for the inserted data. The option value controls batch update size. Frequent commits lead
to small batches which can potentially affect the data import process performance. In comparison, large
batches can potentially cause large database transactions which in turn require more space in database
transaction logs and rollback segments.

This option has no impact on database connections with automatic commits after each change. Note that
by default, SQL Server, Sybase ASE, Sybase ASA, and MySQL connections have automatic commit
enabled, while Oracle, DB2, and PostgreSQL connections do not.

If this option is not checked, SQL Assistant does not generate COMMIT statements, during the
processing.

Stop Importing Data After – This option controls what SQL Assistant should do in case an error occurs
during the data generation process. The available choices are:

 Any error – if any kind of error occurs, the data import project run stops immediately.

 All rows of a table failed – if data import fails for one of the tables in the import
project, and not a single row could be inserted successfully, the data import project run
stops, otherwise it continues with the next table in the project.
Warning: When this option is selected, SQL Assistant attempts to import all available
rows, and it reports an error for every failed row.

 Stop processing table on error – if data import fails for a row for one of the tables in
the import project, stop processing that table and continue with the next one. This
option enables you to skip tables that cannot be loaded correctly, and do not attempt
to load them partially.

If Stop Importing Data After option is not checked, SQL Assistant ignores all errors and continues
running the process after an error.

Disable Triggers – This option instructs SQL Assistant to disable triggers on the destination tables before
the import process starts and then enable them after completion. This option can greatly improve data
import performance for tables with triggers. However, if triggers carry on any business logic such as
cascading table updates of automatic data corrections that will not happen for the imported data rows.
This option has no effect on tables without triggers.

Disable Constraints – This option instructs SQL Assistant to disable foreign key constraints on the
destination tables before the import process starts and then enable them after completion. This option can
greatly improve data import performance for tables with referential constraints. However, it may allow
unreferenced data to be inserted into the destination tables. This option has no effect on tables without
foreign key constraints.

Date Format – Date value format understood by your database. It is very important that you select correct
date format for your database. An incorrect date format may lead to invalid data inserted into the
database.

 Tip: Note that the date format is used for loading the data into database tables. SQL Assistant uses it
internally for formatting date and date-time values in SQL INSERT commands. This option is not used for
reading Excel files, which is done by Excel and not controlled by SQL Assistant.

Time-Format – Time value format understood by your database. It is very important that you select
correct time format for your database. An incorrect time format may lead to invalid data inserted into the
database.

 Tip: Note that the time format is used for loading the data into database tables. SQL Assistant uses it
internally for formatting date and date-time values in SQL INSERT commands. This option is not used for
reading Excel files, which is done by Excel and not controlled by SQL Assistant.

Decimal-Separator – Decimal-separator symbol understood by your database. It is very important that
you select correct symbol for your database. An incorrect value may lead to invalid data inserted into the
database.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -231-

 Tip: Note that the symbol is used for loading the data into database tables. SQL Assistant uses it
internally for formatting decimal values in SQL INSERT commands. The option is not used for reading
Excel files, which is done by Excel and not controlled by SQL Assistant.

See Handling Date and Time Values topic in CHAPTER 13, Scripting, Exporting, and Importing Data, for
details on supported date and time value format masks.

To preview the data to be imported you can use the Preview... button. This will open the selected file in Microsoft
Excel.

To open a different file for data import use the Open... button. This will display the standard File Open dialog you
can use to select a different source data file.

After you are done with table and table column mappings, click the Import button to start the import process.

Importing Data from Apache Parquet Files

To import data from Apache Parquet files (PARQUET):

1. Right-click in the target editor and in the context menu choose SQL Assistant menu branch then
expand Import / Export Data menu branch and select Import CSV, Excel, Other Files… … menu
command. Alternatively you can invoke the same command from SQL Assistant's system tray icon
right-click menu. The Import Data project wizard dialog will appear. Click the Next button. The
standard system Open File dialog will appear on the screen.

2. Browse and select one or more Parquet files.

3. Wait for a few seconds while SQL Assistant to read file headers.

4. In the Tables table map the selected files to new or existing database tables.

5. In the Tables table click selected a file in the list and in the Columns table choose columns to import.
Map file columns to database columns and if necessary adjust their data types.

6. Repeat step 5 for other files. When done with the table and column mapping, proceed to the next step.

7. To start the data import immediately, click the Import button. To postpone the load for later
processing or manual execution, click the Save Script button to generate SQL script with the required
INSERT and other statements.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -232-

Importing Tables, Schemas, and Databases from XML and
JSON Files

Overview

XML/JSON Import utility can be used for importing data from hierarchical XML and/or JSON files. The
XML/JSON data can be produced by the Export feature described in Exporting Data to XML and JSON Files
topic, as well as by other applications. The data import can be run immediately or scheduled to run later using
SQL Assistant's command line utilities.

The utility provides simple to use graphical interface for mapping XML schema elements to database tables and
data. The data can be loaded into existing tables or new tables that will be created dynamically if they do not
yet exist in the database.

 Notes:

 The amount of work required to map the data greatly depends on how closely the data in input XML
file matches your database schema and tables.

 In cases the data needs to go into existing data tables but the structure of XML file cannot be mapped
to the existing database schema, you would need to load that data into intermediate staging tables
and then write and execute SQL code to copy the loaded data from staging tables to data tables
applying the necessary data transformations as required.

Importing XML Data Schema

Before you can load data from an XML file, you need to map XML file structure to tables and columns in your
database. This can be done graphically using the Import XML data utility which allows mapping XML nodes to
tables in your database, choosing which XML elements to import and which not, mapping referential constrains
and data types.

We will use the following sample XML file to demonstrate the data mapping process.

<?xml version="1.0" encoding="utf-8"?>
<Root>
 <Customers>
 <Customer CustomerID="GREAL">
 <CompanyName>Great Lakes Food Market</CompanyName>
 <ContactName>Howard Snyder</ContactName>
 <ContactTitle>Marketing Manager</ContactTitle>
 <Phone>(503) 555-7555</Phone>
 <FullAddress>
 <Address>2732 Baker Blvd.</Address>
 <City>Eugene</City>
 <Region>OR</Region>
 <PostalCode>97403</PostalCode>
 <Country>USA</Country>
 </FullAddress>
 </Customer>
 <Customer CustomerID="HUNGC">
 <CompanyName>Hungry Coyote Import Store</CompanyName>
 <ContactName>Yoshi Latimer</ContactName>
 <ContactTitle>Sales Representative</ContactTitle>
 <Phone>(503) 555-6874</Phone>
 <Fax>(503) 555-2376</Fax>
 <FullAddress>
 <Address>City Center Plaza 516 Main St.</Address>
 <City>Elgin</City>
 <Region>OR</Region>
 <PostalCode>97827</PostalCode>

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -233-

 <Country>USA</Country>
 </FullAddress>
 </Customer>
 </Customers>
 <Orders>
 <Order>
 <CustomerID>GREAL</CustomerID>
 <EmployeeID>6</EmployeeID>
 <OrderDate>1997-05-06T00:00:00</OrderDate>
 <RequiredDate>1997-05-20T00:00:00</RequiredDate>
 <ShipInfo ShippedDate="1997-05-09T00:00:00">
 <ShipVia>2</ShipVia>
 <Freight>3.35</Freight>
 <ShipName>Great Lakes Food Market</ShipName>
 <ShipAddress>2732 Baker Blvd.</ShipAddress>
 <ShipCity>Eugene</ShipCity>
 <ShipRegion>OR</ShipRegion>
 <ShipPostalCode>97403</ShipPostalCode>
 <ShipCountry>USA</ShipCountry>
 </ShipInfo>
 </Order>
 <Order>
 <CustomerID>GREAL</CustomerID>
 <EmployeeID>8</EmployeeID>
 <OrderDate>1997-07-04T00:00:00</OrderDate>
 <RequiredDate>1997-08-01T00:00:00</RequiredDate>
 <ShipInfo ShippedDate="1997-07-14T00:00:00">
 <ShipVia>2</ShipVia>
 <Freight>4.42</Freight>
 <ShipName>Great Lakes Food Market</ShipName>
 <ShipAddress>2732 Baker Blvd.</ShipAddress>
 <ShipCity>Eugene</ShipCity>
 <ShipRegion>OR</ShipRegion>
 <ShipPostalCode>97403</ShipPostalCode>
 <ShipCountry>USA</ShipCountry>
 </ShipInfo>
 </Order>
 <Order>
 <CustomerID>HUNGC</CustomerID>
 <EmployeeID>4</EmployeeID>
 <OrderDate>1997-07-16T00:00:00</OrderDate>
 <RequiredDate>1997-08-13T00:00:00</RequiredDate>
 <ShipInfo ShippedDate="1997-07-21T00:00:00">
 <ShipVia>1</ShipVia>
 <Freight>45.13</Freight>
 <ShipName>Hungry Coyote Import Store</ShipName>
 <ShipAddress>City Center Plaza 516 Main St.</ShipAddress>
 <ShipCity>Elgin</ShipCity>
 <ShipRegion>OR</ShipRegion>
 <ShipPostalCode>97827</ShipPostalCode>
 <ShipCountry>USA</ShipCountry>
 </ShipInfo>
 </Order>
 </Orders>
</Root>

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -234-

Here are the steps:

1. In the target editor open SQL Assistant menu or use the right-click menu for SQL Assistant's system
tray icon. Navigate to SQL Assistant Import / Export Data menu branch and then select Import XML
Data Schema menu. The Import XML Data dialog will appear.

2. In the File field enter input file name or you can use the Browse […] button next to that field to select
the input file.

3. To map the Customer data, drag-and-drop the "Customer' node from the XML Structure tree to the

Tables list, you can also select the node and click the Plus Sign icon in the right top corner (to the
right of the Tables list) to add "Customer" table to the list. Note that the appearance of the Structure
tree will change and the mapping of the "Customer" node and its elements will be displayed as tables
and columns. SQL Assistant will analyze the data and detect columns data types.

4. Optional step: Click "Customer" value in the Table Name column in the Tables list. The table cell will
become editable. You can now enter fully qualified table name in the database to map that XML data
to an existing database table, or you can use the Browse button displayed in the focused cell […] to
graphically browse and select the required target table.

 Note If you do not map the selected node to an existing table, the import is run, SQL Assistant will
automatically create new table with the specified name. If the table name does not contain schema
and database name, it will be created in the current schema derived from the database connection
context.

5. Use the Columns list to map XML elements of the selected node and table to actual columns in the
database table.

 Notes:
 Element names in the XML can different from column names in the table.

 Columns that cannot be mapped should be deleted from the Columns list.

 In case the mapping is for a new table to be created by the import utility, you can click on column
names in the Columns list and rename them as required. You can also change their data types if
that is required.

 for Order need contains Customers and Orders nodes which are at the same level. To maintain
the internal referential integrity, you would need to add CustomerID

6. Repeat step 3, 4, and 5 for FullAddress, Order, and ShipInfo nodes.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -235-

7. Note that in certain cases you may need to add additional columns to Columns list. For example, in
the sample XML file described here the Order node does not contain any unique identifier. To correctly
link ShippingInfo data to Orders, you would to add "OrderID" column to the Order table column list and
set the value of Key column cell to "Primary." You would also need to add "OrderID" column to
ShippingInfo column list and set the value of Key column cell to "Foreign,"

8. Use the Master Table column in the Tables list to set the relations between child and parent tables.
The resulting settings should look similar to what is shown on the next screenshot.

9. In case the data is being imported into existing tables the Action column in the Tables list is used to
instruct the import utility what to do with the existing data. Use the Append action to append data to
the table, Truncate – to truncate it before loading new data, or Skip not Empty - to skip that table if it is
not empty.

10. Optional step - on the Options tab choose data formatting, error handling, and logging options. Refer
to XML Import/Export Options topic in this chapter for specific details.

11. Click the Save icon to save the project. You will be prompted for the project file name.

12. If you wish to run the import immediately, click the Import button.

If you wish to schedule a recurring import process, or a later run, use the Schedule button, or use the
sacmd command line utility provided with SQL Assistant. The command line for XML Export is
sacmd xmlimp:"<project-file>;<data-file>" conn:"connection-name>"
In the command above replace <project-file> with the full file path name of the project settings file,
replace <data-file> with the full path and name of the XML input file, replace <connection-name> with
the name of preconfigured database connection saved in SQL Assistant options.

You can also use the Save Script button to generate SQL script with INSERT statements. However,
please be aware that the content of the generated SQL script will be based on the state of the
database relative to the point in time the script is generated, not the point in time it is run. The content
of database tables may differ and the script results may vary depending on the database state.

 Tip: Use Open Project icon to load previously saved XML Export and XML Import projects into the
dialog.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -236-

XML and JSON Import/Export Options

The Options tab on the XML Import and Export dialogs provides the following data processing, error handling,
and logging options.

Save Log File -– If this option is checked, SQL Assistant writes processing status messages to the log
file specified in the Log property.

Log – The name of the output log file. This name must be specified if Save Log Option is checked.

Commit Inserted Data After n Rows – This option is effective with database connections that require
explicit commits for the inserted data. The option value controls batch update size. Frequent commits lead
to small batches which can potentially affect the data import process performance. In comparison, large
batches can potentially cause large database transactions which in turn require more space in database
transaction logs and rollback segments.

This option has no impact on database connections with automatic commits after each change. Note that
by default, SQL Server, Sybase ASE, Sybase ASA, and MySQL connections have automatic commit
enabled, while Oracle, DB2, and PostgreSQL connections do not.

If this option is not checked, SQL Assistant does not generate COMMIT statements, during the
processing.

Stop Processing Data After – This option controls what SQL Assistant should do in case an error occurs
during the data import process. The available choices are:

 Any error – if any kind of error occurs, the data import project run stops immediately.

 All rows of a table failed – if data import fails for a table, and not a single row could be
inserted successfully, the data import project run stops, otherwise it continues with the next
table in the project.

If this option is not checked, SQL Assistant ignores all errors and continues running the process after an
error.

Create Tables – This option is available for data import operations only. The available choices are:

 Never – Do not check for existence of target tables and do not execute CREATE TABLE
commands for target tables. If a target table does not exist, the data import operations for that
table fail. This option ensures that new tables are not created during the data import
operations.

 Always – Do not check for existence of target tables and always execute CREATE TABLE
commands. If a target table already exists, the CREATE TABLE command for that table fails,
but the data import operations continue running. This option ensures that all target tables are
created during the data import operations.

 If not Exists – Check for existence of target tables and execute CREATE TABLE commands
for tables that do not exist. If a target table already exists, the CREATE TABLE command for
that table fails, but the data import operations continue running. This option ensures that new
tables are not created during the data import operations.

 Important Notes: If not Exists option can be used with SQL Server, Sybase ASE,
Sybase ASA, MySQL, Oracle, and PostgreSQL version 9.1 or later database servers.
It is not supported for DB2 (all versions), Microsoft Access, and PostgreSQL version before
9.1.

Date Format – Date value format understood by your database. It is very important that you select correct
date format for your database. An incorrect date format may lead to invalid data inserted into the

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -237-

database.

 Tip: Note that the date format is used for loading the data into database tables. SQL Assistant uses it
internally for formatting date and date-time values in SQL INSERT commands.

Time-Format – Time value format understood by your database. It is very important that you select
correct time format for your database. An incorrect time format may lead to invalid data inserted into the
database.

 Tip: Note that the time format is used for loading the data into database tables. SQL Assistant uses it
internally for formatting date and date-time values in SQL INSERT commands.

Decimal-Separator – Decimal-separator symbol understood by your database. It is very important that
you select correct symbol for your database. An incorrect value may lead to invalid data inserted into the
database.

 Tip: Note that the symbol is used for loading the data into database tables. SQL Assistant uses it
internally for formatting decimal values in SQL INSERT commands.

See Handling Date and Time Values topic in CHAPTER 13, Scripting, Exporting, and Importing Data, for details
on supported date and time value format masks.

Bulk Loading Data into Schemas and Databases

Overview

The Data Factory utility provides simple and intuitive ETL-like interface for bulk loading entire schemas and
databases, right from your favorite database development tool, making data integration easier and faster. It
does not require installations of additional ETL servers and other middleware, it runs directly on your computer.
The Data Factory is an automation utility that automates and orchestrates data processing tools supported by
SQL Assistant

The Data Factory enables you to load data into database tables using several different methods listed below::

 Copying data from other databases and database servers - see Using Data Transfer Utility topic for
specific details on the supported data formats and options.

 Copying data from flat file – see Importing Data from Excel and Flat Files topic for more details on the
supported file formats and options.

 Using SQL scripting to create new data sets using from other schemas and tables – see CHAPTER
14, Executing SQL Scripts for additional details.

 Using Test Data Generator to create data samples for application development and testing – see
CHAPTER 18, Generating Test Data for additional details.

The Data Factory supports automatic chained execution of Data Sanitizer projects, which can be used in
situations when production data is loaded into test and development environments and it needs to be sanitized
for non production use.. For more details about data sanitization and obfuscation see CHAPTER 40, Sanitizing
and Obfuscating Database Data.

To launch the Data Factory Wizard,

1. In your SQL Editor select SQL Assistant's menu, and then select Import/Export Data -> Data
Factory... menu. The Data Factory Project Wizard dialog will appear.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -238-

2. Choose New Project - Guide me Step by Step option and follow the instructions.

Copying Data Between Database Servers

Overview

Several methods are supported by SQL Assistant for copying data between databases and database servers.
All supported methods enable you to copy data between database servers of the same or different types. Each
method has its own unique advantages. Different methods can be used in different situations. The following
topics describe the supported methods and their differences.

Method 1 – Using Data Transfer Utility

There are several advantages of using the Data Transfer Utility method over other methods described in this
chapter.

 The Data Transfer utility can automatically create destination tables if they do not already exist.

 The Data Transfer project can be configured to clear destination tables before the new data inserted,
or SIMPLY append the new data. It can also be configured to skip all tables in the destination
database if they already exist and non-empty.

 The Data Transfer project can be configured to copy entire tables or small data samples only.

 This method allows copying data from selective columns only.

 This method allows copying data to system generated columns such as IDENTY, SERIAL,
AUTO_INCEREMENT and preserving the original values from the data source. This is very important
when copying data from / to tables with existing referential integrity constraints.

 For heterogeneous data transfers between different types of database servers, the Data Transfer
utility automatically maps source data types to compatible target data types and performs required
data conversions during the data transfer process.

 Both tables and views can be selected as the data sources and the data destination objects.

 Graphical and command line interfaces are available for running the data transfer.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -239-

To copy data into a different database using the Data Transfer utility:

1. In your SQL Editor select SQL Assistant's menu, and then select Import/Export Data -> Transfer
Data... menu. The Transfer Data dialog will appear.

2. In the Connections box, in the Source drop-down list select the data source database server
connection. The source connection must be either a current connection in your SQL editor or one of
the previously configured and saved connection profiles. In the Destination drop-down list select the
destination database server connection. The destination connection must be either a current
connection in your SQL editor or one of the previously configured and saved connection profiles. In

the Schema control click the icon. The schema selection dialog will appear. Select the destination
database and schema for the data transfer operations.

Note that the definitions of database connections available for use with the Data Transfer utility are
shared with connections associated with target editors. Just like other database connections, they can
be managed using SQL Assistant's main Options dialog. See the Managing Database Connections
topic in CHAPTER 48 for more information.

3. In the Project box click the green plus sign icon on the toolbar displayed to the right of the Tables
grid. The Select Objects dialog will appear. Select data sources tables and/or views whose data you
want to copy to the other database.

4. By default the Tables grid is populated with destination table mappings having destination table
names the same as in the source database. If you want to change the mappings, click twice the
destination table name. The grid cell with the table name switches to edit mode. You can now edit the
table name, or you can use the browse [...] button available at the right edge of the field to graphically
browse the destination database and select an existing table or view.

 Note: If you pick a view for the data destination, make sure that view is updatable.

Use the Arrow Up and Down icons on the toolbar displayed to the right of the Tables grid to
arrange the order of tables in the list. The order is important if you need to populate existing tables
with referential constraints. Tables with primary key records should be populated before tables with
foreign key records, for example, Sales Orders table should be listed above the Order Details table.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -240-

5. If you only want to copy only a subset of rows from the source tables, edit values in the Rows to
Transfer column as required. The values in the Rows to Transfer column must be less or equal the
values in the Rows Available column.

 Tip: To quickly set values in the Rows to Transfer for all tables to the same value, use the Data-
transfer Scope combo control available at the bottom of the Transfer Data dialog. The Data-transfer
Scope is populated with several common values. You can enter a custom numeric value if required.
Note that the actual value set is a lesser of the selected data sample or the value in the Rows
Available column.

6. Select the action for the data transfer.

 Select Truncate action for destination tables you want to clear before the new data is
inserted.

 Change this action to Drop and Create for tables which you want to recreate. This action
should be used for tables having different structure or incompatible data types.

 Change this action to Append for tables in which you want to preserve the existing data
rows.

 To ignore already populated tables, select Skip non Empty action.

7. To verify and update mappings for individual columns, click each table in the Tables list and update
destination columns and data types as required. To edit a particular cell in the Columns grid, double-
click that cell to switch to the edit mode. To add and delete columns, use the green plus sign icon and
the red X icons on the toolbar displayed to the right of the Columns grid. The order of columns in the
column mapping is not important for existing destination tables. However, if the selected destination
table does not exist, it will be created having columns ordered as they are specified in the column
mapping.

 Important Note: Selected data types of the destination columns must be compatible with
the destination database type. If you are copying data between different database types, make
sure you enter correct data types for the destination columns or the data transfer operation
would fail. Entering correct data types in the destination table is very important for both new
and existing tables.

 Note: The Data Transfer utility automatically maps source data types to compatible destination
data types taking into account the original data type, column length, scale, and precision. In certain
cases, if the source data type length or precision are not supported by the destination database type, it
may pick a more generic data type with more capacity. For example, if the source data type in your
SQL Server database is VARCHAR(5000) and the target database type is Oracle, which is supporting
only up to 4000 characters in VARCHAR2 data type columns, then CLOB data type is used for the
destination column. For all data types that do not have a compatible equivalent in the destination
database, the Data Transfer utility uses by default VARCHAR(255) data type for the target column.
For example, when copying values from an ARRAY type column in PostgreSQL database to SQL
Server, it will attempt to convert values in the array column to a value-delimited string and save the
resulting string in the destination column. You should always carefully review the Columns mapping
before saving the project and running the process.

8. Switch to the Options tab and complete other data transfer project settings as required. The
supported options and their usage are described in the following section.

9. After you complete table and column mapping and complete other options it is recommended that you
click the Save icon on the toolbar displayed to the right of the Tables grid to save the data transfer
project settings.

10. Click the Start button to run the data transfer project immediately or click the Schedule... button to
schedule a later run. You can also click the Save Script... button to have the Data Transfer utility
generate a SQL script based on your selection, which you can review and execute later.

The Options tab provides additional data processing, error handling, and logging options.

Save Log File -– If this option is checked, SQL Assistant writes processing status messages to the log
file specified in the Log property.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -241-

Log – The name of the output log file. This name must be specified if Save Log Option is checked.

Commit Inserted Data After n Rows – This option is effective with database connections that require
explicit commits for the inserted data. The option value controls batch update size. Frequent commits lead
to small batches which can potentially affect the data import process performance. In comparison, large
batches can potentially cause large database transactions which in turn require more space in database
transaction logs and rollback segments.

This option has no impact on database connections with automatic commits after each change. Note that
by default, SQL Server, Sybase ASE, Sybase ASA, and MySQL connections have automatic commit
enabled, while Oracle, DB2, and PostgreSQL connections do not.

If this option is not checked, SQL Assistant does not generate COMMIT statements, during the
processing.

Stop Processing Data After – This option controls what SQL Assistant should do in case an error occurs
during the data transfer process. The available choices are:

 Any error – if any kind of error occurs, the data transfer project run stops immediately.

 All rows of a table failed – if data transfer fails for a table, and not a single row could
be inserted successfully, the data transfer project run stops, otherwise it continues with
the next table in the project.
Warning: When this option is selected, SQL Assistant attempts to copy all available
rows, and it reports an error for every failed row.

 Stop processing table on error – if data transfer fails for a row for one of the tables
in the data transfer project, stop processing that table and continue with the next one.
This option enables you to skip tables that cannot be loaded correctly, and do not
attempt to load them partially.

If this option is not checked, SQL Assistant ignores all errors and continues running the process after an
error.

Disable Triggers – This option instructs SQL Assistant to disable triggers on the destination tables before
the data transfer process starts and then enable them after completion. This option can greatly improve
data transfer performance for tables with triggers. However, if triggers carry on any business logic such as
cascading table updates of automatic data corrections that will not happen for the copied data rows. This
option has no effect on tables without triggers.

Disable Constraints – This option instructs SQL Assistant to disable foreign key constraints on the
destination tables before the data transfer process starts and then enable them after completion. This
option can greatly improve data transfer performance for tables with referential constraints. However, it
may allow unreferenced data to be inserted into the destination tables. This option has no effect on tables
without foreign key constraints.

Date Format – Date value format understood by your database. It is very important that you select correct
date format for your database. An incorrect date format may lead to invalid data inserted into the
database.

 Tip: Note that the date format is used for loading the data into database tables. SQL Assistant uses it
internally for formatting date and date-time values in SQL INSERT commands.

Time-Format – Time value format understood by your database. It is very important that you select
correct time format for your database. An incorrect time format may lead to invalid data inserted into the
database.

 Tip: Note that the time format is used for loading the data into database tables. SQL Assistant uses it
internally for formatting date and date-time values in SQL INSERT commands.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -242-

Decimal-Separator – Decimal-separator symbol understood by your database. It is very important that
you select correct symbol for your database. An incorrect value may lead to invalid data inserted into the
database.

 Tip: Note that the symbol is used for loading the data into database tables. SQL Assistant uses it
internally for formatting decimal values in SQL INSERT commands.

See Handling Date and Time Values topic in CHAPTER 13, Scripting, Exporting, and Importing Data, for
details on supported date and time value format masks.

Method 2 – Using Data Factory

To copy data between different servers, database, and files you can use the Data Factory utility. Conceptually
it's similar to the Data Transfer utility. However it enables you to transfer data from multiple data sources in a
single project. Data Factory provides more advanced ETL capabilities for transferring data across different data
sources and destinations. To use the Data Factory

1. In your SQL Editor select SQL Assistant's menu, and then select Import/Export Data -> Data
Factory... menu. The Data Factory Project Wizard dialog will appear.

2. Choose New Project - Guide me Step by Step option and follow the instructions.

Method 3 – Using Data Scripting

To copy data into a different database using SQL scripts:

1. Connect your SQL editor to the data source database server.

2. Script out table data using the method described in Scripting out Table Data topic in this chapter.

3. Connect your SQL editor to the target database server.

4. Open the SQL script generated in step 2 in your SQL editor and execute it. You can use either your
SQL editor's native functions for SQL code execution, if such are supported by the editor, or you can
use the SQL Assistant provided code execution functions. See CHAPTER 14, Executing SQL Scripts
for more information on executing SQL scripts.

 Note: This method requires presence of data destination tables in the destination database. The generated
scripts contain INSERT, COMMIT, and "print progress" commands only.

Method 3 – Using Data Export and Import Utilities

To copy table data into a different database using XML or JSON files:

1. Connect your SQL editor to the data source database server.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -243-

2. Script out table data using the method described in the Exporting Tables, Schemas, and
Databases to XML and JSON Files topic earlier in this chapter.

3. Connect your SQL editor to the target database server.

4. Load the previously generated XML or JSON files into the target database.

 Note: This method does NOT require presence of destination tables in the destination database. The
destination database may or may not have the specified tables. If the tables already exist, SQL Assistant will
attempt to load them from XML/JSON data. If the tables do not exist, and you used the "Flat export" mode to
generate export files, SQL Assistant will create them after analyzing data in the exported XML files. However,
columns in the created tables may have different data types and data type precisions as compared to the
source table columns. Also important to note that the created tables will not feature the same indexes and
referential constraints as the original tables

Loading Data Concurrently into Multiple Database Servers

Method 1 – Using the ETL Orchestrator

The ETL Orchestrator support running parallel operations and can be used for concurrently loading data into
multiple server. That utility is described in detail in CHAPTER 46, Automating ETL Operations and Other
Processes

Method 2 – Using Scripted Datasets

You can use scripted data to load it into other database servers. The required procedure is the same as the
procedure described in the topic Method 2 – Using Data Scripting, except that for the code execution step you
would use SQL Assistant's multi-server parallel script execution utility. That utility is described in detail in
CHAPTER 15, Executing SQL Scripts on Multiple Servers.

Method 3 – Using Command Line Interface

You can use command line interface for the Data Transfer utility to run concurrently multiple data transfer
operations. First create a data transfer project as described in the topic Method 1 – Using Data Transfer Utility.
Open as many command windows as many concurrent loads you want to run. In each command window
execute sacmd.exe utility with appropriate data source and data destination connection parameters.

Scheduling Automated Data Import, Export, and Transfer
Operations

Starting with SQL Assistant version 12.2 use of the ETL Orchestrator utility is recommended method for
automating repetitive ETL operations. See CHAPTER 46, Automating ETL Operations and Other Processes
for detailed information about the ETL Orchestrator utility.

 CHAPTER 13, Scripting, Exporting, and Importing Data

 -244-

The older methods are supported as well, however they provide less options and less flexible.

The SQL Assistant's command line sacmd.exe utility can be used to run unattended SQL scripts, data and XML
import and export operations, and data transfer operations. If you have previously scripted the data required for
data import to a SQL script file, you can use Windows Task Scheduler to schedule the following command to
execute the script.

sacmd ex:"<sql-file>" conn:"connection-name>"

In the command above replace <sql-file> with fully qualified file name for the script you previously generated
using the Data Scripting feature, replace <connection-name> with the name of preconfigured database
connection saved in SQL Assistant options.

See Scripting out Table Data topic for more details on scripting table and view data

If you have previously exported data to XML files and saved the export project settings, you can use Windows
Task Scheduler to schedule the following command following command to run the XML import.

sacmd xmlimp:"<project-file>;<data-file>" conn:"connection-name>"

In the command above replace <project-file> with fully qualified file name for the xml import project you
previously generated using the XML Import feature, replace <data-file> with the full path and name of the XML
data file, replace <connection-name> with the name of preconfigured database connection saved in SQL
Assistant options.

See Exporting Data to XML and JSON Files topic for more details on exporting data to XML and JSON files.

See Importing Tables, Schemas, and Databases from XML Files topic for more details on importing data from
XML files.

If you have previously created a data transfer project, you can use Windows Task Scheduler to schedule the
following command following command to run the XML import.

sacmd td:"<project-file> srcconn:"connection-name>" dstconn:"connection-name>"

In the command above replace <project-file> with fully qualified file name for the data transfer project you
previously created using the Data Transfer utility, replace first <connection-name> with the name of
preconfigured source database connection saved in SQL Assistant options, replace first <connection-name>
with the name of preconfigured destination database connection saved in SQL Assistant options

See Method 1 – Using Data Transfer Utility topic for more details on creating data transfer projects.

See your Windows documentation for instructions on how to use Windows Task Scheduler utility.

 Tip: For your convenience the Import and Export dialogs, as well as the Data Transfer and the Data
Factory dialogs provide the Schedule button that allows you to schedule jobs using graphical tools. The
Schedule button opens the Schedule dialog. The options and controls are the same for all scheduled
operations. See CHAPTER 16, Scheduling SQL Script Execution chapter for more information.

Managing Scheduled Tasks

Managing scheduled data import / export tasks is no different than managing other scheduled tasks.

See Managing Scheduled Tasks topic in CHAPTER 16, Scheduling SQL Script Execution chapter for more
information

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -245-

CHAPTER 14, Executing SQL Scripts

Overview

SQL Assistant's code execution facility provides several important features that may not be present in the target
editor. Examples include the following:

 Execution of SQL scripts on multiple servers, even supporting concurrent execution of scripts on
database servers of different types

 Display of result-sets returned by the database engine during code execution

 Support for batch SQL scripts and multiple result-sets returned from a single batch

 Automatic stripping of comments for database servers that do not support comments in individual SQL
commands

 Display of code execution timing statistics

 Separate display of code execution statistics and result-sets

 Display of result-sets on separate tab pages that can be retained for later use. In other words, result
windows do not need to be closed or refreshed after each code execution.

 Ability to export returned data to external files, including Excel

 Ability to retain returned results on screen or in files

 Database code execution in target editors like Notepad, Notepad++, UltraEdit that do not support
database connectivity or code execution functions

SQL Assistant supports batch code execution. It automatically parses the SQL script submitted for execution
and breaks it into individual SQL batches or SQL statements, depending on the type of database it is
connected to.

Handling of Batch Delimiters

SQL Assistant is capable of executing individual SQL statements as well as batch SQL scripts consisting of
multiple SQL statements.

For T-SQL compatible databases like SQL Server, Sybase ASA, and Sybase ASE; SQL Assistant uses the GO
keyword as the default batch delimiter. The GO delimiter must appear on a new line. If GO delimiters are not
found in the script, SQL Assistant executes the entire script as a single batch. Note that use of the "go" is not
case sensitive. You can also specify a custom batch delimiter in SQL Assistant Options.

For Oracle, SQL Assistant uses forward slash symbol as the default batch delimiter when it appears as the first
character on a new line. You can also define a custom batch delimiter in SQL Assistant Options.

For MySQL, the batch delimiter is typically specified directly in the SQL code using the DELIMITER directive. If
the directive is not found in the script, SQL Assistant uses the $$$ string as the default batch delimiter. A
different default MySQL batch delimiter can be specified in SQL Assistant options.

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -246-

For DB2, SQL Assistant uses the delimiter specified directly in the SQL code using the --#SET TERMINATOR
directive. . If the directive is not found in the script, SQL Assistant uses the $$$ string as the default batch
delimiter. A different default DB2 batch delimiter can be specified in SQL Assistant options.

 Important Note: Batch script delimiters can be customized in SQL Assistant options. On the DB Options
tab, select the type of SQL Assistance whose options you want to customize then enter the desired batch
delimiter into Batch Delimiter field. Local batch delimiter directives specified directly in the scripts override
default values specified in SQL Assistant options. If you intend to execute only the highlighted portion of a script
in the editor, make sure that all relevant directives are also highlighted with that portion.

Working with the SQL Code Execution Interface

Invoking the SQL Code Execution Function for the Current Connection

As with all other SQL Assistant functions, the SQL Code Execute function can be applied either to the entire
file in the editor or to the highlighted text only. If no text is highlighted, SQL Assistant executes the entire file.

You can use any of the following methods to execute SQL code:

 Use the default Ctrl+ Shift + F9 hot key or a custom hot key if you changed the default key

 Use SQL Assistant's system tray icon menu (see Using System Tray Icon Menu topic for details) and
choose the Target / Execute SQL Code command.

 If the menu integration option is enabled (see Using Context and Top-level Menus topic for details),
use the target editor's context or top-level menus and select the SQL Assistant / Execute SQL Code
command.

The results of the code execution are displayed using one or multiple tab pages in the horizontally docked SQL
Assistant window. Each returned result set is displayed on a separate tab pages. The tab page names begin
with the definition of the result-set query or source table name. Tab pages remain open until you close them.

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -247-

Reading and Understanding Code Execution Output

Messages

Errors and other messages returned by the database server during code execution are written to the
Messages tab page along with SQL Assistant's status messages. Normal database messages are displayed
as dark blue text, error messages as dark red text, and SQL Assistant's status messages as black text.

Line numbers and message type icons on the Messages tab page indicate the type of each message and the
line in the original text where the error occurs. Note that line numbers are absolute and are counted from the
first line in the target editor. If you highlight and execute a block of code in the middle of the script, the report
lines will show the line offset from the beginning of the script, not from the beginning of the highlighted text.

 Tip: By default the Messages tab is reused after each code execution. The previous content is erased and
replaced with the output of the latest execution. If you need to compare results and you want to save the
previous content, rename the already displayed Messages tab to something else. To rename the tab, right-click
the tab page handle, and choose the Rename command in the context menu.

Query Results

In the case where executed code returns one or more result-sets, each result-set returned is displayed as a
separate tab page. The tab page name begins with the definition of the result-set query. The result-set data is
displayed in a grid control whose appearance and behavior are identical to the appearance and behavior of the
grid control used for the Table Data Preview feature.

 Tip: By default the fist 30 characters of the query text are used to label the tab with the query results. To
rename the tab to something else, right-click the tab page handle, and choose the Rename command in the
context menu.

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -248-

Working with Query Results

See CHAPTER 11, Using Table Data Preview, Working with Table Data Preview Interface for specific
instructions on working with the returned query data, editing data, copying and exporting data, and performing
other data related operations.

Enabling and Reading Oracle's DBMS_OUTPUT Output

The DBMS_OUTPUT package is typically used for returning messages and reports from stored program code
such as stored procedures, packages, triggers, etc… SQL Assistant supports polling of the DBMS_OUTPUT
server buffer and printing its messages to the Messages tab page.

To enable or disable DBMS_OUTPUT polling:

1. Open SQL Assistant's Options dialog.

2. Select the DB Options tab.

3. On the left, in the SQL Assistance group of options, select Oracle.

4. On the right, set the DBMS_OUTPUT Polling option to “Yes” to enable polling and printing of
DBMS_OUTPUT messages or set it to “No” to disable it.

To verify that DBMS_OUTPUT output is working, use the SQL Assistant code execution facility to execute any
stored procedure that prints messages to the DBMS_OUTPUT. Check that the printed messages appear on the
Messages tab. For ad-hoc testing without an existing stored procedure, you can try executing a simple SQL
command like the following:

BEGIN
 DBMS_OUTPUT.PUT_LINE('test message');
END;
/

 Important Note: To be able to read and display messages printed to DBMS_OUTPUT, you must have
permissions to execute the DBMS_OUTPUT, DBMS_CONTEXT, and DBMS_SESSION packages.

Scrolling Content

Use the standard scroll bars in the Messages and Result-set windows to scroll the content or use the
keyboard navigation keys and mouse wheel control if such is available.

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -249-

Locating Errors

Another helpful feature of the Messages window is dynamic code highlighting. When you move the mouse
pointer over messages displayed in the Messages window, SQL Assistant automatically highlights referenced
SQL statements in the target editor, if is the statements are visible in the editor window. If referenced SQL
statements are not visible on the screen, click the error message and SQL Assistant will automatically scroll
text in the editor to display the statements on the screen. The cursor is automatically set to the beginning of the
SQL statement.

Resizing Content

To resize the docked window containing output messages and the returned result-sets window, drag the top
edge of the window up or down. Note that when you place mouse pointer over the top edge of the window the
cursor shape changes to resize shape as on the following screenshot.

Make sure the cursor takes the right shape before dragging the window edge.

For instructions on how to resize columns in grid controls see Resizing Content topic in CHAPTER 11, Data
Display and Editing.

Limitations

The maximum size of a text-based or binary column displayed in a Result-set Preview grid is limited to 32KB. If
a column value exceeds this limit, the column text is truncated.

The amount of data that can be retrieved from the database and displayed in the Result-set Preview grid is
limited by the amount of free memory available on your computer at the time of code execution.

Using Code Execution History

Overview

SQL Assistant supports two types of code history. Code entry history is stored in the SQL History Cache. That
cache is used for code entry auto-completion. For more information, see the Using Context-based Suggestions
Based on Historical Coding Patterns topic in CHAPTER 3, Using Code Assistant.

A separate SQL Execution History view is provided for recently executed SQL statements. You can easily
recall SQL statements from the SQL Execution History buffer using the SQL Execution History menu. To
access the SQL Execution History menu in the target editor top level or context menu, select these menu
options:

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -250-

 SQL Assistant Execute / Schedule SQL - > Show SQL History.

This will open the Execution History pane. As you execute code in the editor, that code is added to the SQL
Execution History buffer with some additional informational messages and query execution statistics.

Using the right-click menu in the SQL Execution History pane, you can:

 Rerun the SQL query without reentering SQL query text into the editor

 Copy text of the SQL query to the clipboard

 Copy text of the SQL query to the editor window

 Delete individual SQL statements or all cached SQL statements from SQL Execution History buffer

The SQL History pane lists queries executed using SQL Assistant's code execution facility, typically executed
using SQL Assistant's menus or using Ctrl+Shift+F9 key or whatever you selected for the code execution.

The SQL History pane also lists queries executed in the editor using the editor's code execution facilities; for
example, using the F5 key in SQL Server Management Studio. TheF5 key press is trapped, and code is
collected from the editor's window.

If your editor uses a different key for code execution, you can change the Execute SQL Shortcut option in
SQL Assistant settings to match your editor's key. This option is available in the Options dialog on the Targets
tab, in the Advanced… group of options (note that each registered target has its own Advanced group..

When executing queries, SQL Assistant collects several statistics that are displayed in the SQL History pane
along with the query reference. Not all of these statistics are available when the code executes using the
editor's code execution facility. See the next section for more details.

Filtering SQL Execution History

Several filtering options can be used. To filter historical queries by their text, type the filter criteria in the Filter
box at the top of SQL History pane and then press the Enter key.

To display queries for the current database server the tab is connected to, right-click the SQL History pane and
select Current Server Only menu.

To exclude invalid queries and show only queries that executed successfully, right-click the SQL History pane
and select Successful Queries Only menu.

By default the SQL History pane shows historically executed individual SQL statements and small scripts with
multiple statements having less than 2 Kbytes in the size. When you execute larger scripts, they are saved in

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -251-

the history too, but not shown in the SQL History pane. The make SQL History show all saved history, right-
click the SQL History pane and select Include Scripts menu.

By default the SQL History pane shows historically executed queries for the type of the database server the tab
is connected too. If you work with heterogeneous environments and multiple types of database servers and you
want to reuse some of queries, right-click the SQL History pane and unselect Current Database Type menu to
show the history for all databases.

SQL History Retention Period and Other Options

SQL History feature provides a number of configurable options you can use to control and customize its
behavior. You can find them in the main Options dialog,

1. In the dialog select the Targets tab.

2. Select the Common section on the left.

3. On the right click the [+] icon in front of the History group of options to expand the group.

4. Customize the options to your liking. For example, if you experience application slowness when using
the SQL History feature, you can reduce the amount of data cached and change the history retention
period from the default 30 days to 5 days, or make SQL Assistant save the history only when you
choose so and not always automatically.

5. Click the Apply button to save your changes in the Options dialog.

Query Execution Statistics

For your convenience several SQL query statistics are displayed in the SQL history pane.

The first line of each row displays the query start time, query execution duration shown in brackets, and then
query size in number of lines. The duration is displayed only for queries executed using SQL Assistant's code
execution facility.

In the second line, you can see query execution status, which could be one of the following:

 Success – this is reported for successfully executed queries.

 Failure – this is reported for queries that resulted in query execution errors.

 Not Executed - this status may be reported in case of a transaction rollback or some similar
operation. It is also returned for queries executed using the target application code execution facility,
since SQL Assistant has no knowledge of code execution status and has no access to the results.

The database icon shown in the right top corner makes it easier for you to find queries for the type of the
database you are currently working with.

Using SQL Preprocessor for Advanced Code Execution

SQL Assistant installation includes SQL Preprocessor plugin providing advanced options for SQL code
execution. SQL preprocessing simplifies coding of long and complex scripts. It allows you

 To specify code execution directives for conditional code execution.

 To reference external SQL files in your SQL scripts.

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -252-

 To define constant values that can be used through a script. For example, you can define them in the
beginning of the script and quickly change the values if there is a need for that.

Preprocessor directives must be entered inside comments and begin with # sign, for example:

--#define __USERNAME__ 'PETER'
/*#define __SOME_TEXT__ 'line1
line2'*/

The following directives are supported

Directive Description

#define
#def

This directive defines new preprocessor variable or macro. Variable name must be a valid
identifier containing alphanumeric characters and underscore symbols only. The value of the
variable is the text following space after the variable name and ending at the logical end
comment line or block. Using block /* */ comments you can define multiline values. The
value of the variable is used in the following part of your SQL script as a substitute for the
preprocessor variable name. For example:
--#define _COUNT_ 5
PRINT 'This will print 5'
PRINT 'And this will print ' + CAST(_COUNT_ AS VARCHAR(3)) + ' too'

IMPORTANT: You should choose variable names carefully to ensure they are very unique
and do not match other unrelated text in the SQL script

For macros its argument names must be added in brackets after macro name, just like a
function name.

One macro or variable could be used inside another macro,

Example:

/*#define IIF(cond, true, false) CASE WHEN cond THEN true ELSE false
END*/
--#define ABS(x) IIF((x) < 0, -(x), x)

Note that #def is simply a short version of #define.

#undefine
#undef

This directive undefines a previously defined variable or macro. After this directive the
matching preprocessor variable names will not be substituted in the code below it.
IMPORTANT: When undefining a macro, only its name without arguments must be
specified, For example:

--#undefine IIF

#include
'filename'

This directive loads the specified file and inserts it into the script prepared in memory for the
execution. The inserted script is also processed by the SQL preprocessor using variables
and macros defined above the #include line. Variables and macros defined in the included
file cover only inserted script and the script that follows the #include directive. For example

--#include 'C:\my scripts\SQLScript1.sql'

#if This directive evaluates specified conditional expression following the directive. If the result
of the expression is TRUE, the SQL code lines between this directive and the next #else,
#elseif or #endif directive are executed. Otherwise they are ignored and not executed.

Boolean operators NOT, AND, OR could be used to define complex expression. Brackets
can be used to group boolean parts. The expression must be a valid boolean expression
containing data value comparison operations and/or predefined boolean functions.

The comparison operations may use the following standard operators:
=, <>, >, <, >=, <=.
Operators = and <> can be used with string and integer operands, while other compare
operators can be used with integer operands only.
Examples:

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -253-

--#define __MY_VAR__ 10
--#if (__MY_VAR __ >= 70) AND (__MY_VAR __ =< 90)
 PRINT 'We are here because __MY_VAR__ is between 70 and 90';
--#else
 PRINT 'Do something else in this case';
--#endif

Supported predefined functions:

1. dbver('version') - checks whether the database server version is greater or equal to
specified value, which must be entered in 2-parts 'major_version.minor_version' format.
For example:
--#if not dbver('10.1')
 PRINT 'CRITICAL: Your database version is less than 10.1.'
 PRINT ' We don't support it. Aborting the script.'
 RETURN
--#endif

2. defined(var_name) - checks whether the specified preprocessor variable is defined.
For example:
--#if defined(__DEBUG__) OR defined(__VERBOSE__)
 PRINT 'If variable DEBUG is defined, printing additional'
 PRINT 'diagnostic message here'
--#endif

#ifdef This directive checks whether the preprocessor variable specified after the directive is
defined. This directive is a short version #if defined(var_name), which can be used when
only a single preprocessor variable needs to be checked. For example:
--#ifdef __DEBUG__
 PRINT 'If variables DEBUG or VERBOSE are defined, let''s print'
 PRINT 'additional diagnostic message'
--#endif

#ifndef This directive is an opposite of #ifdef. It checks whether the preprocessor variable specified
after the directive is not defined.. For example:
--#ifndef DEBUG
 GOTO some_label
--#endif

#elseif This directive is similar to #if. It combines two directives #else and #if. It must logically follow
#if or another #elseif directive.

#else This directive can be used together with #if, #ifdef, #ifndef or #elseif. It begins the SQL code
that would be executed if the conditional expression in the preceding #if, #ifdef, #ifndef or
#elseif condition evaluates to FALSE.

Examples:
--#if (__MY_VAR__ >= 70) AND (__MY_VAR__ =< 90)
 PRINT 'Because __MY_VAR__ value is between 70 and 90…';
--#else
 PRINT 'Do something else in this case';
--#endif

#endif This directive logically closes the preprocessor block started with #if, #ifdef, #ifndef or
#elseif.

 Tip: You can also use graphical SQL Preprocessor interface to manage global preprocessor variables that apply
to all script. The simplest method for opening the plugin's graphical interface:

1. In the editor press Ctrl+Shift+Space to open the Command Selector

2. Type Preprocessor

3. Press Enter key it

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -254-

 Tip: If you use the SQL Preprocessor often, you can customize SQL Assistant's menu as described here, and
add it to the menu.

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -255-

CHAPTER 15, Executing SQL Scripts on
Multiple Servers

Overview

SQL Assistant utilizes the concept of Connection Groups for executing code on multiple database servers. You
can define as many groups as you want, and you can associate the same connection to any number of groups.
Database server connections and groups can be defined directly in the SQL Assistant – Execute Code on
Multiple Servers dialog. All available connections always appear in the special All Connections group. See
the Managing Connection Groups and Connection Settings topic in this chapter for more information.

Note that the definitions of database connections available for use with the Execute on Multiple Servers
function are shared with connections associated with target editors. Just like other database connections, they
can be managed using SQL Assistant's main Options dialog. See the Managing Database Connections topic in
CHAPTER 48 for more information.

Running Scripts on Multiple Servers

As with most other functions, the Execute SQL On… function can be applied either to an entire file in the editor
or to the highlighted text only. If no text is highlighted, SQL Assistant will execute the entire file.

1. You can use either of the following methods to execute SQL code:

 If the menu integration option is enabled (see the Using Context and Top-level Menus topic for
details), you can use the target editor's context or top-level menu. In that menu select the SQL
Assistant / Execute SQL On… command.

 Use SQL Assistant's system tray icon menu (see the Using System Tray Icon Menu topic for details)
and choose Target / Execute SQL On… command.

 Either action will bring up the SQL Assistant – Execute Code on Multiple Servers dialog.

2. In the top-left list box, select the Connection Group you want to use for the code execution.

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -256-

3. In the selected Connection Group, choose database connections for the script execution.

 Tip: To quickly select or deselect all connections, right-click in the “DB Connections” pane and click the
Select All or Unselect All command available in the right-click menu for the connections list.

4. If necessary, you can modify the properties of the selected connections and script execution options.

5. If necessary, edit the script loaded into the embedded SQL editor window.

 Tips:

 The SQL Assistant – Execute Code on Multiple Servers dialog contains a full featured SQL editor
with SQL Intellisense and all other features. For more information on the supported features, see
CHAPTER 3, Code Assistants and SQL Intellisense.

 If you need to edit the code before its execution, resize the dialog by dragging any of its edges to allow
room for the SQL editor box.

6. Optionally, click the Save button to save chosen options and connection settings so they can be reused
later.

7. Click the Execute button to start code execution.

Code Execution and Output Options

The following code execution options can be customized:

Stop Execution on Error – use this option to control error handling. If this option is set to Yes and the Parallel
Execution option is set to No, an error during script execution causes execution to abort immediately.
SQL Assistant stops all further activities related to the script being executed. If the Parallel Execution
option is set to Yes, SQL Assistant makes an attempt to cancel script execution for all other servers
associated with the selected connection group. However the exact reaction to the error may vary. It
depends on the type of performed activities and on certain connection parameters. Certain types of
connections do not support canceling of already running scripts. If the Stop Execution on Error option is
set to No, the error is ignored and the error message is logged. Script execution continues as if no error
occurred.

Show Connect Dialog – use this option to control connection handling. If this option is set when an automatic
connection fails or when the connection settings do not contain the required parameters, such as a
missing or incorrect password, the Connect dialog is displayed so you can correct the problem and
continue running the script. If a connection fails and the Show Connect Dialog option is set to No, this
condition is treated as an error and handled accordingly to the Stop Execution on Error settings.

Parallel Execution – use this option to control parallel script execution. If set to No, SQL Assistant executes
the script sequentially on each database server associated with the selected connection group. If set to
Yes, SQL Assistant establishes parallel connections to each database server associated with the selected
connection group and runs the script concurrently on each server.

Output to the Screen– use this option to control script output. If set to Yes, all error messages and script
output; such as results of SELECT, RAISERROR or PRINT statements; are displayed on the screen in
real time. Note that this option is independent of the Output to Files option, and any combination of
values can be entered for these two options.

Output to Files – use this option to control script output. If set to Single File, all error messages and script
output from each server in the connection group; such as results of SELECT, RAISERROR or PRINT
statements; are written to a single log file. If set to Separate Files, a separate file is written for each server
connection. If set to No, no output is logged to files. Note that this option is independent of the Output to

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -257-

the Screen option, and any combination of values can be selected for these two options.

 Notes: If the Single File option is selected, the name of the log files matches the name of the
selected connection group followed by the execution date-time suffix and ending with .TXT extension. If
the Separate Files option is selected, multiple log files are recorded. Each file name matches the name of
the associated connection followed by the execution date-time suffix and ending with .TXT extension.

Output Directory – use this option to select the output folder for log files. This option is not used if the value of
Output to Files option is set to No.

Managing Connection Groups and Connection Settings

All available connections always appear in the special All Connections group. Additional connection groups
can be setup as needed. A single connection can be associated with any number of different connection
groups. Different groups can be used for different tasks.

To associate existing connections with a connection group:

1. Click the group name you want to use.

2. Select checkboxes next to any connection names you want to add to the group.

3. Click the Save button.

To remove a connection / group association, repeat the same steps and simply deselect the checkbox next to
connection name. Do not delete the connection because it will delete that connection from all groups and also
from SQL Assistant’s general settings.

 Tips:

 Use the connection management icons available in the left-top corner of the Execute Code on
Multiple Servers dialog to create new connection groups or to rename, duplicate or delete existing
connection groups and database connections .

Note that the icon functions are sensitive to the location of the focus in the dialog. For example, if the
focus is set to the left-top list box containing connection group names when you click the X button, the
selected connection group will be deleted entirely, including all associated connections (but not

CHAPTER 15, Executing SQL Scripts on Multiple Servers

 -258-

connection definitions). However, if the focus is set to the left-bottom list box containing connection
names and a connection name is highlighted, clicking the same X button deletes the selected
connection.

 The content of the right side of the dialog is also context sensitive. If a group is selected on the left, it
will display the code execution settings. If a connection name is selected, it will display properties of
the selected connection.

 Use the right-click menus in the connection groups and connection lists to quickly associative / de-
associate multiple connections and to manage selection specific settings.

 The special group All Connections cannot be deleted. This group is used as a placeholder for all
configured connections.

 By default, connection names are constructed using the database server name, user name and
connection method. However, such names can be long and truncated, making it difficult to recognize
different connections. It is recommended that you rename them and give them friendly descriptive
names. To rename a particular connection use the Rename icon or simply double-click the
connection name and type a new name.

To modify connection settings

1. In the top-left window, select the name of the connection you want to modify. The connection
properties will appear on the right side of the dialog.

2. Modify connection type and settings as required. See CHAPTER 2, Connecting to Your Database. for
information on supported connection types and their properties.

3. Click the Save button.

CHAPTER 16, Scheduling SQL Script Execution

 -259-

CHAPTER 16, Scheduling SQL Script Execution

Overview

SQL Assistant's code execution facility supports scheduled automated execution of SQL scripts on your
database servers. You can use this facility to schedule one-time or recurring processes that run in unattended
mode.

Scheduled scripts are stored in files in the %APPDATA%\SQL Assistant\Schedule folder on the system where
SQL Assistant is installed. Also stored in this folder are configuration files that contain database connection
information for scheduled scripts. Each scheduled script and the associated configuration files must be linked to
a Windows scheduler task. The task definition contains references to the SQL Assistant code execution utility,
as well as the names of the SQL script and configuration files.

Scheduled tasks can be managed using the standard Windows Task Scheduler user interface. For example,
you can use the Task Scheduler to modify an existing task or to schedule an additional task after it has been
set up in the SQL Assistant. If you need to modify the task's script, you can edit the associated script file using
any SQL or text editor. If you have forgotten the script name, simply open the task properties and check the
parameters in the task command line. Refer to your Windows documentation for more details.

 Important Notes:

 The SQL Assistant's code execution facility is initiated by the Windows Task Scheduler. It is important
that the Task Scheduler service be running at the time the task is scheduled SQL to run. If the service
is stopped, no tasks will run. Similarly the computer running the Task Scheduler must be powered on
at the time of the scheduled task run. It is good practice to use an “always on” server-based computer
for scheduling and running SQL tasks.

 The database connection specified in a scheduled script can point to any database server that is
accessible over the network.

 A single SQL Script can be associated with multiple database connections pointing to different
database servers. SQL Assistant's code execution facility supports multi-server code execution.

 If a task needs to run on a remote database server, the task must be run under a domain user
account. The account must have sufficient privileges to connect to the server. LocalSystem and other
system accounts confined to the local system cannot be used for running tasks requiring remote
database server connections.

Scheduling SQL Scripts

You can schedule an entire script to run or you can schedule any part of a script. For example, you can
schedule a single SQL statement included within a larger script.

To schedule unattended execution of a SQL script:

1. Start your SQL Editor. Enter a new script or open an existing script.

IMPORTANT: You can schedule the entire script or any part of it. For example, you can schedule a
single SQL statement which is part of a larger script.

2. If you want to schedule only part of the script, highlight the relevant part of the script.

CHAPTER 16, Scheduling SQL Script Execution

 -260-

3. Right-click the text in the editor. From the context menu, choose the SQL Assistant
Execute/Schedule SQL Schedule SQL... menu command. Alternatively, if full menu integration is
enabled, you can select the same command from the top level menu. In either case, the SQL
Assistant – Schedule SQL Script dialog will appear. An example of this dialog is shown in the
screenshot below.

4. Choose one or more database connections for the scheduled task. If you do not see the required
connections, you can add them to the list using the green plus sign icon on the toolbar above the
Connection Groups box.

For more information on how to add, modify, or delete connections, see CHAPTER 15, topic Managing
Connection Groups and Connection Settings.

 Tip: The content on the right side of the SQL Assistant – Schedule SQL Script dialog is context
driven. Scheduled task properties are displayed on the right side of the dialog when the focus is set on
the Connection Groups box. Connection properties are displayed on the right side of the dialog when
the focus is set on a connection name in the Connections box. To return to task properties after
selecting or modifying a connection, click the associated connection group in the Connection Groups
box.

5. Edit scheduled task properties and schedule type as necessary

 Tip: If you cannot find the required schedule type, pick any available type. You can customize the
scheduler properties later using the Windows Task Scheduler user interface. You can also use the
Windows Task Scheduler interface to specify multiple schedules.

See the Scheduled Task Properties topic for details on the supported scheduled task properties and
script execution modes.

6. If necessary, edit the SQL script in the embedded SQL Editor.

 Tips:

 The SQL Assistant – Schedule SQL Scripts dialog contains a full featured SQL editor with
SQL Intellisense and all other features. For more information on the supported features, see
CHAPTER 3, Code Assistants and SQL Intellisense.

 If you need to edit the code, you can resize the dialog by dragging any of its edges to allow
room for the SQL editor box.

7. Click the Schedule button.

CHAPTER 16, Scheduling SQL Script Execution

 -261-

Scheduled Task Properties

General Properties

Task Name – name of the scheduled task. This is a required property. The name should be a friendly
name that briefly describes the purpose of the task. The name cannot contain special characters not
allowed for use in file names.

Windows User – name of the Windows user account under which the task will run. To specify a local user
name, enter the name in .\user format or machine\user format. To specify a domain user name,
enter the user name in domain\user format.

 Important Notes: Do not confuse the Windows user account under which the task will run with
the database connection user account. The Windows user account is used to schedule and start the
task. The database connection user account is used to connect to the database server. The database
connection user is specified in the connection properties of the connection associated with the task. It
may be different from the Windows user account name. However, if the connection properties are set
to use the "Windows Authentication" method, the connection will be attempted within the security
context of the Windows user account specified for the task.

See CHAPTER 15, topic Managing Connection Groups and Connection Settings for more information
on how to add, modify, and delete connections. See CHAPTER 2, Connecting to Your Database for
more information on supported connection methods and their properties.

Password - password of the Windows user account under which the task will run.

SQL Code – the SQL code that will be executed by the scheduled task. The code could be any valid SQL
statement or a SQL script containing multiple SQL statements.

 Tip: The SQL edit box on the SQL Assistant – Schedule SQL Script dialog is a full featured
embedded SQL Editor. You can use it to edit the code as required. The syntax bar on the right of the
SQL edit box indicates the code state. If a green checkmark appears at the top of the syntax bar, the
code is valid and ready for execution. For more information, see CHAPTER 20, SQL Syntax Checker

Schedule

The scheduling options available on the SQL Assistant – Schedule SQL Script dialog allow you to
quickly set up a new scheduled task. You can use these options to schedule the task to run once or to run
periodically on a daily, weekly, or monthly schedule. The time you set is relative to the time zone set for the

CHAPTER 16, Scheduling SQL Script Execution

 -262-

computer that runs the task.

 Tip: If you cannot find the required schedule type, pick any available type. You can customize the
schedule type later using Windows Task Scheduler user interface. You can also use Windows Task
Scheduler interface to specify multiple schedules.

To enter a new schedule, click the Schedule option on the SQL Assistant – Schedule SQL Script dialog,
then click the button that will appear to the right of the Schedule field. The SQL Assistant – Task
Schedule dialog will appear on the screen.

To schedule one-time execution of the SQL script, select Once in
the Schedule Task drop-down list, then enter a date and time to
start the task.

If you select the Daily option, you can enter the recurrence interval
for the task as well as the date and time to start the task. An
interval of 1 produces a daily schedule and an interval of 2
produces an every other day schedule. The task will start at the
specified time each day.

If you select the Weekly option, you can enter the recurrence
interval for the task, the date and time to start the task, and the
days of the week in which to start the task. An interval of 1
produces a weekly schedule and an interval of 2 produces an
every other week schedule. The task will start at the specified time
on each of the specified days.

If you select the Monthly option, you can enter the months in
which you want to start the task and the weeks and days of the
month in which you want to start the task. You can also specify
that you want to start a task on the last day of each selected
month.

Script Execution Mode – Multi-server Support, Output, and Error Handling

Stop Execution on Error – use this option to control error handling. If this option is set to Yes and the
Parallel Execution option is set to No, an error during script execution causes execution to abort
immediately. SQL Assistant stops all further activities related to the script being executed. If the
Parallel Execution option is set to Yes, SQL Assistant makes an attempt to cancel script execution for
all other servers associated with the selected connection group. However the exact reaction to the
error may vary. It depends on the type of performed activities and on certain connection parameters.
Certain types of connections do not support canceling of already running scripts. If the Stop Execution
on Error option is set to No, the error is ignored and the error message is logged. Script execution
continues as if no error occurred.

Parallel Execution – use this option to control parallel script execution. If set to No, SQL Assistant
executes the script sequentially on each database server associated with the selected connection
group. If set to Yes, SQL Assistant establishes parallel connections to each database server
associated with the selected connection group and runs the script concurrently on each server.

Output to Files – use this option to control script output. If set to Single File, all error messages and script
output from each database server associated with the scheduled task (such as results of SELECT
statements, RAISERROR and PRINT statements) will be written to a single log file. If the option value
is set to Separate Files, a separate file will be written for each associated connection. If the option
value is set to No, no output will be logged.

CHAPTER 16, Scheduling SQL Script Execution

 -263-

 Notes: When the Single File option is specified, the name of the log files matches the name of
the selected connection group followed by the execution date time suffix. and ending with the .TXT
extension. When the Separate Files option is specified, multiple log files are recorded. Each file has
its name matching name of the associated connection followed by the execution date time suffix and
ending with .TXT extension.

Output Directory – use this option to select the output folder for log files. This option is not used when the
Output to Files option is set to No.

Email Output– this option controls if and when SQL Assistant emails script output results. The following values
are supported:

 Always –results are automatically emailed after each scheduled script run.

 On Failure –results are emailed only if script execution fails for some reason.

Email To - this group of options is used in conjunction with the Email Output option described above. It allows you
to automatically email script output. Click the button that will appear to the right of the Email To field. The
SQL Assistant – Send Email dialog displays on the screen.

The following email options are supported:

To – semicolon-separated email addresses of the mail
recipients

From – the email address of the message sender.

SMTP Host – server name or IP address of your SMTP
email server

SMTP Port – SMTP server port used by your server. By
default, SMTP port 25 is used.

Authentication is Required – enable this option if your
email server requires user authentication.

User – if your server requires user authentication and the
Authentication is Required option is checked, enter your
user name for the email server.

Password – if your server requires user authentication
and the Requires Authentication option is checked, enter
your password for the email server.

CHAPTER 16, Scheduling SQL Script Execution

 -264-

Modifying Scheduled SQL Scripts

To modify the SQL script of an existing scheduled task:

1. Locate the SQL script file in the %APPDATA%\SQL Assistant\Schedule folder. Note that
%APPDATA% is a system environment variable. If you do not know the value of this variable, you can
display it by opening the DOS command window, and executing the command echo %APPDATA%.
The script name is the same as the task name ending with .SQL extension.

2. Edit the SQL script in the SQL Editor of your choice and save your changes.

To modify scheduling details for a scheduled task on a Windows 2000, Windows XP, or Windows 2003 system:

1. Open Windows Control Panel.

2. Open the Scheduled Tasks folder.

3. Double-click the task you want modify.

4. Click the Schedule tab page.

5. Modify task schedule details as required, then save your changes.

To modify scheduling details for scheduled task on a Windows Vista, 7, 8, 8.1, 2008, 2010, and 2012 system:

1. Open Windows Control Panel.

2. Open the Administrative Tools folder.

3. Open the Task Scheduler application.

4. Click the Triggers tab page.

5. Select the existing schedule.

6. Click the Edit button.

7. Modify task schedule details as required, then save your changes.

To delete a scheduled task on a Windows 2000, Windows XP, or Windows 2003 system:

1. Open Windows Control Panel.

2. Open the Scheduled Tasks folder.

3. Select the task you want to delete and press the Delete button. If you get a prompt to confirm the
action, choose Yes.

To delete a scheduled task on a Windows Vista, 7, 8, 8.1, 2008, 2010, and 2012 system:

1. Open Windows Control Panel.

2. Open the Administrative Tools folder.

3. Open the Task Scheduler application.

4. Select the task you want to delete and press the Delete button. If you get a prompt to confirm the

CHAPTER 16, Scheduling SQL Script Execution

 -265-

action, choose Yes.

CHAPTER 17, Generating SQL Procedures and Scripts

 -266-

CHAPTER 17, Generating SQL Procedures and
Automating Database Management Operations

Overview

The SQL Code Generator is an advanced code generation utility. It provides flexible, customizable interface
supporting code snippets, macros, and SQL language statements for creating code generator templates. The
default options include sample CRUD (Create, Read, Update, Delete) and other database administration
templates like granting or revoking permissions to set of objects, batch renaming operations, and so on…

Code generator templates are created in SQL Assistant settings. You can create as many templates as you
need for different types of bulk code generation tasks. For convenience and manageability, code templates are
organized in logical groups. For example, multiple templates for generating CRUD procedures are organized in
groups by their purpose and database type.

The SQL Code Generator utility can be invoked from the target editor's menu or from SQL Assistant's system
tray context menu. Based on the template definition, the utility will allow you to select multiple database objects
of various types, as well as templates to apply to each selected object. Code generated from templates can be
executed immediately or it can be saved to SQL script files for a later execution.

Within the SQL Code Generator templates you can use various macro-variables supported by SQL Assistant to
automate the code generation. Macro variables allow you to generate context-driven dynamic code, for
example, table specific CRUD (Create, Read, Update, Delete) procedures as in the sample templates installed
with SQL Assistant default settings.

CHAPTER 17, Generating SQL Procedures and Scripts

 -267-

Code Generator Macros

Code generator macros are special macros intended for use in code generation templates that can be used
along with other supported macros described in CHAPTER 7, Macro-variables and Dynamic Code Generation
topic to customize behavior of code generation methods.

Variable Meaning

$REFACTORING_DATABASE$ The name of the database containing selected object, or the selected
database, depending on templates objective.

$REFACTORING_SCHEMA$ The name of the database schema containing selected object, or the
selected schema, depending on templates objective.

$REFACTORING_OBJECT$ The name of the selected schema object.

$REFACTORING_PROTO$ The argument signature for the selected database function or
procedure. The actual presentation is database type specific. For
example, for SQL Server and Sybase, the signature includes function
argument names starting with @ sign. The signature is extracted
from the function definition. Example
SQL Server: @cust_id INT, @eff_date DATETIME, @ret INT OUT
MySQL: p_customer_id INT, p_effective_date DATETIME

Together with $REFACTORING_OBJECT$ it can be used to
generate code for a new function definition or in other operations
where full function signature is required.

$REFACTORING_OBJECT_ID$ The database id of the selected object. Please note not all database
types support public references to internal object identifiers. This
macro can return empty value in case object id is not available.

$REFACTORING_OBJECT_TYPE$ The type of the selected object. For example: TABLE, PROCEDURE,
MATERIALISEZ VIEW, and so on…

$REFACTORING_DDL$ The DDL code of the selected object.

Creating and Customizing Code Templates and Template
Groups

Use the SQL Assistant’s Options dialog to customize pre-configured code generator templates or to create new
templates or template groups.

1. On the Options screen, select the Code Generator tab.

2. To modify an existing template, select the appropriate code template group from the Template Groups
box in the upper left portion of the dialog (see the screenshot below). The list of templates included in
the group displays in the Templates list in the lower left window. Select the template you want to
modify and edit the template properties displayed in the window on the right.

To create a new template group, click the green plus sign icon on the toolbar above the Template
Groups box.

CHAPTER 17, Generating SQL Procedures and Scripts

 -268-

3. On the right side of the dialog, specify template group settings. The example screenshot below
illustrates the template group options.

The following options can be specified at the template group level:

SQL Dialect – Specifies the database type for this template group.

Abort Code Generation on Error – Specifies whether SQL Assistant should stop generating
code in case of error or to continue with the next template and object in the code
generator's object list. The default is not to abort but to continue processing following
errors.

Save Log File - Specifies whether SQL Assistant should write work progress messages and run-
time errors to a log file. By default, messages and errors are output to the screen
only, and errors are written to SQL Assistant's main log file, SQLAssist.log. This log
file is located in %APPDATA%\SQL Assistant\[version] folder. Note that
%APPDATA% is a system environment variable. If you do not know the value of this
variable, you can display it by opening the DOS command window, and executing the
command echo %APPDATA%.

Log File – Specifies an optional custom log file in which the SQL Code Generator utility writes
progress-of-work messages and run-time errors for the selected template group.

4. Select a template from the list box on the bottom left.

5. In the right window, modify template code as required.

Adding, Deleting and Disabling Templates

To add a new template to a template group:

1. Select a template group from the list box on the top left.

2. Right-click in the Templates list in the lower left window, and select the Add command.

CHAPTER 17, Generating SQL Procedures and Scripts

 -269-

3. In the right window, define appropriate properties for the new template.

To delete template from a template group:

1. Select the template group from the list box on the top left.

2. Select the template from the list box on the lower left and press the Delete button.

To disable a template:

1. Select the template group from the list box on the top left.

2. In the lower left window deselect the checkbox next to the template name.

To enable a template:

1. Select one of the previously disabled template groups from the list box on the top left.

2. In the lower left window select the checkbox next to the template name.

 Note:

If a template is disabled, its definition remains in the SQL Assistant options, but the template is not active and
cannot be used. Disabled templates do not appear in SQL Assistant's Bulk Code Generator dialog. For more
information on how to use and change SQL Assistant's options, see CHAPTER 48.

 Additional Tips:

 Use the code template management icons available in the left-top corner of the Options dialog to
create a new template group or to rename, duplicate or delete code template groups and individual
templates.

Note that the icon functions are sensitive to the location of the focus in the Code Generator tab. For
example, if you click the X button when a template group is selected in the Template Groups window
on the upper left, the selected template group is deleted entirely, including all code templates included
within the group. However, if the focus is set to the left-bottom list box containing template names and
a template name is highlighted, clicking the X button deletes only the selected template.

 The content of the right side of the Code Generator tab is also context sensitive. If a template group is
selected, the group properties are displayed in the right window. If a template name is selected in the
Templates window on the lower right, the template code is displayed in the right window.

 You can drag-and-drop template group names in the left-top list to rearrange their order. You can use
this method to push most commonly used groups to the top of the list and minimize the amount of
scrolling and clicking required for customizing code templates.

CHAPTER 17, Generating SQL Procedures and Scripts

 -270-

 To insert a macro-variable into the template code, you can type its name, including the $ sign
delimiters, into the code, or you can use the Macro button available in the top-right corner of the tab to
insert the macro-variable name at the current cursor location in the code. Inserting macro-variables
using the Macro button also provides interactive assistance for macro-variables that support multiple
options, such as for example, the $OBJECT$ macro variable.

Macro-parameters and their usage are described in detail in the Macro-variables and Dynamic Code
Generation topic in CHAPTER 7, Code Entry Automation using Code Snippets.

 If you need to include literal $ symbols in the generated code, for example to include $body$ tags in
PostgreSQL functions, escape $ symbols with ^ suffix. For more details see Escaping $ Symbols in
Snippet Codes topic.

Practical Example – Creating a New Template for Data Retrieval with Paging

This section presents a generalized example of a SQL Server template created using the bulk code generator.
The purpose of this example is to demonstrate how you can easily build your own templates. You can use the
same procedure for creating templates in any of the other supported database systems, substituting database
type specific code for the SQL Server code in step 6.

This example assumes that the data will be retrieved from tables with a primary key. The primary key may be a
singleton or a composite key. The retrieving procedure will allow specifying any combination of columns in the
selected table which to be used in the WHERE clause in the query . It will allow omitting not required columns
when calling the resulting procedure.

Complete the following steps:

1. Double-click the SQL Assistant's system tray icon to open the Options dialog.

2. Select the Code Generator tab.

3. Click the Plus Sign icon in the top left corner of the tab to create new code template group. Name
the group "Paged Data Retrieval”.

4. In the right window, select the "SQL Server" option for SQL.

CHAPTER 17, Generating SQL Procedures and Scripts

 -271-

5. Right-click the templates list box in the bottom left corner and select the Add command from the
context menu. Name the new template "Retrieve".

6. In the code box on the right enter the following code:

/*
 Sample template for retrieving paged data from SQL Server
 Requires SQL Server 2005 or later
*/
CREATE PROCEDURE [dbo].[prGet_$OBJECT(table, view, tblFunc, synonym)$_ByPage]
 @$COLUMNS(vertical,types)$"=NULL"
 ,@PageSize int
 ,@PageNumber int
AS
WITH RowEnumeratedData AS
(
 SELECT RowNumber = ROW_NUMBER() OVER (ORDER BY $COLUMNS(keys)$),
 $COLUMNS(vertical)$
 FROM $OBJECT(ins_qualname, table, view, tblFunc, synonym)$
 WHERE "AND (@"$COLUMNS(vertical)$" IS NULL OR "
$COLUMNS(vertical)$" = @"$COLUMNS(vertical)$)")"
)
SELECT *
FROM RowEnumeratedData
WHERE RowNumber BETWEEN (@PageNumber - 1) * @PageSize) + 1
 AND (@PageNumber - 1) * @PageSize + @PageSize
ORDER BY $COLUMNS(keys)$

7. Click the Apply button to save changes.

The result is demonstrated on the following screenshot

You can now test the new code generator template:

1. From your editor, select the SQL Assistant menu.

2. Choose the Bulk Code generator command

3. Choose the "Paged Data Retrieval" template and click the Generate button.

4. When prompted to select database objects, choose one or more tables for which you want to

CHAPTER 17, Generating SQL Procedures and Scripts

 -272-

create procedures with data paging.

5. Click the Ok button to generate the code.

Advanced Methods for Programming Code Generator Templates

You can use the full power of SQL language supported by your database to generate dynamic SQL code. If the
basic macro-parameters supported by SQL Assistant, such as $OBJECT(…)$, $COLUMNS(…)$, and others,
do not satisfy your requirements, you can use the $$..$$ macro to embed dynamically executed SQL code.
Within the code of $$..$$ macro, you can implement the required logic. Code one or more SELECT statements
that return the required SQL code as their result set, or call your custom database stored procedures and user-
defined functions, outputting the required SQL code.

Use of the $$...$$ macro is described in detail in the $$…$$ Macro topic in CHAPTER 7. Using and Creating
Code Snippets for Fast Code Entry.

Following is a simple example of using the $$..$$ macro in a code generator template.

$$
SELECT DISTINCT 'DROP PROCEDURE "$OBJECT(ins_schema, table)$"."p_Delete$OBJECT(ins_object,
table)$";' || CHR(10) || CHR(13) || CHR(36) || CHR(36) || CHR(36)
FROM syscat.routines
WHERE routineschema = '$OBJECT(ins_schema, table)$'
 AND routinename = 'p_Delete$OBJECT(ins_object, table)$'
 AND routinetype = 'P'
$$

In this example, the 'DROP PROCEDURE…' command will be inserted into the generated SQL script only if the
actual procedure exists in the database at the time the SQL Code Generator runs that template. Note that the
name of the procedure is dynamic as well. The SQL Code Generator constructs the procedure name from the
$OBJECT(…)$ macro that returns schema and object names selected by the user.

Generating SQL Code

1. To open the Bulk Code Generation Utility, use the right-click menu, the target editor's menu, or SQL
Assistant's system tray context menu. Navigate to the SQL Assistant menu branch and then select
the Code and Data Generators � SQL Code Generator command. The SQL Code Generator dialog
will appear on the screen.

2. In the database tree on the left of the dialog, select the objects you want to include in the code
generation. For example, when using CRUD code generators, you can select one or more tables in
one or more database schemas.

3. On the right of the dialog, select a bulk code generator template group and template to apply to the
objects selected in the database tree.

4. Set the custom error handling and logging options as needed.

5. Click the Save Script button if you want to save the generated script to a file without executing the
generated code. You will be prompted for the file name.

Alternatively, you can click the Execute button to have SQL Assistant execute the generated SQL
code immediately; or click the Open in Editor button to have SQL Assistant create a temporary file

CHAPTER 17, Generating SQL Procedures and Scripts

 -273-

with the generated script and immediately open it in the editor.

CHAPTER 18, Generating Test Data

 -274-

CHAPTER 18, Generating Test Data

Overview

You can use the Test Data Generator tool for creating large volumes of meaningful, realistic data for application
quality assurance testing, usability analysis, application performance testing, and many other purposes.

The Test Data Generator is able to automatically detect primary and foreign keys and, without user intervention,
generate test data that match all referential integrity constraints rules.

The Test Data Generator can generate test data for all standard data types. You can customize the default data
generation rules on per-table-column basis to fit your specific business requirements.

The Test Data Generator comes with a large set of pre-built data libraries of the most commonly used data
values, including meaningful addresses, names, phone numbers, company names, industries, financial terms,
healthcare data, drugs, auto-parts and more. The Test Data Generator also gives you the flexibility to easily
create and modify your own data libraries, create custom data generation rules, and specify existing database
tables with real business information as "lookup" data values for the newly generated data. See the Managing
Data Library topic for more information.

The Test Data Generator intelligently recognizes commonly used column names and presets their value data
sources to pre-installed and pre-configured test data libraries.

To launch the Test Data Generator, use right-click menu in the SQL Editor. Alternatively, you can right-click the
SQL Assistant icon in the Window system tray and, in the right-click menu, navigate to the SQL Assistant
submenu. Choose Code and Data Generators � Test Data Generator menu command.

CHAPTER 18, Generating Test Data

 -275-

 Tips:

 The SQL Assistant's Test Data Generator can be integrated with third-party testing frameworks and
applications. To invoke it from other applications, use the command line interface described in the
Command Line Interface topic.

 Using the Schedule... button on the Test Data Generator dialog you can schedule running of Test
Data Generator projects during low database use times. Alternatively you can schedule Test Data
Generator running from the Windows Scheduled Tasks or other scheduling utilities using its command
line interface described in the Command Line Interface topic.

Working With Test Data Generator

Common Concepts

The Test Data Generator can be used to generate test data for a single table or for multiple tables in a single
run. To simplify data generation management for multi-table environments, the Test Data Generator supports
data generation projects. Data generation projects are useful for:

 Grouping collections of related tables together under a single project name

 Persistent storage of project configuration parameters and data generation rules within a set of project
configuration files

 Invoking test data generation from Unit Testing projects and consequently using the resulting test data
for code unit testing, see Modifying Test Cases and Units in CHAPTER 19, Unit-testing Database
Code

Opening and Saving Projects

To open an existing test data generation project to modify project details or to execute a test data generation
run:

1. Use right-click menu in the SQL Editor to launch the Test Data Generator,. Alternatively, you can
right-click the SQL Assistant icon in the Window system tray and, in the right-click menu,
navigate to the SQL Assistant submenu. Choose Code and Data Generators � Test Data
Generator menu command.

2. Click the Menu button displayed in the top right corner of the Test Data Generator dialog.

3. Choose the Open Project… menu command. The Open Test Data Generator Project dialog
opens.

4. Select the project file you want to open, then click the Open button. The Table Data Generator
dialog will be populated with project tables and their individual settings.

CHAPTER 18, Generating Test Data

 -276-

To save selected tables and their data generation properties in a project file.

1. Click the Menu button in the top right corner of the Test Data Generator dialog.

2. Choose the Save Project… menu command. The Save Test Data Generator Project dialog
opens.

3. Select the project file to which you want to save project settings and click the Save button. To
distinguish project files from other XML files, it is a good idea to use "project" or a similar prefix or
suffix when naming project files .

Adding Tables to a Project

To add new tables to a test data generator project:

1. In the Test Data Generator window, expand the databases and schemas containing tables that
you want to populate with the test data.

2. Select the checkbox in front of the tables that you want to add. To select all tables in a particular
schema or database, select the higher level checkbox for the schema or database name.

3. Click each selected table and choose specific data generation settings. When you are done with
the settings, save your changes in a project file as described in the "Opening and Saving
Projects" topic.

Removing Tables from a Project

To remove tables from a test data generator project:

1. On the Test Data Generator window expand the databases and schemas containing tables that
you do not want to populate with the sample data.

2. Deselect the checkbox in front of the tables you want to remove from the project.

3. Save your project changes as described in the "Opening and Saving Projects" topic.

Modifying Table Data Generation Options

Each table selected in the project has its own separate set of properties for the test data generation. To modify
the properties.

1. In the tables tree pane, click the table name of the table whose data generation properties your
want to modify. Make sure the table name is selected and the checkbox in front of the table name
renames selected too. The table properties pane will be displayed at the bottom of the Test Data
Generator window.

 Notes: The set of modifiable properties and options depends on the choice of the data

CHAPTER 18, Generating Test Data

 -277-

generation method. Different options are available for different data generation methods. Different
methods can be chosen for different columns in a table. Data generation properties that cannot be
modified for a particular method are displayed with a gray background and are disabled for
editing.

2. Choose the appropriate data generation method for each column in the selected table, then
modify method specific data generation properties. For specific details on available data
generation methods and options, see the topic Data Generation Options in this chapter.

3. Repeat steps 2 and 3 for other tables in the active data generation project

Scrolling Content

Use the scroll bars in the Test Data Generator window to scroll the panes. Alternatively, you can use the
keyboard navigation keys or mouse wheel.

Note that the table data generation properties pane scrolling is a bit different from other panes. This pane has
two parts: fixed columns, which are not scrollable, and data generation properties columns, which are
scrollable.

Resizing Content

To resize the Test Data Generator window, drag the top edge of the window up or down, left or right.

To adjust sizes of top and bottom panes of the Test Data Generator window, place mouse pointer over the top
edge of the table properties pane. The cursor shape changes to resize shape as on the following screenshot.

Drag the edge to adjust pane size. Make sure the cursor takes the right shape before dragging the pane edge.

To adjust sizes of left and right pane, in case data preview pane is visible, place mouse pointer over the right
edge of the table tree pane. The cursor shape changes to resize shape as on the following screenshot.

Drag the edge to adjust pane size. Make sure the cursor takes the right shape before dragging the pane edge.

To resize individual columns in the table properties pane, drag the right-edge of the column header left or right.
Note that when you place mouse pointer over the right edge of a column header the cursor shape changes to
resize shape as on the following screenshot.

Make sure the cursor takes the right shape before dragging the column edge.

CHAPTER 18, Generating Test Data

 -278-

Note that the fixed columns displayed on the left side in the data generation properties pane cannot be resized.

 Tip: When column width is too narrow to fit the content, 3 dots (also called ellipses) are drawn in each cell
with non-fitting data to indicate the data overflow effect. To quickly resize a column so it fits the entire content in
all cells, double-click click on the right-edge of the column header. SQL Assistant will calculate the required
width and resize this column as needed.

Populating Tables with Test Data

To generate test data and load it into project tables:

1. Start the Test Data Generator. See the Overview topic for more details.

2. Create new or open an existing project. See the Opening and Saving Projects topic for more details.

3. If required, add or remove tables to the project. Choose project-scope, table scope, and column-scope
options for tables in the project. as described in the previous topics.

4. Click the Generate button to start the process.

You can also use the command line interface to run test data generator projects either from command window
or from other applications. See the Command Line Interface topic for more details.

Previewing and Comparing Results

The Preview button in the table properties pane can be used to preview how the generated data will look. It
can also be used to visually compare the generated data against the actual data currently available in the table.
For example, you can use it to adjust various column-scope generation options. See the Column Scope
Options topic in this chapter for more details.

 Important Notes:

 The generated data sample size is controlled by the Row Count table-scope option. Be careful when
using the data preview mode. You may need to adjust the Row Count value for the preview only if you
intend to generate a lot of data for the selected table. Large values lead to higher memory
requirements and longer data sample generation times. The recommended range to achieve the best
preview results is 1 to 10000. You can change that value back to the required number when you are
satisfied with the quality of the generated data. Refer to the screenshot below as an example.

 The set of columns displayed on the Generated Data and Table Data tabs may differ. The Generated
Data tab displays only columns and values that will be generated if you run the project. All auto-
generated and auto-calculated columns are omitted from the display since their values are unknown at
preview time. Also omitted are all columns marked as "skip" in the Value Type option. On the other
hand, the Table Data tab displays all actual columns and values from the first 100 records of the table
available at preview time.

CHAPTER 18, Generating Test Data

 -279-

 Tips:

 The Preview button is visible when a table is added to the project and selected in the project tree
pane. To hide the Preview pane, click the Hide Preview button.

 Clicking the Preview button repeatedly causes the Test Data Generator to generate a new test data
sample and refresh the data on the Generated Data tab using this new sample. Use it at your
convenient after changing column-scope data generation options.

Creating Seeded Test Data

Seeded data generation is used to load the same set of data every time you run your unit tests. The Test Data
Generator allows you to generate a SQL script for inserting the seed data. The script can be saved to a SQL file
and then re-run later as many times as needed, always producing the same results. See the Data Generation
Options topic in this chapter for more information on the available table data generation options.

The same basic steps are required for setting up test data generation projects and for choosing data generation
options. But there are several important things that you should take into considerations when generating
seeded test data. They are described in the following notes.

 Important Notes:

 When generating data for tables that are dependent on lookup tables and primary key tables, make
sure the lookup and primary key tables are not empty during the project Save Script run. The
generation operation will fail if the Test Data Generator cannot retrieve usable data from lookup
tables. This is different from the normal data generation run for physically populating table data. In the
normal run, the Test Data Generator project can be set up to populate lookup tables and primary key

CHAPTER 18, Generating Test Data

 -280-

tables first. This makes the lookup data physically available at the time of data generation for
dependent tables so the Test Data Generator can use that data to generate correct lookup values and
foreign key in the dependent tables.

 You can set up your data generation project to append new data to lookup and primary key tables, but
not to replace it. Do not use the Truncate table option table-scope option for tables containing the
lookup data. Using this option will cause the lookup data to be replaced in the project run-time. As a
result, the rest of the data generation script would become invalid if it contains references to the
already deleted lookup data.

 It is recommended that you choose the Skip if Not Empty option for lookup and primary key tables to
ensure you get consistent results.

 You can tweak the generated scripts after you save them to SQL files. Additional SQL commands can
be added to scripts to update or delete the data, to aggregate data in summary tables, and to perform
other required operations.

Loading Data Samples from Another Database Server or Database

If you want to use data samples from your production database server or another server, you can use the Data
Transfer utility. For more information read Method 1 – Using Data Transfer Utility topic in CHAPTER 13,
Scripting, Exporting, Importing, and Copying Data.

Data Generation Options

Project Scope Options

Save Log File -– If this option is checked, SQL Assistant writes processing status messages to the log file
specified in the Log property.

Log – The name of the output log file. This name must be specified if Save Log Option is checked.

Commit Inserted Data After n Rows – This option is effective with database connections that require explicit
commits for inserted data. The option value controls the batch update size. Frequent commits lead to small
batches which can potentially affect the data generation process performance. In comparison, large batches
can potentially result in large database transactions which, in turn, require more space in database transaction
logs and rollback segments.

This option has no impact on database connections with automatic commits after each change. Note that by
default, SQL Server, Sybase ASE, Sybase ASA, and MySQL connections have automatic commit enabled,
while Oracle, DB2, and PostgreSQL connections do not.

If this option is not checked, SQL Assistant does not generate COMMIT statements, during processing.

Stop Generating Data After – This option controls what SQL Assistant should do if an error occurs during the
data generation process. The available choices are:

CHAPTER 18, Generating Test Data

 -281-

 Any error – if any kind of error occurs, the data generation stops immediately.

 All rows of a table failed – data generation continues as long as at least one row is
successfully inserted into the table. If no rows are successfully inserted, data generation
stops, otherwise it continues with the next table in the project.

If this option is not selected, SQL Assistant ignores all errors and continues running the process after an error.

Date Format – The date value format understood by your database. It is very important that you select the
correct date format for your data-generation project. An incorrect date format may lead to invalid data inserted
into the database.

Time-Format – Time value format understood by your database. It is very important that you select the correct
time format for your data-generation project. An incorrect time format may lead to invalid data inserted into the
database.

Decimal-Separator – Decimal-separator symbol understood by your database. It is very important that you
select the correct symbol for your data-generation project. An incorrect value may lead to invalid data inserted
into the database.

Order – The order of tables in your data generation project./ This is the order in which table data will be
generated. It is important in a project with referential integrity and parent/child tables that parent tables are
populated first, before child tables. Use arrows up and down to adjust table load order in a multi-table
project

Table Scope Options

Row Count – The number of test records to be generated for the selected table.

Skip If Not Empty – Instructs the Test Data Generator to skip the table if it is already populated with data.

Truncate Table – Instructs the Test Data Generator to empty the table data before inserting new test data.

 Tip: Note that the Skip If Not Empty and Truncate Table options are mutually exclusive options

Column Scope Options

Available column scope options vary for different column data types, column attributes, and data generation
methods. For example, columns with the NULLABLE attribute allow filling in % of NULLs data generation
properly, while columns with the NOT NULLABLE attribute do not. Another example is a column for which
Constant is selected as a choice for the Value Type. For this value type, you can fill in Constant Value
column property while for other value types, you cannot.

To make setting up table column data generation properties easier, SQL Assistant uses a color theme to
indicate which properties are available and which are not. Note that properties with a gray background are not
available and are not editable.

CHAPTER 18, Generating Test Data

 -282-

The following list describes the supported column-scope data generation options:

Value Type – The data value generation method. The following types are available:

 Skip – Do not reference the selected column in the generated INSERT statements.

 Random – Generates random values. This value generation method can be used with most column
data-types. The Min Value and Max Value properties can be used to specify min and max range for
numeric values or length for text values.

 Sequence – Generates sequential numeric values. This value generation method can be used with
most numeric, date, date-time, and character-based column data -types.

 Cycle –Generates sequential numeric values in the specified value range. After reaching the specified
maximum value, restart the sequence from the specified minimum value. This value generation
method can be used with most numeric and character-based column data- types.

 Constant – Uses a constant value for the selected column in all generated records. The actual
constant can be specified in the Constant Value property.

 Null – Uses the NULL value for the selected column in all generated records.

 Foreign key – Uses values from the primary key column of a parent table. SQL Assistant
automatically recognizes foreign keys and finds their parent key tables. The name of the table and
column with the parent keys is entered automatically into the Lookup Column property.

 Lookup Table – Uses values from a column in an existing table. The table name and column name
must be specified in the Lookup Column property using dot notation, for example
myschema.mytable.mycolumn. The specified lookup table must contain at least one record.

 Library Data – Uses values from a column in an existing data library file. This is similar to the Lookup
Table option except that values are obtained from a flat text data file rather than from a database
table. See the Data Library topic for more information about available data libraries and how to
manage and customize them.

 Regular Expr - Generates random values using a regular expression specified in the Constant
Value property. For more details see the following Using Regular Expressions topic.

Constant Value – This value has different meanings for different generation methods

 Used to specify contact values for columns with Constant value type.

CHAPTER 18, Generating Test Data

 -283-

 Used to specify regular expression for columns with Regular Expr value type

Min Value – the minimum generated value or the minimum length of generated values. This value has different
meanings for different column data types and generation methods:

 For all numeric data types with the Random value generation method, the Minimum value represents
the smallest possible generated data value.

 For all string data types with the Random value generation method, the Minimum value represents
the minimal length of randomly generated strings.

 For all date and date-time data types with the Random value generation method, the Minimum value
represents the minimal possible value for the date range.

 For all numeric and string data types with the Sequence value generation method, the Minimum
value represents the starting number for the sequence.

 For all numeric and string data types with the Cycle value generation method, the Minimum value
represents the starting number for the sequence. The Maximum value represents the maximum
number after which the sequence is restarted from the Minimum value.

Max Value – the maximum generated value or the maximum length of generated values. This value has
different meaning for different column data types and generation methods:

 For all numeric data types with the Random value generation method, the Maximum value represents
the largest possible generated data value.

 For all string data types with the Random value generation method, the Minimum value represents
the largest possible length of randomly generated strings.

 For all date and date-time data types with the Random value generation method, the Maximum value
represents the maximum possible value for the date range.

 For all numeric and string data types with the Cycle value generation method, the Maximum value
represents the ending number for the sequence after which the sequence is restarted from the
Minimum value.

Lookup Column – the lookup column in a source table or file used as the seed value for data generation. This
value could have 3 different types:

 For columns with the Foreign Key type, this is the name of a column in a parent table. The column
must be either a primary key column or a unique key column. The Test Data Generator finds the
parent table and its key automatically. The Test Data Generator uses that column as a data source for
the column data values.

 For columns with the Lookup Table type, this is the name of a column in a lookup table in the
database. It uses that column as a data source for the column data values.

 For columns with the Library Data value type, this is the name of a column in a data library file. It uses
that column as a data source for the column data values.

Time Portion – the Boolean flag indicating whether to generate time portions of date-time values generated for
columns with a "date/time" or compatible data type.

CHAPTER 18, Generating Test Data

 -284-

Text Case – the letter case used for text values generated using the Random method. This option is only
applicable to columns with string based data types. The available options are:

 Mixed – both lower case and upper case characters used in the generated data values

 Upper – only upper case characters are used in the generated data values

 Lower – only lower case characters are used in the generated data values

Prefix – the fixed prefix used in text values generated using the Random method. This option is only applicable
to columns with string-based data types.

% of NULLs – the percent of nulls generated. This option is only applicable to columns that have the nullable
attribute. It cannot be used with the Sequence or Constant value types. NULL values are generated only if the
% of NULLs option is set to a non-zero positive value.

Specifying Lookup Table for Column Data Source Values

For columns with Lookup Table data source, you must specify from which lookup table the Test Data
Generator will load the required data values.

To specify the data source lookup table:

1. In the row with the Lookup Table type, click the Lookup Column field. The browse button
appears at the left end of the field.

2. Click the browse button. The Select Lookup Column dialog will appear.

3. In the Select Lookup Column dialog, expand the database level containing the required lookup table.
Expand the table schema level, and then expand the lookup table level. To preview the data in the
selected lookup table, click the Preview >> button.

4. Select the column you want to use as a data source.

5. Click the OK button.

CHAPTER 18, Generating Test Data

 -285-

Specifying the Data Library File for Column Data Source Values

For columns with Library Data source, you must specify from which data library file the Test Data Generator
will load the data values.

To enter the data source:

1. In the row with Library Data value type, click the Lookup Column field. The browse button
appears at the left end of the field.

2. Click the browse button. The Select Library Data Column dialog will appear.

3. In the Select Library Data Column dialog, select and expand the level of the data file containing the
lookup values.

4. Select the column you want to use as a data source.

5. Click the OK button.

Handling Date and Time Values

To generate correctly formatted date and time values, the Test Data Generator needs to know the formats
compatible with your database server. Use the Project Scope Options to specify data and time value formats.
See the Handling Date and Time Values topic in CHAPTER 13, Scripting, Exporting, and Importing Data, for
details on supported date and time value format masks.

Handling Numeric Values

The Test Data Generator is capable of generating 3 types of numbers:

 Integer whole numbers – used for all integer data types, including INT, BIGINT, BIT, SMALLINT, and
similar.

 Float numbers with two decimal places - used for MONEY and SMALLMONEY data types.

CHAPTER 18, Generating Test Data

 -286-

 Double precision numbers with up to eight decimal places – used for all other numeric data types.
Generated double precision numbers may have more digits after the decimal point than allowed by the
column data type. This should not be a problem. Your database server should automatically round the
values to match the data type specification when the data is inserted into the tables.

Handling Binary Values

There are many types of binary values supported by different database systems, including but not limited to
BINARY, VARBINARY, IMAGE, RAW, LONG RAW, BLOB, LONGBLOB, BYTEA. The Test Data Generator
supports most of the common binary types, it can generate binary values represented in HEX format. Most
database system can recognize HEX values and automatically convert them to the binary storage format. If
your database system supports that, you can use the Test Data Generator to populate binary columns with
binary values. Two options are available for populating binary values. You can select "constant" in the Value
Type field, and enter the desired binary value in hex format into the Constant field, for example, 0x1A2F10. Do
not enter quotes or any other symbols. Or you can use "lookup table" in the Value Type field to copy binary
values from a table already populated with binary values.

Small Binary Values

In a simple case of small binary values you can specify them directly in the Constant field as
demonstrated on the following screenshot. The values must be entered in HEX format starting with 0x
prefix.

Images and Other Large Binary Object Values

For generating large binary data values select "lookup table" in the Value Type field. Use the browse [...]
button in the Lookup Column field to locate a table containing sample binary values, such as images,
audio files, and other types of documents, and then select the binary values source column. See example
on the following screenshot.

Using Regular Expressions

SQL Assistant supports PCRE like regex engine, which provides the similar syntax and functions as Perl

CHAPTER 18, Generating Test Data

 -287-

regular expressions engine. Please see http://perldoc.perl.org/perlre.html for the completed syntax description.
It provides some extensions that enable in the Test Data Generator to create random values with predefined
value formatting, prefixes, and suffixes, as well as value ranges. In the Application Data Lineage Analyzers it
uses extended morde optimized for stremable parsers for processing very large log files. The following
examples demonstrate a small subset of the possibilities:

Generating date values with a limited date range within single year:
2019-0[1-9]-[0-2][2-7]

Generating decimal numbers up to 9999 with 2 digits after the decimal point:
\d{2,4}.\d{2}

Generating product code beginning with DS- prefix followed by 3 digit code:
DS-\d{3}

Generating phone numbers for US and Canada
(\d{3})\d{3}-\d{3}-\d{4}

Generating code values beginning with digit 1, 2, or 3, followed by –WORK- suffix ,and then followed by either
a,b,c,d, e, or f character
[123]-WORK-[abcdef]

For additional information about regular expressions syntax, see Using Regular Expressions topic in CHAPTER
34, Integrated SQL Editors.

Data Libraries

Data libraries are predefined datasets that can be used as sources of seed data. SQL Assistant supports two
types of data libraries:

 Data Library files - Data Library files are table-like files containing sets of commonly used values you
can use as data sources during the test data generation process.

 Database Library queries - Data Library queries enable you to define generic SQL queries that can
return data from various databases, and just like the Data Library files provide sets of commonly used
values you can use as data sources during the test data generation process.

The Test Data Generator allows you to choose data column from any data library file or data library query as a
data source for values in any column of a target database table. Because you choose data source for each
table column independently, different files and file columns can be chosen as data sources for different table
columns, as well as a single column from a single file can be chosen as a data source for multiple columns in a
target database table. In other words, the set of columns in a library file does not need to match the set of
columns in a target table.

Theoretically, a single data library containing 4 columns and 200 unique records can be used to produce
1552438800 unique data records. If you also select columns with random or sequential values, you can have
the Test Data Generator to produce a virtually infinite number of unique records in a table. The only limitations
are data type size constraints and business rules enforced by relational table constraints. For example, a
column having the data type NUMBER(3) with a unique constraint, index, or primary key allows only 999 unique
rows that can be inserted into the table.

http://perldoc.perl.org/perlre.html�

CHAPTER 18, Generating Test Data

 -288-

Predefined Data Library Files

The following Data Library files are included in the software distribution package:

1. Airport Data (total 267 unique records):

 Airport Name

 Airport Code

 Country Name

 Country Code

2. Auto parts (total 171 unique records)

 Part Name

3. Books – Oracle related (total 157 unique records)

 Author Name(s)

 Book Name

 Cover Type

 ISBN Number

4. Books by William Shakespeare (total 199 unique records)

 Author Name(s)

 Book Name

 Cover Type

 ISBN Number

5. Fortune 500 Company Names (total 500 unique records)

 Company Name

6. Computer Science Magazines (total 154 unique records)

 Publication Name

7. Countries (total 240 unique records)

 Two-character Country Code

 Country Name

8. Denmark Cities (total 82 unique records)

 City Name

CHAPTER 18, Generating Test Data

 -289-

9. Denmark States (total 16 unique records)

 State Name

10. European Colleges (total 1283 unique records)

 College Name

11. FDA Drugs and Components (total 3000 unique records)

 Application #

 Product #

 Form

 Dosage

 Product Marketing Status

 TE Code

 Reference Drug

 Drug Name

 Active Ingredient

12. French Postal Codes (total 44 unique records)

 City Name

 Postal Code

13. Medical Procedures (total 248 unique records)

 Procedure Code

 Procedure Description

14. Microprocessors (total 567 unique records)

 Processor Name

15. New York Streets (total 794 unique records)

 Street Name

16. People's Names - First and Last Name separately (total 500 unique records)

 First Name

 Last Name

17. People's Names – Full Name (total 500 unique records)

 Full Name

18. Periodic Table of Chemical Elements (total 109 unique records)

 Symbol

 Element Name

CHAPTER 18, Generating Test Data

 -290-

19. Sample Customers (total 99 unique records)

 Customer ID

 Company Name

 Contact Name

 Contact Title

 Address

 City

 Region

 Postal Code

 Country

 Phone

 Fax

20. Sample Orders (total 878 unique records)

 Order ID

 Customer

 Order Date

 Required Date

 Shipped Date

 Ship Via

 Freight

 Ship Name

 Ship Address

 Ship City

 Ship Region

 Ship Postal Code

 Ship Country

21. Sample Products (total 109 unique records)

 Product ID

 Product Name

 Supplier

 Category

 Quantity Per Unit

 Unit Price

 Units In Stock

 Units On Order

 Reorder Level

 Discontinued

22. Sample Suppliers (total 38 unique records)

 Company Name

 Contact Name

CHAPTER 18, Generating Test Data

 -291-

 Contact Title

 Address

 City

 Region

 Postal Code

 Country

 Phone

 Fax

 Home Page

23. SIC Codes and Industry Names (total 443 unique records)

 SIC

 Industry Name

24. Stock Quotes – S&P 500 (total 500 unique records)

 Symbol

 Company

 Country

 GICS

 Sector

 Price

25. United Kingdom Cities (total 66 unique records)

 City Name

26. USA Counties (total 3092 unique records)

 County Name

 State Name

27. USA Holidays by Year (total 78 unique records)

 Date

 Holiday

28. USA Social Security Numbers (total 500 unique records, not in use SSN)

 SSN

29. USA States (total 500 unique records)

 2-character State Code

 State Name

CHAPTER 18, Generating Test Data

 -292-

30. USA Zip Codes (total 3000 unique records)

 Zip

 State Code

 City Name

31. World Currencies (total 3007 unique records)

 3-character Currency Code

 Country Name

 Currency Name

32. Emails (total 100 unique records)

 Sample Email Addresses

33. IP v4 Addresses (total 510 unique records)

 IP Address

34. Websites (total 100 unique records)

 Popular Websites

35. Extended Company Data (total 485 unique records)

 Company Name

 Company URL

 Category/Industry

 Business Description

36. NAICS Industry Classification (total 1065 unique records)

 Industry Code

 Industry Name

37. Robotic Parts (total 59 unique records)

 Part Name

 Description

 Price

 Where to Buy

38. Ore Metals Annual Production by Country (total 258 unique records)

 Country Name

 Country ISO Code

 2000 Production

 2001 Production

 2002 Production

 2003 Production

 2004 Production

 2005 Production

CHAPTER 18, Generating Test Data

 -293-

 2006 Production

 2007 Production

 2008 Production

 2009 Production

 2010 Production

 2011 Production

 2012 Production

39. Wine List (total 2710 unique records)

 Code

 Brand

 Size

 Age

 Proof

 Price

40. Food Nutrients (total 2710 unique records)

 Nutrients Category

 Component

41. Business Departments (total 19 unique records)

 Department

42. Music (total 19 unique records)

 Song ID

 Song Name

 Artist

 Album

 Genre

 Time

 Track Number

 Track Year

43. Exchange rates for various countries and dates (total 804 records)

 Date

 Country

 Exchange Rate

44. IBRD income statements (total 2704 records)

 Classification

 Grouping

 Category

 Year

 Amount (millions)

45. Oil price (in USD) (total 393 records)

CHAPTER 18, Generating Test Data

 -294-

 Date

 Price

46. Equity stock market data (total 505 records)

 Symbol

 Company Name

 Sector

 Share Price

 Price / Earnings Ratio

 Dividend Yield

 Earnings per Share

 52 Week Low Price

 52 Week High Price

 Market Capitalization

 EBITDA

 Price / Sales Ratio

 Price / Book Price Ratio

47. ISO shipping container codes (total 716 records)

 Code

 Description

 Length

 Height

 Group

48. English football league playoffs (total 343 records)

 Date

 Season

 Home

 Visitor

 FT

 Hgoal

 Vgoal

 Division

 Round

 Tie

 Htier

 Vtier

 Aet

 Pen

 Pens

 Venue

 Attendance

 Neutral

CHAPTER 18, Generating Test Data

 -295-

 Tip: You can easily add your own data sets to the library. Read the following topic for more details.

Managing Data Library Files

Test Data Generator's Data Library files are tab-separated files storing collections of common business data.
The first line in each data file contains column headers. The data files are located in the datagen subfolder of
the SQL Assistant home folder. You can modify the existing files as well as add your own data files to the Data
Library.

To modify or rename an existing data file: locate the file you want to modify, and open it in Windows
Notepad or any other text editor. Make the desired changes and save them. Your changes are effective
immediately. If you simply want to rename a file, you can also use the Rename button in the top-left corner,
click that button, enter new file name and press Enter key. Your changes are effective immediately.

To add a new data file: Create a new tab-separated data file using any editor of your choice. Make sure the
first line of the file contains column headers and that the file has the .TXT extension. Copy the file to the
datagen subfolder. The new file is available immediately.

To delete an existing data file: Use any available file management tool to delete the file from the datagen
subfolder.

To create new data file or refresh existing file using database SQL query: In the Options dialog select the
data library you want to update, click the SQL Query link in the top left corner.

You will be prompted to choose a database connection and then in the next prompt to enter a database query
that can be used as a data source for the library file.

CHAPTER 18, Generating Test Data

 -296-

Managing Data Library Queries

Unlike the static Data Library file based data sources, the query based data sources provide so called "live"
data. They return the current data available in the source database at the time of the data generator project run.

 Important Notes:

1. During the data generator project run all referenced library data sources are cached n memory, It's
very important that the queries do not return more data than you computer can handle for a
reasonably fast test data generation process, and your computer does not run out of memory while
caching the source data. General recommendation for the data library queries is to return no more
than a few thousands records. The cached values are used for generating randomized test datasets.
The raw source data is not copied directly to the target table, so that there is no need for the queries to
return a lot of data.

2. Use the Data Transfer utility .in case you want to populate the target table with test data already
available in tables in the same or other database server. See Copying Data Between Database
Servers topic in CHAPTER 13, Scripting, Exporting, Importing, and Copying Data for additional
details.

3. Use the File Import utility .in case you want to populate the target table with test data already available
in CSV, Excel, or other flat files. See Importing Data from Excel and Flat Files topic in CHAPTER 13,
Scripting, Exporting, Importing, and Copying Data for additional details.

To add a new query to the collection:

1. In the Options dialog activate the Data Generator tab and then expand the Libraries section on the left
side of the dialog.

2. Click the Plus button in the top-left corner of the dialog to add a new data library.

3. On the right side of the dialog, in the Source Type field select SQL.

CHAPTER 18, Generating Test Data

 -297-

4. Click the Connect link in the right-top corner of the dialog to choose database connection for the data
source. This will add one green line to the query. Do not modify that line.

5. Below that line paste the query you want to use as the data source. You can develop the required
query in SQL Assistant's SQL Editor or in any other tool of your choice.

6. Click the Test link in the top-right corner to test the query is valid and can be executed.

 Important Notes: You can edit the query in the Options dialog as required, but you should not change or
remove the top commented line containing the connection details. If you remove that line the Test Data
Generator will be unable to use this query as its seed data source.

To rename an existing query source:

1. Locate the query you want to rename

2. Use the Rename button in the top-left corner to rename the query.

3. Enter new query name and press Enter key. Your changes are effective immediately.

Command Line Interface

To run a test data generator project from a DOS command line window, use the following command:

sacmd dg:"path-to-project-file " sas:"path-to-sa-settings-file" conn:"myserver (userid)"

Substitute values in the command as follows:

path-to-project-file The full file name of the data generator project file

path-to-sa-settings-file The full file name of the SQL Assistant settings file containing the required
database connection parameters. This is an optional parameter. If not
specified, the default path for the current user account is used.

myserver (userid) The database connection name

Example:

cd "C:\Program Files (x86)\SQL Assistant 12"

sacmd dg:"C:\Projects\Test Data\dev_pos.datagen" sas:"%APPDATA%\SQL
Assistant\12.4\sqlassist.sas" conn:"DEV001 (sa)"

 Important Notes:

 Data generator project files are XML files you save using the Test Data Generator graphical interface.

 The SQL Assistant settings file location is version and user profile specific. See the Notes in the
Overview topic in CHAPTER 51 for details on how to find out the location of that file.

 You can find out the connection name in the DB Connections group of settings on the DB Options tab
page in SQL Assistant Options. If a connection requires a user id and password, make sure that both
are saved in the settings. The command line interface does not display interactive prompts and is

CHAPTER 18, Generating Test Data

 -298-

unable to prompt for credentials during command processing. For more information about storing and
managing database connections, see the Managing Database Connections topic in CHAPTER 48.

CHAPTER 19, Unit-testing Database Code

 -299-

CHAPTER 19, Unit-testing Database Code

Overview

Database unit testing is a validation process for testing database to ensure that objects and units of code are fit
for use. Unit testing is very important in application Quality Assurance (QA). It can also help with validating
database code after changes are made to the database, including mass changes applied to the database
during code refactoring and detecting side effects and other anomalies resulting from previous changes. To
fully realize the value of unit testing, you can setup database unit tests to run periodically in automated
unattended mode (robo-testing) with the test failure results delivered automatically to your email inbox.

SQL Assistant provides a complete database code-testing framework. The framework allows quick setup of unit
tests for multiple database tables, views, and procedures, as well as test cases for any kind of database
processing or business scenario. The test case generation interface is highly customizable. User customizable
test case templates are used to quickly generate multiple test cases. For example, with just 3 clicks you can
generate multiple types of test cases for each table in a selected database schema or entire database. See the
Customizing Test Case Templates topic in this chapter for more information about the templates.

To launch the Unit Testing Framework for setup or manual run, use the right-click menu in the SQL Editor.
Alternatively, you can right-click the SQL Assistant icon in the Window system tray. In the right-click menu,
navigate to SQL Assistant submenu and choose the Code and Data Generators � Unit Tests menu
command.

The SQL Assistant's Unit Testing Framework can be integrated with other testing frameworks and applications.
To start the Unit Testing Framework from other applications, use the command line interface described later in
this chapter.

 Additional Tips:

 SQL Assistant's default setup provides 3 predefined unit test types:
Table-based Unit Test, View-based Unit Test and Procedure-based Unit Test, each of them

CHAPTER 19, Unit-testing Database Code

 -300-

providing several pre-defined standard test cases for their respective object types.

You can use the SQL Assistant's main Options dialog to create new unit test types, or to rename,
duplicate or delete existing unit test types . You can pre-configure unit test types that better align with
your project requirements and then use them to quickly create unit tests for your project with minimal
required input from developers. Use the unit test type management icons in the top left corner of. the
Unit Test tab on the Options dialog to manage unit test types and their properties.

Note that the icon functions are sensitive to the location of the focus in the Unit Tests tab. For
example, a unit test is selected in the top left list box and you click the X button, the unit test type will
be deleted entirely, including all associated test case templates. However, if test case template is
selected in the bottom left list box, clicking the same button will delete the selected template.

 The content of the right side of the Unit Tests tab is also context sensitive. If a unit test type is
selected, it will display that type definition. If a test case template name is selected, it will display
properties of that template and its code.

 Drag-and-drop unit test type names in the left-top list to rearrange their order. You can use this
method to push most commonly used types to the top of the list and minimize the amount of scrolling
and clicking required to customize test case templates.

 See Using Custom Templates for Generation of Test Cases and the following topics for more details
on usage and management of custom test case types.

Working With the Unit Testing Framework

Common Concepts

The Unit Testing Framework can be used to setup and run test cases for a group of database objects or for a
business scenario. Related test cases can be grouped together as test units. A group of related test cases is
represented by a unit test. Along with test cases, unit tests provide granular control of error handling and test
workflow.

To simplify the management of unit tests and test cases, the framework supports unit testing projects. Projects
allow persistent storing of project configuration in project configuration files.

The order of units within a test project controls their execution sequence when the project is run. The order of
test cases within a unit controls their run sequence within that unit. In certain situations, following a specific run
sequence might be very important. For example, if you set up a unit test for a database table and you want to
test data deletion from that table, you want the data to be available in that table at the time of the deletion. In
this situation, the data insertion test case must be positioned before the data deletion test case so that it can be
run first.

Test case execution consists of 4 phases:

 Initialization phase – during this phase, SQL Assistant executes the test case initialization
instructions specified on the Initialize tab in the test case properties. The instructions are optional and
can be left blank. Typically, this phase is used for populating tables with the test data used by the test
case code and, optionally, by the following test cases. During this phase, SQL Assistant can
automatically invoke test data generation projects created using the Test Data Generator tool.

 Execution phase – during this phase, SQL Assistant executes the main SQL code associated with

CHAPTER 19, Unit-testing Database Code

 -301-

the test case. The code is specified on the Execute tab in the test case properties. The code is
optional. If it is not specified, the test case execution is always successful. If it is specified, SQL
Assistant executes the code and checks its success and performance metrics as specified on the
Check tab in the test case properties.

 Note: During the execution phase the specified SQL code can be executed once per test case, or
it can be executed multiple times in stress test mode using multiple concurrent database connections.

 Status and performance check phase – during this phase, SQL Assistant analyzes execution results
and performance metrics of the main SQL code specified on the Execute tab.

 Cleanup phase – during this phase, SQL Assistant executes any cleanup instructions specified on the
Cleanup tab in the test case properties. Cleanup instructions are optional and can be omitted.
Typically, this phase is used for deleting test data inserted during the initialization phase and for
undoing database changes made in the execution phase.

Units and test cases can be enabled and disabled as required. SQL Assistant runs only the enabled units and
cases and skips all disabled unit and cases. If a unit is disabled, SQL Assistant skips all cases within the unit
regardless of their individual status.

Opening and Saving Projects

To open an existing unit testing project for modification or execution:

1. Click the Open Project… icon on the Unit Testing window toolbar. The Open Unit Testing
Project dialog will appear.

2. Select the project file you want to open, then click the Open button. The Unit Testing dialog will be
populated with project units, cases, and project settings.

To save all project settings in a project file:

1. Click the Save Project… icon on the Unit Testing window toolbar. The Save Unit Testing
Project dialog will appear.

2. Select the project file you want to save project settings to, then click the Save button. It is a good
idea to use "project" or similar prefix or suffix when naming project files in order to distinguish
them from other XML files.

CHAPTER 19, Unit-testing Database Code

 -302-

Adding New Unit Tests

To add new units and cases to a test project:

1. In the Unit Testing window, click the arrow next to the New Unit... icon on the Unit Testing
window toolbar.

2. Choose type of the unit test to add.

3. If you select a non-generic type, you will be presented with a dialog for selecting database objects for
which new test cases will be generated. In the Select Objects dialog, expand the databases and
schemas in the object tree to select specific objects.

4. Select the check box in front of the object names you want to add. To select all objects in a particular
schema or database, select the higher level checkbox for the schema or database name.

5. Click the OK button. SQL Assistant will generate test units and test cases for each selected object.
The test code will be generated according to test templates configured in the SQL Assistant settings.
See the Customizing Test Case Templates topic in this chapter for more information about the
templates.

6. In the main Unit Testing window, click on each added test case and, if necessary, complete the test
case properties and code. See the Test Unit Scope Options and Test Case Scope Options topics in
this chapter for more information about supported test unit and test case properties.

It is recommended that you rename the new unit tests and test cases to make their purpose self-
explanatory and easier to understand by other developers in your team.

7. You can re-order cases and test units as required, by using the right-click menu in the project tree, by

using the up and down arrow icons on the Unit Testing window toolbar, or by using keyboard
shortcuts.

CHAPTER 19, Unit-testing Database Code

 -303-

Adding Generic Test Cases to Units

To add a new test case to an existing unit:

1. In the project tree select the unit test that you want to modify.

2. Click the New Case icon on the Unit Testing window toolbar.

3. Complete the test case properties and code. See Test Case Scope Options topic in this chapter for
more information about supported test case properties.

It is recommended that you rename the case to make its purpose self-explanatory and easier to
understand by other developers in your team.

4. To change the order of the added case within its unit, either use right-click menu in the project tree, or

use icons on the Unit Testing window toolbar, or use the available keyboard shortcuts.

Adding New Test Case and Unit Versions

To quickly create a new version of an existing test case or unit:

1. In the project tree, select the case or unit you want to remove.

2. Right-click the selected item and choose Duplicate command in the context menu. A copy of the
selected item will be created.

3. Rename and modify the copy as required. For details on how to modify and rename items see
Modifying Test Cases and Units topic later in this chapter

Removing Test Cases and Units

To remove an existing test case or unit:

1. In the project tree, select the case or unit you want to remove.

2. Press the Ctrl+Del hot key or use the Delete icon on the Unit Testing window to remove the
selected item.

Disabling and Enabling Test Cases and Units

To disable or enable a specific test case:

1. In the project tree, select the case you want to modify.

2. Deselect the check-box in front of the case name to disable a case. Select the check-box to enable a
selected case.

CHAPTER 19, Unit-testing Database Code

 -304-

To disable or enable all test cases in a specific unit at the unit-level:

1. In the project tree, select the unit that you want to modify.

2. Deselect the check-box in front of the unit name to disable the selected unit. Select the check-box to
enable the selected unit.

To disable or enable all test cases in a specific unit at the case level:

1. In the project tree, select the unit you want to modify.

2. Right-click on any case in the selected unit and select the Disable Test Cases command to disable all
cases in the selected unit. Select the Enable Test Cases command to enable all cases in the selected
unit..

To disable or enable all test cases in a project at the unit level:

1. Right-click anywhere in the project tree.

2. Select the Disable All Unit Tests command in the right-click menu to disable all cases in the project.
Select Enable All Unit Tests in the right-click menu to enable all cases in the project.

Modifying Test Cases and Units

To remove an existing test case or unit:

1. In the project tree, select the case or unit you want to modify. The controls for the properties of the
selected item will appear on the right side of the Unit Testing window.

2. Modify the properties as required. See the Test Unit Scope Options and Test Case Scope Options
topics in this chapter for more information about supported test unit and test case properties.

To rename an existing test case or unit:

1. In the project tree, select the case or unit you want to rename.

2. Press F2 key, or alternatively right-click the item and select Rename command in the context menu.

3. Type the new name and then press Enter key.

Modifying Project Properties

To add new unit to a test project:

1. In the Unit Testing window, click the Project Properties… icon on the Unit Testing window
toolbar. The controls for project properties will appear on the right side of the Unit Testing window.

2. Customize the project properties as required and save project changes. See the Test Project Scope
Options topic in this chapter for information on the supported project properties

CHAPTER 19, Unit-testing Database Code

 -305-

Testing Individual Test Cases and Units

To test working of a specific test case:

1. In the project tree select the case you want to test.

2. On Unit Testing window toolbar, click the arrow next to the Run Test icon and choose Run
Selected Test Case from the drop-down menu.

To test run all cases in a specific unit:

1. In the project tree select the unit you want to test.

2. On Unit Testing window toolbar, click the arrow next to the Run Test icon and choose Run
Selected Unit Test from the drop-down menu.

Running Unit Test Projects

To run a test project in interactive graphical mode:

1. Open the project you want to run. See the Opening and Saving Projects topic for details.

2. Click the Run Project button in the right bottom corner of the Unit Testing window.

See the Command Line Interface topic for details on how to run unit test projects from the command line in non-
interactive mode or from other applications.

Scheduling Unit Test Project Runs

To schedule an unit test project run in unattended mode:

1. Open the project you want to schedule for unattended execution. See the Opening and Saving
Projects topic for details.

2. Click the Schedule... button in the right bottom corner of the Unit Testing window. The SQL Assistant
– Task Schedule dialog will appear.

3. Enter the task schedule properties.

 Task Schedule

To schedule a one-time run, in the Schedule Task drop-down
select Once. Enter a date and time to start the task.

If you select the Daily option, you can enter the recurrence interval
for the task and the date and time to start the task. An interval of 1
produces a daily schedule, and an interval of 2 produces an every

CHAPTER 19, Unit-testing Database Code

 -306-

other day schedule. The task will start at the specified time each
day.

If you select the Weekly option, you can enter the recurrence
interval for the task, the date and time to start the task, and the
days of the week in which to start the task. An interval of 1
produces a weekly schedule, and an interval of 2 produces an
every other week schedule. The task will start at the specified time
on each of the specified days.

If you select the Monthly option, you can enter the months in
which you want to start the task and the weeks and days of the
month in which you want to start the task. You can also specify
that you want to start a task on the last day of each selected
month.

Task Properties

Task Name – the name of the scheduled task. This is a required property. By default, the
Unit Testing project name is used for the task name. The name cannot contain special
characters not allowed for use in file names.

User Name – the name of the Windows user account that will run the task. To specify a local
user name, enter the name in .\user format or machine\user format. To specify
domain user name, enter the user name in domain\user format.

 Important Notes: Do not confuse the Windows user account that will run the task
with the database connection user account. The Windows user account is used to
schedule and start the process. The database connection user account is used to
connect to the database server. The database connection user is specified in the
connection properties of the connection associated with the task. It may be different
from the Windows user account. However, if the connection properties are set to use
"Windows Authentication" method, the database connection will be attempted within
the security context of the Windows user account specified for the task.

See CHAPTER 2, Connecting to Your Database for more information on supported
connection methods and their properties.

Password – the password of the Windows user account that will run the task.

Connection – the database connection the task will use for the project run.

See the CHAPTER 15, topic Managing Connection Groups and Connection Settings for
more information on how to add, modify, and delete connections.

4. Click the OK button to create the scheduled task and to close the SQL Assistant – Task Schedule
dialog

CHAPTER 19, Unit-testing Database Code

 -307-

Testing in Stress-test Mode

The stress-test mode is useful for testing different kinds of concurrent access issues, for testing locking and
dead-locking, as well as for testing for performance and scalability issues in heavy workload conditions.

Use the options available on the Stress Test tab in test case definitions to specify stress test parameters:

 The Concurrent Instances option specifies number of independent threads to run the Test Case. If
you choose 10 instances, during the unit processing the test framework will create and start 10
threads each continuously executing the SQL code specified in the text case properties.

 Note: If the Concurrent Instances value is not specified, regular test case executing mode is
used.

 The Total Stress-test Duration (ms) option specifies in milliseconds how long to run the test case. If
a thread completes its execution within the specified duration and the specified number of executions
isn’t reached, it starts running the test case again, until it riches the specified Total Stress-test
Duration or riches the specified Number of Executions per Instance, whichever is reached first.

 Note: If the Total Stress-test Duration value is not specified, each concurrent instance executes
its test case as many times as specified by the Number of Executions per Instance for as long as it
takes.

 The Number of Executions per Instance option specifies how many times each thread needs to run
the unit test. In case the Total Stress-test Duration is specified too, and total execution duration
reaches that value, the test is stopped.

 Note: If the Number of Executions per Instance value is not specified, each concurrent instance
executes its test case continuously until the total duration reaches the Total Stress-test Duration
value.

Scrolling Content

Use the scroll bars in the Unit Testing window to scroll the project tree. Alternatively, you can use regular
keyboard navigation keys or the mouse wheel.

Resizing Content

To resize the Unit Testing window, drag the top edge of the window up or down, left or right.

To adjust sizes of left and right panes of the window, place mouse pointer over the right edge of the project tree
pane. The cursor shape changes to resize shape as on the following screenshot.

Drag the edge to adjust pane size. Make sure the cursor takes the right shape before dragging the pane edge.

CHAPTER 19, Unit-testing Database Code

 -308-

Project Scope Options

Unit testing projects typically group unit tests by application or business function. They have the following
properties:

Log

Save Log File – this option specifies whether a log file is written for the project run. The log file is used for
troubleshooting problems that might occur during the project run. The log file is written in plain text format
and contains progress of work and other diagnostic messages.

Log File – specifies the log file name. A log file is only created only if the Save Log File option is enabled.

Output Results

Save Unit Test Results – this option specifies whether an output file is written for the project run. The
output file records the results of the unit test in the selected output format. The output file is used for
analyzing test case results.

The output file is written at the end of the project run. The output file format depends on the selected output
file extension. The following formats are supported:

 XML – output results are recorded in XML format. Each node in the output file contains 6 named
properties:

unit name of the unit test

name name of the test case

active test case state, 1 means enabled, 0 means disabled

start start time of the test case run

finish end time of the test case run

status test case completion status, SUCCESS or FAILURE

Following is an example of XML output for a single test case project:

<utres><testcase unit="Sample Unit Test" name="Sample Test Case"
active="1" start="4/1/2010 2:00:46 PM" final="4/1/2010 2:00:46 PM"
status="SUCCESS"></testcase></utres>

 CSV – output results are saved in a comma-separated value file. The values are the same as in
the XML output format. See XML format description above for more details.

 TXT – output results are saved in a tab-separated value file. The values are the same as in the
XML output format. See XML format description above for more details.

 Important Notes:
SUCCESS or FAILURE values in the output file in the status property indicate test case completion
status based on the test case definition, not the code execution status. Positive test cases testing for
successful code execution have a completion status of SUCCESS when no errors occur during code
run. Negative test cases testing for valid errors also have completion status of SUCCESS if the
expected errors occur during code run.

CHAPTER 19, Unit-testing Database Code

 -309-

Add Time to File Name – this option, if enabled, causes SQL Assistant to add a date and time suffix to the
output file name. This ensures that every project run generates unique output file name and does not
override previous files.

Send Results

This group of options is used in conjunction with the Output Results group of project scope options. It
allows you to automatically email project execution output results. The results can be optionally emailed
after each project run or can be emailed only in case of unit test execution failures. It is intended for use in
automated unit test and code deployment systems invoking SQL Assistant's command line interface for
running database side unit test projects. See the Command Line Interface topic in this chapter for more
details.

The following options are supported:

To – semicolon-separated email addresses of the mail recipients

From – the email address of the message sender

SMTP Host – server name or IP address of your SMTP email server

SMTP Port – SMTP server port used by your server. The default SMTP port is 25.

Requires Authentication – specifies whether your email server requires user authentication

User – specifies a valid user name for your email server logon. This option must be specified if your server
requires user authentication and the Requires Authentication option is selected.

Password – specifies a valid password for the user name specified on the User option. This option must
be specified if your server requires user authentication and the Requires Authentication option is
selected.

Email Unit Test Project Results– specifies whether SQL Assistant should attach the project output file to
the email message. This option is ignored if the Save Unit Test Results option is not enabled or if an
output file name is not specified on the Output Results tab page.

Send Results – specifies when SQL Assistant sends project output email. The following values are
supported:

 Always – project results are automatically emailed after each project run

 On Failure – project results are emailed if at least one test case fails.

Unit Test Scope Options

Unit tests group individual cases by purpose or by target database object. Unit tests have two modifiable
properties:

Case Ordering - see the Adding New Unit Tests topic for details on how to reorder cases within units.

CHAPTER 19, Unit-testing Database Code

 -310-

Error Handling Action – controls case processing in the event of a case failure. The following options are
available:

 Always process all test cases – if selected, all cases within the selected test unit are processed
whether they complete successfully or not

 Stop on the first failed test case and go to the next unit – if selected, the failure of any test case
causes all remaining cases in the selected unit to be skipped and the next unit test to be run. If the
selected unit is the last in the project, the project run will end.

 Abort project on first failed test case – if selected, project execution ends immediately on failure of
any test case

Test Case Scope Options

Initialization

Test case initialization instructions are entered on the Initialize tab page. See the Common Concepts topic in
this chapter for more information on the purpose and intended usage of these instructions. The following
options are supported:

Test Data Generator Project – specifies SQL Assistant's Test Data Generator project file that you want to run
before the test case main code is run.

SQL – specifies the initialization SQL to be run before the test case main code. This option is provided to allow
the logical separation of test case initialization, main body, and cleanup code. You can enter any SQL batch
code understood by your database server. In some database servers, batch SQL code is called as a compound
SQL statement. For example, if you want to execute multiple PL/SQL statements in an Oracle database,
enclose them in a standard BEGIN…END block.

 Important Notes:

 Not all database servers support batch and standalone compound SQL statements. For example, you
cannot use multiple SQL statements in unit tests for Microsoft Access, MySQL, and certain versions of
DB2 database servers.

 SQL Assistant does not process output results of the executed initialization code. It only checks for
successful completion status. If database errors occur during the initialization code run, test case
execution fails. The error handling action set at the unit test level controls what happens in case of a
test case failure. See the Unit Test Scope Options topic for more details.

Execution

Test case main execution instructions are entered on the Execute tab page. See the Common Concepts topic
in this chapter for more information on the purpose and intended usage of these instructions.

This is the main test case instruction. It has only one option:

SQL – specifies the test case main SQL code to be run. The value specified must be either a single SQL

CHAPTER 19, Unit-testing Database Code

 -311-

statement or a valid SQL batch file.

 Important Notes:

 Not all database servers support batch and standalone compound SQL statements. For example, you
cannot use multiple SQL statements in unit tests for Microsoft Access, MySQL, SQLite, and certain
versions of DB2 database servers.

 Not all types of database servers support returning result sets from batch SQL statements. SQL
Assistant supports only directly output result sets. Result sets returned via reference cursors, output
parameters, and other indirect interfaces are not supported.

 The error handling action set at the unit test level controls what happens in case of a test case failure.
See the Unit Test Scope Options topic for more details.

 Success or failure of the executed SQL code is evaluated in the scope of the test case overall
definition, not the code execution status. Positive test cases testing for successful code execution
have successful completion status if no errors occur during the main SQL code run and the code
completes within the specific performance parameters. Negative test cases testing for valid errors also
have successful completion status if the expected errors occur during the main code run. You specify
test case evaluation type and metrics on the Check tab page.

 Tip: Enable logging options at the project level to log error messages returned by the database server and
test case timing statistics. The log file is helpful for troubleshooting execution errors after project run, especially
when the unit testing project run is part of a larger automated application build process.

Cleanup

Test case cleanup execution instructions are entered on the Cleanup tab page. See the Common Concepts
topic in this chapter for more information for the purpose and intended usage of these instructions.

The following options are supported:

SQL – specifies the cleanup SQL code to be run after execution of test case main code. This option is provided
to allow the logical separation of test case initialization, main body, and cleanup code. You can enter any SQL
batch code understood by your database server. In some database servers, batch SQL code is called as
compound SQL statement. For example, if you want to execute multiple PL/SQL statements in an Oracle
database, enclose them into standard BEGIN…END block.

 Important Notes:

 Not all database servers support batch and standalone compound SQL statements. For example, you
cannot use multiple SQL statements in unit tests for Microsoft Access, MySQL, SQLite, and certain
versions of DB2 database servers.

 SQL Assistant does not process output results of the executed cleanup code. It only checks for
successful completion status. If database errors occur during the cleanup code run, the test case
execution fails. The error handling action set at the unit test level controls what happens in case of a
test case failure. See the Unit Test Scope Options topic for more details.

CHAPTER 19, Unit-testing Database Code

 -312-

Status and Performance Checking

Test case execution evaluation instructions are entered on the Check tab page. See the Common Concepts
topic in this chapter for more information on the purpose and intended usage of these instructions.

The following options are supported:

Maximum Execution Time (ms) – the maximum allowed execution time, in milliseconds, of the main test case
SQL code. Enable this option to test that the test case completes within allowed time span. Following are some
helpful time conversions: 1000 ms = 1 second, 60000 ms = 1 minute; 300000 = 5 minutes.

Affected Row Count – specifies the number of affected rows. The significance of this value and the resulting
behavior differs for different server types. For example, MySQL servers return the number of affected rows on a
successful SQL query execution and a -1 value if a SQL query failed. Microsoft SQL Servers return the number
of affected rows for the last SQL statement executed within a successfully executed SQL batch, and 0 value if a
SQL batch fails. This is the same as the value of the @@ROWCOUNT variable. For Oracle servers, the
affected row is the same as the value of SQL%ROWCOUNT for the last executed SQL statement. Consult your
database server documentation for additional information.

Validate result – specify the method for result validation. The following methods are available:

 Do not check results, only check for errors – the values returned are not validated, the test case
checks for execution errors only.

 Check first value returned, fail test if it doesn't match the condition – the value returned is
compared to the expected result. The value is obtained from the first column of the first row of the first
result set returned by the database server after executing the main SQL code. This method is most
appropriate for testing queries expected to return single value, such as record count, return code, a
value expected after some data update.

 Check full result returned, fail test if it doesn't match the condition – the results are converted to
a text table with TAB characters as value separators and compared with the saved results. In order to
save the expected results, you will need to run the test case successfully and then copy the logged
results to the text case expected value field so that it can be compared to in future test case
executions.

 Validate using SQL script, fail test if exception raised – the test case will you user defined SQL
script to validate the values. This method is usable if the code executed makes changes in the
database or if the project is configured to save all test case results including all result sets returned to
a database table. You can enter one or more SQL queries to check the results. Your queries will be
executed as a single batch. If providing more than one SQL statement for the validation be sure to
enter an block of valid SQL code that your database can execute.

See Custom Validation Using SQL Code topic for an example demonstrating how to validate results
using SQL code.

 Four different options for validating results using custom Pascal, Visual Basic, C++, or
JavaScript. – the test case will execute your script. The test case fails if the script raises exceptions.

See Custom Validation Using Scripting Interfaces topic for examples demonstrating how to validate
results using SQL code.

CHAPTER 19, Unit-testing Database Code

 -313-

 Important Notes for "Check first value returned" method:

 Do not confuse the Result option with return codes of stored procedures or procedure output
parameters. Typically, this option is used in test cases that execute SELECT operations or stored
procedures that execute nested SELECT operations. Following is an example of a SQL Server-
specific test case that checks that all required components have been included when assembling a
business product:

SELECT count(DISTINCT ComponentID) AS major_components_count
FROM AdventureWorks.Production.BillOfMaterials
WHERE BOMLevel = 1

If there are 55 major components that must be used in the product and you expect a return value of 55
in the major_components_count column, then specify 55 as the test value for the Result option.

The code example in the following Error Processing section demonstrates how to check the return
codes of stored procedures and output parameters.

 If the data type of the first column of the first row of the first result set is not of type "string", SQL
Assistant converts the returned value to a string value and then compares it to the value in the Result
option. String conversion rules for numeric and date time values depend on the regional settings of the
computer running the unit test. These could be different from those specified in the database server
settings.

Error Processing – The unit test error evaluation type. The following values are supported:

 Fail test on error – specifies that a unit test will be considered to have failed under any of the
following conditions:

o The unit test completes with a SQL error

o Test execution does not meet the specified performance characteristics

o Test execution does not return the expected return value

This is a positive type of test case. A good example of a positive test case is a test to determine that a
table UPDATE operation using valid parameters succeeds without database errors, or that a stored
procedure EXECUTE operation using valid parameters succeeds without database errors.

 Fail test on success – specifies that a unit test will be considered to have failed under any of the
following conditions:

o The unit test completes successfully without a SQL error

o Test execution exceeds the specified performance characteristics

o The unit test fails

This is a negative type of test case. A good example of a negative test case is a test to verify that a
table UPDATE operation using invalid parameters fails with an error, or that a stored procedure
EXECUTE operation using invalid parameters fails with an error.

 Tip: When executing stored procedures, SQL Assistant checks for database errors, not the stored
procedure return code. SQL Assistant has no knowledge of meaning of the return code values. If you need
to evaluate the return code, add a return code check to the main test case SQL code and have it raise an

CHAPTER 19, Unit-testing Database Code

 -314-

error if the returned code is not what you expect. Here are examples for SQL Server specific test cases:

Check for stored procedure return code:

DECLARE @ret_value INT
EXEC @ret_value = my_procedure @param1 = 1, @param2 = 'ABC'
IF @ret_value <> 1 RAISERROR('Unexpected return value', 10, 1)

Check for stored procedure output parameter value:

DECLARE @out_value INT
EXEC my_procedure @param1 = 55, @param2 = @out_value OUTPUT
IF @out_value <> 1 RAISERROR('Unexpected output value', 10, 1)

Similar methods can be used for other database servers that support batch and standalone compound
SQL statements. Consult your database server documentation for more details.

Custom Validation Using SQL Code

The validation implementation totally depends on your business case. For example, if you are testing table
updates for a table with triggers writing log records to a different log table, your SQL code validation can check
records in the log table and it finds missing records, raise an exception. For example if you need to check the
actual results returned by the stored procedure you are testing, you can configure your unit testing project to
save test case results to a table in your database, and then in your SQL code check what is saved to that table,
and if meets the requirements. If your database supports running anonymous SQL blocks, you can use multiple
SQL statements in the validation. Else create a validation procedure or function in your database that you can
invoke using SQL syntax compatible with your database type. Here are examples for both described scenarios.

Example 1: use SQL code to check records in the application log table. This example is for SQL Server

IF NOT EXISTS (
 SELECT *
 FROM dbo.app_log
 WHERE module = 'SALES'
 AND dt > CURRENT_TIMESTAMP - 1
 AND line_txt LIKE '% orders updated %')
 RAISERROR('Test case failed, SALES ORDERS log record not found.', 16, 1)

Example 2: use SQL code to check records returned by the function. This example is for SQL Server. In this
example the project is configured to save test case results to QA.SA_UNITTEST_LOG table. The custom check
is for test case named "Test for missing results" which is in unit test named "Supplier batch test"

Test case Initialization section

EXEC sp_prepare_supplier_data

Test case Execute section

DECLARE @today DATE = CAST(GetDate() AS DATE)
DECLARE @last_batch_id INT
SELECT @last_batch_id = MAX(batch_id) FROM supplier_batch WHERE batch_date = @today
EXEC sp_run_batch @date = @today, @batch_id = @last_batch_id

CHAPTER 19, Unit-testing Database Code

 -315-

Test case Check section

-- here we verify batch processing results returned from sp_run_batch
-- and make sure it processed all suppliers and returned a value for each of them

DECLARE @misisng_results INT

SELECT @misisng_results = count(*)
FROM lookup_tables.suppliers AS s
 LEFT JOIN qa.sa_unittest_log AS sa
 ON s.SupplierID = sa.Results.value('results/table[@id=1]/row/cell[@Name=SupplierID]',
INT)
 AND sa.unit_test = 'Supplier batch test'
 AND sa.test_case = 'Test for missing results'
 -- AND if sa_unittest_log wasn't truncated earlier, add subquery for last run
WHERE sa.Results.value('results/table[@id=1]/row/cell[@Name=SupplierID]', INT) IS NULL

IF @misisng_results > 0
 RAISERROR ('sp_run_batch procedure failed to return results for all suppliers', 16, 1);

Custom Validation Using Scripting Interfaces

In the validation scripts you can use the complete set of supporting scripting functions and extensions, and you
have full access to the results returned by the result set. The results are stored in the data tables accessible
through the Connection reference. For more information on the supported scripting interfaces, their capabilities
and functions, refer to the PluginDeveloperGuide.pdf document.

Example 1: use Pascal scripting to check number of results returned. If now equal to two, fail test case:

Test case Check section

begin
 if (Connection.DataTableCount <> 2) then
 RaiseException('My validation error 123. Incorrect number of results returned.');
end.

Example 2: use Pascal scripting to check number the value in the second row, second column is 55.

Test case Check section

begin
 // note, in Pascal all array references are zero based

 if (Connection.DataTableCount <> 1) then
 RaiseException('My validation error 210. Incorrect number of results returned.');
 if (Connection.DataTables[0].RowCount < 2) then
 RaiseException('My validation error 211. Incorrect number of records returned.');
 if (Connection.DataTables[0].Cells[1, 1] <> '55') then // column #2, row #2
 RaiseException('My validation error 212. Incorrect value returned.');
end.

CHAPTER 19, Unit-testing Database Code

 -316-

Using Custom Templates for Generation of Test Cases

Custom templates allow you to quickly generate application specific test cases. The process involves two steps:

 One-time setup of custom template groups and associated test case templates or, alternatively,
customization of default template groups pre-installed with SQL Assistant

 Application of templates to objects in the database or business scenarios.

This graphical example demonstrates how to set
up custom templates. See the following topics for
specific instructions on creating and modifying
templates.

CHAPTER 19, Unit-testing Database Code

 -317-

This graphical example demonstrates how to use
previously set up custom templates to use the bulk
test case generation process for creating unit tests
and their test cases

Customizing Test Case Templates

Adding and Removing Unit Test Types

To add a new custom unit test type:

1. Double-click the SQL Assistant icon in the Windows system tray. The Options dialog will appear.

2. Click Unit Tests tab page.

3. Click any unit test type name in the list in the top left corner of the dialog.

4. Click the Plus Sign icon in the top left corner of the Unit Tests tab page to add a new type.

CHAPTER 19, Unit-testing Database Code

 -318-

5. Enter a descriptive name for the new unit test type. The new name will be also used for the new menu
item that SQL Assistant will create for you in the Units Tests main window. Note that the trailing text in
brackets is automatically omitted in the menu. For example, if you enter the name "My Templates
(SQL Server)" for the new type, "My Templates" will be displayed in the main window menu.

 Tip: You can use DB, $SCHEMA$, and $OBJECT$ macro-variables in test case and unit test
names to generate object specific names. See the Macro-variables and Dynamic Code Generation
topic in CHAPTER 7 for more information about supported code macros and their usage.

6. On the right side of the Options dialog, use the SQL dialect property to choose the correct database
server type to be associated with the new template type. It is important that you select the correct
database type. SQL Assistant uses different code execution and validation methods for different
database types.

7. On the right side of the Options dialog, choose the database object type to be associated with the test
cases in the new unit test type. This selection controls the kind of object selection dialog displayed on
the screen for test cases in the new unit test type. For more information, see the graphical examples in
the previous topic Using Custom Templates for Generation of Test Cases.

8. Add new test case templates as instructed in the Adding and Removing Test Case Templates topic.

9. Click the OK button to save all changes and close the Options dialog.

 Tip: Drag-and-drop unit test type names in the left-top list to rearrange their order. You can use this
method to push most commonly used types to the top of the list and minimize the amount of scrolling and
clicking required to customize test case templates.

To delete an existing unit test type and all associated test case templates:

Follow steps 1 to 2 as described above. In place of step 3, select the unit test type you want to delete. Click

the Delete Sign icon in the top left corner of the Unit Tests tab page.

 Tip: To temporarily disable any unit test type without deleting it, deselect the checkbox in front of the type
name. This will remove the disabled unit test type name from SQL Assistant menus. The unit test type can be re-
enabled at a later time if you want to use it again.

CHAPTER 19, Unit-testing Database Code

 -319-

Adding and Removing Test Case Templates

To add new custom test case template:

1. Double-click the SQL Assistant icon in the Windows system tray. The Options dialog will appear.

2. Click the Unit Tests tab page.

3. In the top left corner of the Options dialog, click the name of the unit test type to which you want to add
a new test case template.

4. Click the Test Cases box below the types list.

5. Click the Plus Sign icon in the top left corner of the Unit Tests tab page.

6. Enter a descriptive name for the new test case template.

7. On the right side of the Options dialog, enter the SQL code for the new test case template.

 Tip: The template code may contain references to macro-variables supported by SQL Assistant.
You can use the drop-down menu in the top right corner of the Options dialog to paste macro names
into the template code. See the Macro-variables and Dynamic Code Generation topic in CHAPTER 7
for more information about supported code macros and their usage.

8. Click the OK button to save all changes and close the Options dialog.

To delete an existing test case template:

Follow steps 1 to 3 as described above. In place of step 4, select the test case template you want to delete

from the Test Cases box. Click the Delete icon in the top left corner of the Unit Tests tab page.

 Tip: To temporarily disable any test case template type without deleting it, deselect the checkbox in front of the
template name. SQL Assistant will ignore the disabled template when generating test cases using the unit test type
of the selected template. The template can be re-enabled at a later time if you want to use it again.

Modifying Templates

To modify an existing test case template:

1. Double-click the SQL Assistant icon in the Windows system tray. The Options dialog will appear.

2. Click the Unit Tests tab page.

3. In the unit test type list in the top left corner of the Options dialog, click the name of the unit test type
containing the template you want to modify.

4. In the Test Cases box, click the name of the test case template you want to modify.

5. On the right side of the Options dialog, modify the SQL code for the test case template as needed.

 Tip: The template code may contain references to macro-variables supported by SQL Assistant.
You can use the drop-down menu in the top right corner of the Options dialog to paste macro names
into the template code. See the Macro-variables and Dynamic Code Generation topic in CHAPTER 7

CHAPTER 19, Unit-testing Database Code

 -320-

for more information about supported code macros and their usage.

6. Click the OK button to save all changes and close the Options dialog.

Command Line Interface

To run a unit testing project from a DOS command line window, use the following command:

sacmd ut:"path-to-project-file " sas:"path-to-sa-settings-file" conn:"myserver (userid)"

Substitute values in the command as follows:

path-to-project-file The full file name of the unit testing project file

path-to-sa-settings-file The full file name of the SQL Assistant settings file containing the required
database connection parameters. This is an optional parameter. If not
specified, the default path for the current user account is used.

myserver (userid) The database connection name

Example:

cd "C:\Program Files (x86)\SQL Assistant 12"
sacmd ut:"C:\Projects\ Testing\dev_ut_pos.xml" sas:"%APPDATA%\SQL Assistant\12.4\sqlassist.sas" conn:"DEV001 (sa)"

 Important Notes:

 Unit testing project files are XML files that you save using the Unit Testing graphical interface

 SQL Assistant settings file location is version and user profile specific. See notes in Overview topic in
CHAPTER 51 for details on how to find out the location of that file.

 You can find out the connection name in DB Connections group of settings on DB Options tab page in
SQL Assistant Options. In case the connection requires user id and password, make sure that both
are saved in the settings. The command line interface does not display any interactive prompts and is
unable to prompt for credentials during command processing. For more information about storing and
managing database connections, see Managing Database Connections topic in CHAPTER 48.

 CHAPTER 20, SQL Syntax Checker

 -321-

CHAPTER 20, SQL Syntax Checker

Overview

SQL Assistant's SQL Syntax Checker enables you to check for SQL syntax for validity without actually having
to execute the code. Using this tool you can find and correct any errors, ensuring that your code will work
correctly when executed.

SQL Assistant supports two modes for the SQL Syntax Checker: Automatic (near-real time) mode and Manual
mode.

Automatic Mode

In Automatic mode, SQL Assistant constantly checks the syntax of SQL code entered into the editor and
displays warnings whenever an error is encountered. Warnings are displayed as colored stripes on the Syntax
Indicator Bar displayed on the right side of the editor window. Red stripes indicate syntax errors. Yellow stripes
indicate syntax warnings. The position of a stripe on the Syntax Indicator Bar indicates the relative position of
the error or warning in the code.

In Automatic mode, SQL Assistant also uses red, wavy lines to underline syntax errors in the code. To see the
actual error or warning message, rest the mouse over the indicators on the Syntax Indicator Bar or over the
underlined text in the editor.

To quickly navigate to lines of code containing syntax errors, click on the corresponding error indicators
displayed on the Syntax Indicator Bar.

 Tip: The small box at the top of the Status Indicator Bar is an overall syntax status indicator for the current
file. A green checkmark in this box indicates there are no errors or warnings in the current file. A red stop sign
indicates the presence of possible errors during code execution.

 CHAPTER 20, SQL Syntax Checker

 -322-

Manual Mode

In Manual mode, the syntax checker outputs the results of a syntax check to a separate window named Syntax
Check. Each message in the Syntax Check window begins with the line number of the code line where a
syntax error has been found. The line number is followed by the text of the message. In certain cases, several
messages might be reported for the same SQL statement. In this case, several lines with the same line number
will appear in the Syntax check window.

 Important Notes:

 The SQL Syntax Checker uses whatever syntax checking method is provided by your database
server software. It is your database software, not SQL Assistant, that validates the code and
reports on any syntax errors encountered.

 Because database behavior and available syntax checking methods differ between database servers,
the results of a syntax check may depending on the environment.

 All error messages returned by the database are displayed in the Syntax Check tab. If no syntax
errors are found, a simple Syntax Check Completed message is displayed.

 Important Notes for Oracle Targets: Oracle's methods for parsing and checking syntax of DDL
statements causes these statements to be executed immediately. You are advised to use SQL Syntax check
selectively and apply it to DML statements only.

Special Considerations

The syntax checker internally invokes the appropriate database server APIs for performing SQL syntax checks.
Errors and warnings that appear in the syntax checking pane or on the syntax bar are errors and warnings
reported by your database server.

 CHAPTER 20, SQL Syntax Checker

 -323-

Syntax checking results can be affected by the database connectivity layer. Certain types of database drivers
perform pre-parsing of SQL commands on the client side and perform internal command conversion before
commands reach the database server. Because different drivers can use different conversion rules, syntax
checking results may vary in different environments with different connectivity methods and driver versions.

 Important Notes for Microsoft Access:

The behavior of the default ODBC driver installed on most Windows systems may significantly affect syntax
checking and query execution results for Microsoft Access databases. Certain types of queries that can be
successfully executed in Microsoft Access fail to execute when submitted via an ODBC connection. These
queries also fail to produce valid syntax check results. Keep in mind that SQL Assistant connects to Microsoft
Access targets using an ODBC driver and is therefore affected by driver behavior. For example, queries that
use double quotes as string delimiters will make SQL Assistant and the driver report various syntax errors that
are difficult to understand. This problem occurs because, for compliance with ANSI standards, the driver
expects double quotes only as table and column name delimiters. You can avoid this problem by using only
single quotes as string delimiters.

Example: The following query will execute successfully in the Microsoft Access IDE, but will fail to execute and
fail syntax check in SQL Assistant:

SELECT * FROM Cities WHERE name = "Tokyo";

The following query will successfully execute and pass syntax check:

SELECT * FROM Cities WHERE name = 'Tokyo';

 Important Notes for Oracle systems:

Syntax checking of DDL commands is not currently supported, because this feature it is not supported by
Oracle database servers.

 Important Notes for MySQL systems:

Syntax checking may work sporadically or may not work at all if you use a MySQL ODBC driver with a version
number less than 5.1.4.

Syntax checking in a MySQL server version prior to version 5.0.34 may cause MySQL server to crash. This is
caused by a known MySQL bug. It is recommended that you upgrade to MySQL server version 5.0.34 or later
to resolve this issue.

 Important Notes for all database systems:

SQL Assistant takes into account SQL batch delimiters when parsing and syntax checking SQL code . Each
SQL batch is evaluated independently. As a result, any variables and temporary objects declared in one batch
are not visible to other batches, and references to such objects will be reported as invalid.

 CHAPTER 20, SQL Syntax Checker

 -324-

Example: The following SQL code will fail a syntax check:

SELECT * INTO #temp_table FROM Cities WHERE name = 'Tokyo'
INSERT INTO #temp_table SELECT * FROM Cities WHERE name = 'Montreal'
go

SELECT * FROM #temp_table
go

In this example, the last SELECT statement will report syntax errors indicating that the temporary table
#temp_table doesn't exist. This is because the second batch is checked independently and, in that context,
the referenced table is not valid. If the entire script is executed, however, and the first batch completes
successfully, the second batch will execute successfully as well.

Working with SQL Syntax Checker Automatic Interface

Starting the SQL Syntax Checker

By default, the SQL Assistant's Syntax Checker is set to operate in automatic mode. You do not need to do
anything special. The Syntax Checker activates automatically after a few seconds of inactivity after it senses
code changes in the current file.

Controlling Syntax Check Frequency

You can use either of the following methods to adjust SQL syntax checker frequency:

 Use SQL Assistant's system tray icon menu (see the Using System Tray Icon Menu topic for details)
and choose the Target / Check SQL Syntax / Auto Check submenu. In the submenu select the
desired frequency.

 Use target editor's context or top-level menus, if menu integration option is enabled (see the Using
Context and Top-level Menus topic for details). In that menu select the SQL Assistant / Check SQL
Syntax / Auto Check submenu. In the submenu select the desired frequency

 Tip: If you are working with a slow database connection or a busy database server, it is recommended that
you choose a low frequency value. If you are working with a fast connection, it is recommended that you
choose a higher frequency value so the error and warning indicators appear more quickly.

Turning off Automatic Syntax Checking Mode

You can use either of the following methods to turn of automatic SQL syntax checking mode.

 Use SQL Assistant's system tray icon menu (see the Using System Tray Icon Menu topic for details)
and choose the Target / Check SQL Syntax / Auto Check / Off command.

 Use target editor's context or top-level menus, if menu integration option is enabled (see the Using
Context and Top-level Menus topic for details). In that menu, select the SQL Assistant / Check SQL
Syntax / Auto Check / Off command

 CHAPTER 20, SQL Syntax Checker

 -325-

SQL Assistant remembers your settings for the target and will not use automatic mode until you set the syntax
check frequency value.

Working with SQL Syntax Checker Manual Interface

Starting the SQL Syntax Checker

You can use either of the following methods to manually start the SQL syntax checker.

 Use the default Ctrl+Shift+F9 hot key or a custom hot key (if you changed the default key).
 Use SQL Assistant's system tray icon menu (see the Using System Tray Icon Menu topic for details)

and choose Target / Check SQL Syntax command.
 Use target editor's context or top-level menus, if menu integration option is enabled (see the Using

Context and Top-level Menus topic for details). In that menu, select SQL Assistant / Check SQL
Syntax command.

 Tip: As with all other SQL Assistant functions, the SQL Syntax Check function can be applied either to the
entire file in the editor or just to the highlighted text. If no text is highlighted, SQL Assistant validates the entire
file.

The results of the syntax checking are displayed in the Syntax Check Output window

Scrolling Syntax Check Content

Use the scroll bars available in the Syntax Check window to scroll the content. Alternatively, you can use the
keyboard navigation keys or the mouse wheel.

Locating Syntax Errors

Another helpful feature of the Syntax Check Output window is dynamic code highlighting. When you move
mouse pointer over an error message displayed in the Syntax Check Output window, SQL Assistant highlights
the referenced SQL statement in the target editor if the statement is visible in the editor window. If the
referenced statement is not visible, click on the error message and SQL Assistant will automatically scroll to
that position in the file and set the cursor to the beginning of the referenced SQL statement.

Resizing Content

To resize the Syntax Check window, drag the top edge of the window up or down. Note that when you place
mouse pointer over the top edge of the Syntax Check window the cursor shape changes to resize shape as on
the following screenshot.

 CHAPTER 20, SQL Syntax Checker

 -326-

Make sure the cursor takes the right shape before dragging the window edge.

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -327-

CHAPTER 21, SQL Performance Monitoring and
Tuning

Overview of Performance Tools

SQL Assistant provides a number of tools for analyzing and tuning database performance including
the following

 Performance dashboards, see Performance Dashboards

 Background SQL code performance analyzer, see Overview of SQL Performance Analyzer
and Execution Plans

 Graphical query execution plans, see SQL Execution Plans and Query Tuning

 SQL Profiler, see
SQL Server SQL Profiler
Oracle SQL Profiles
PostgreSQL SQL Profiler

 "Top SQL" monitors for identifying long running recurring SQL queries, as well as top most
resource intensive SQL queries and procedures.

 Database load testing tools, see CHAPTER 36, Testing Database Performance Under
Heavy Load

 Index and Table defraggers

 Historical SQL query performance and execution plans
Query Store Explorer and reports for SQL Server
Active Session History Explorer and reports for Oracle (ASH Explorer)
Automatic Workload Repository Explorer and reports for Oracle (AWR Explorer)
See Reviewing and Comparing Historical Execution Plans

 Updating schema object statistics, see Updating Schema Object Statistics and also
Database and Schema Scope Aggregated Statistics

Authorization Requirements

You generally need DBA level authorization for using Performance Dashboards and Top SQL monitors.

There are no special authorization requirements for using background SQL code performance analyzers and
query execution plans. However when working with Oracle and DB2 servers you would need to have access to
the existing EXPLAIN PLAN tables or have sufficient permissions to create new plan tables.

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -328-

The authorization requirements for using the Database Benchmark utility depend on your custom test cases
and not specific to the internal working of that utility.

Performance Dashboards

The database performance dashboards available in SQL Assistant SQL Editor enable you to monitor your
database server performance across key dimensions, including but not limited to resource utilization, CPU and
memory load, buffer hit ratios, active queries, wait times, applications and users connected to the database
server, and other key metrics. The enable you to quickly identify root causes of slow database performance,
database server usage patterns, and help you with figuring out what to fix to improve the performance.

As of SQL Assistant version 12.4 performance dashboards are supported for the following database servers:

 SQL Server v2008 and later, all editions

 Azure SQL Database and Azure SQL Managed Instances

 Oracle 11.1 and later, all editions

 DB2 for Linux, UNIX and Windows v10.1 and later; all editions

 PostgreSQL v9.4 and later

 MariaDB v10.0 and later

 MySQL v5.6 and later

Requirements

All performance dashboards enable to monitor your database servers remotely from your workstation. The
dashboards use agent-less architecture, and do not consume any server resources when the dashboard is not
in use.

There is a special requirement though for MySQL and MariaDB servers. If you choose to collect operation
system performance metrics including CPU and memory usage and also to monitor the disk input/output
subsystem, you would need to deploy open source SQL Assistant provided performance data collection library.
The direct onscreen instructions for downloading and installing that library are provided within the performance
dashboard screen.

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -329-

In addition, for MySQL and MariaDB you will need to enable their performance_schema schema and stats
collection, and for analysis slow queries and their bottlenecks, you would need to enable the Slow Query Log
feature.

For PostgreSQL servers you will need to enable the pg_stats_statement extension if you choose to utilize the
Slow Queries monitor.

Overview of SQL Performance Analyzer and Execution Plans

SQL Assistant automatically checks your SQL code for potential performance issues while you make changes
in the editor. It analyzes the semantic structure of the code and referenced objects, and highlights problematic
places while offering suggestions for performance improvements. Problem sections in the code are underlined
with wavy, orange lines. In addition orange stripes are displayed on the Syntax Indicator Bar to the right of the
editor window enabling at a glance visualization and quick code navigation. The orange stripes indicate
locations of performance warnings. The position of a stripe on the Syntax Bar marks the relative position of the
corresponding warning in the code.

Performance analysis options and behavior can be customized in SQL Assistant's Options. See CHAPTER 48,
Customizing Performance Analysis Options topic for more details.

Performance Evaluation Rules

SQL Assistant uses numerous performance evaluation rules to check your code for potential performance
issues. Some rules are static and based on best database coding practices such as improper references to
indexed or non-indexed columns. For example, SQL Assistant checks your code for masked indexed columns
in expressions within WHERE and JOIN clauses. Other rules are dynamic and based on evaluation results of
estimated code execution plans. For example, SQL Assistant looks for various expensive operations, such as
full table scans in tables containing lots of records. Note that estimated execution plans are provided by your
database server. SQL Assistant relies on the database engine optimizer suggestions for estimated code
execution plans.

The following screenshot shows a couple of performance warnings related to incorrect use of indexes.

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -330-

 Tips:

 To see a count of the number of records in a database table, rest the pointer over the table name for a
couple seconds. A yellow hint window will appear with the row count, table column definitions, column
indexes, and other useful information.

 Rest the cursor over a column name highlighted in the performance warning to see a performance
improvement suggestion.

 Click the "Info" link in the hint to see table performance analysis statistics (if this information is
provided by your database). In SQL Assistant options, you can customize row-count thresholds and
other parameters controlling SQL Assistant's performance analysis behavior.

SQL Execution Plans and Query Tuning

Overview of Query Tuning

A SQL query execution plan is a series of steps chosen or estimated by the database server to execute your
query. It is important to generate and review execution plans for your application queries. Knowledge of their
execution plans is necessary for query performance tuning. Analyzing and tuning of SQL queries is tedious yet
indispensable. It involves several basic steps:

1. Identifying poorly performing application processes and the associated database queries.

2. Analyzing query execution plans and identifying the overly expensive operations that consume large
amounts of the system resources.

3. Implementing corrective actions to resolve problems identified in steps 1 and 2 above.

Query Execution Plans

SQL Assistant provides you with an advanced graphical Execution Plan tool for visualizing and analyzing SQL
query plans. With the help of the graphical plan, you can perform checks such as the following:

 Identify places in the code where you should add indexes to tables to improve performance of data
lookup operations.

 Check whether the database query optimizer joins tables in an optimal order.

 Evaluate how resources are spent on each internal operation.

 Compare relative cost of different query steps and query versions, rewrite the query using different
types of SQL constructs or operators returning the same results. For example, compare query
versions using IN (list) operator vs. EXISTS (subquery), CTE query version vs. regular query version,
and so on.

To generate a query execution plan:

1. In your SQL Editor, highlight the query you want to analyze.

2. Right-click the selection to display the context menu. In the SQL Assistant submenu, click the
Execute/Schedule SQL -> Show Execution Plan command. The Execution Plan tab will open at the
bottom of the editor window.

SQL Assistant presents execution plans in several formats that can be accessing differtent tabs in the Explain

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -331-

Plan pane:

1. Tree - An expandable graphical tree view grouping related and nested operations within the plan.

The names of individual operands and operations within the plan differ for different types of database
servers. Consult your database server documentation for details on supported operation names, their
meaning and usage.

Plan subtrees can be collapsed to hide reduce the clutter and to focus on the costliest steps

 Tip: To quickly collapse and expand multiple levels in a long, multi-page plan, use right-click context
menu in the Execution Plan tab. Choose either a specific level to collapse or expand all tree nodes to; or
choose Collapse All context menu command to collapse the tree to its root level.

2. Diagram - A graphical diagram with expandable nodes. A diagram appearance can be customized using
its toolbar providing controls for diagram orientations, block alignment, zooming, choice of performace
metrics shown in the diagram. Mouse-over hints provide additional information for various operations.

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -332-

The names of individual operands and operations within the diagram differ for different types of database
servers. To see details for a specific step, mouse-over the step and rest cursor for two seconds.

Plan subtrees can be collapsed to reduce the clutter. To collapse or expand a subtree, click the [-]
connector port icon near the first subtree block. The subtree will hide and the block's connector port icon
will change to [+] to indicate the block is now collapsed.

The Bird's Eye View control supports quick diagram navigation for complex diagrams stretching across
multiple pages. In the control, drag the red rectangle to scroll the diagram and move the viewport.

For your convenience the diagram can be oriented in four different ways with the final step appearing in the
beginning or end of the plan.

Use the toolbar menu button to choose the preferred orientation. The following options are supported:

To switch between compact display format and wide display format with step alignment, use the toolbar
button.

 Tip: To display more diagram elements, you can use the Zoom control available in the Explain Plan
toolbar. You can also free more space by hiding the Bird's Eye View control shown to the left of the
diagram. Right-click anywhere in an empty part of the diagram, and click then Bird's Eye View command
in the context menu. To restore the control, repeat the above operation.

3. Chart – An interactive chart for comparing relative performance cost and other metrics of different query
steps. Use the Highlight drop-down list on the Execution Plan toolbar to choose a different performance
metric for steps comparison. The screenshot below demonstrates sample query plan with a steps
comparison by estimated number of rows read.

Mouse-over different names in the chart legend or the chart bars to have them highlighted in red in both
legend and in the chart area as demonstrated on the screenshot.

4. Text - A raw plan returned by the database server. The actual presentation and formatting of the raw plan
varies for different database server types. This is the data that SQL Assistant uses and parses internally to
render the tree-view based plan and diagram based plan, as well as the data for the steps comparison

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -333-

chart. The screenshot below demonstrates the raw plan in XML-format returned by SQL Server. Other
supported raw format presentations are plain text, JSON, and tabular text.

Additional raw format specific commands and options are available via right-click menu in the Text tab.

5. SQL – this tab is used to show the SQL statement for which the plan is generated. It might be usefull if you
choose to generate plans for a script with multiple statements, and to compare plans for different variants
of the same query. For each statement a separate Explain Plan pane will be opened, and the statement
text will be copied to its SQL tab.

Reading and Understanding Execution Plans

The names of operands and operations shown in the execution plan differ for different types of database
servers. The names of individual operands and operations within the plan differ for different types of database
servers. Consult your database server documentation for details on supported operation names, their meaning
and usage. The following links are provided for your convenience:

DBMS Explain Plan documentation

Microsoft SQL Server http://msdn.microsoft.com/library/ms191158.aspx

DB2 ftp://ftp.software.ibm.com/ps/products/db2/info/vr9/pdf/en_US/db2tve90.pdf

Oracle https://docs.oracle.com/cd/B19306_01/server.102/b14211/ex_plan.htm#i23461

MySQL http://dev.mysql.com/doc/refman/5.7/en/explain-output.html

MariaDB https://mariadb.com/kb/en/explainhttps://mariadb.com/kb/en/explain

Sybase ASE https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00743.
1570/html/queryprocessing/queryprocessing44.htm

Sybase ASA https://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.12.0.1/dbusa
ge/queryopt-s-5395615.html

PostgreSQL and
Greenplum

http://wiki.postgresql.org/wiki/Using_EXPLAIN

http://msdn.microsoft.com/library/ms191158.aspx�
ftp://ftp.software.ibm.com/ps/products/db2/info/vr9/pdf/en_US/db2tve90.pdf�
https://docs.oracle.com/cd/B19306_01/server.102/b14211/ex_plan.htm%23i23461�
http://dev.mysql.com/doc/refman/5.7/en/explain-output.html�
https://mariadb.com/kb/en/explainhttps:/mariadb.com/kb/en/explain�
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00743.1570/html/queryprocessing/queryprocessing44.htm�
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00743.1570/html/queryprocessing/queryprocessing44.htm�
https://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.12.0.1/dbusage/queryopt-s-5395615.html�
https://infocenter.sybase.com/help/topic/com.sybase.help.sqlanywhere.12.0.1/dbusage/queryopt-s-5395615.html�
http://wiki.postgresql.org/wiki/Using_EXPLAIN�

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -334-

Amazon Redshift https://docs.aws.amazon.com/redshift/latest/dg/c-the-query-plan.html

Teradata https://docs.teradata.com/r/Teradata-VantageTM-SQL-Data-Definition-Language-
Detailed-Topics/June-2020/BEGIN-QUERY-CAPTURE-COMMENT/BEGIN-QUERY-
LOGGING/Logging-Options-for-BEGIN-QUERY-LOGGING

Snowflake https://docs.snowflake.com/en/sql-reference/sql/explain

SQLite https://www.sqlite.org/eqp.html

 Important note: SQLite's EXPLAIN QUERY PLAN command output
provides only plan steps and predicates. No performance information like
operation cost, CPU and I/O metrics, or estimated row counts is returned
by the command. The plan output can be used identify which indexes are
being used or not used, and use that to tune SQLite queries.

Query Plan Types, Estimated vs. Actual

SQL Assistant supports two types of query execution plans: Estimated and Actual.

The Estimated plans are generated without actually executing the query. The database query optimizer (also
commonly known as query planner) creates query execution plan after considering available table and index
statistics. The query optimizer may consider a number different execution plans and choose one that it
estimates is going to be most efficient and return results faster.

The Actual query plans are created after the query is sent to the database for processing, and the plan contains
the steps that were performed by the database and the actual metrics and details about the query steps, their
execution time, the actual number of rows read or updated in the database.

 Important notes: Collecting the Actual query execution plan requires executing queries in the
database. Generating plans for UPDATE, DELETE, and INSERT queries may result in the data changes.

Not all databases provide actual query execution plans readily available. SQL Assistant uses various
techniques to collect run-time metrics and details of actual query steps, which are broadly described below:

SQL Server - STATISTICS XML parameter is enabled during the query execution to make SQL Server collect
and report query execution metrics.

DB2 UDB: - A combination of event monitors and SYSPROC.EXPLAIN_FROM_ACTIVITY procedure is used
to gather execution step details and timing. In order to use the Actual plans, you must have CREATE EVENT
MONITOR privileges and permissions to execute the SYSPROC.EXPLAIN_FROM_ACTIVITY procedure.

PostgreSQL and Greenplum– EXPLAIN ANALYZE is used to retrieve execution steps metrics.

Oracle - DBMS_XPLAN package is used with the query handle to retrieve run-time query plan and metrics after
the query execution. In order to use the Actual plans, you must have execute privileges for the DBMS_XPLAN
package.

MySQL 5.7 and later – A combination of EXPLAIN and query optimizer traces is used to retrieve additional
execution details. Table aliases referenced in the plan are substituted with the actual table names to make the
plan more useful, also generic subquery references in the plan like SELECT #N are replaced with the actual
subquery text to make query plans easier to read.

 Important Note: Be sure to use LibMySQL version 8.0 or later for your database connections. Earlier
MySQL connector versions don't return the complete optimizer trace data and that impacts the quality of the
constructed Actual execution plans.

https://docs.aws.amazon.com/redshift/latest/dg/c-the-query-plan.html�
https://docs.teradata.com/r/Teradata-VantageTM-SQL-Data-Definition-Language-Detailed-Topics/June-2020/BEGIN-QUERY-CAPTURE-COMMENT/BEGIN-QUERY-LOGGING/Logging-Options-for-BEGIN-QUERY-LOGGING�
https://docs.teradata.com/r/Teradata-VantageTM-SQL-Data-Definition-Language-Detailed-Topics/June-2020/BEGIN-QUERY-CAPTURE-COMMENT/BEGIN-QUERY-LOGGING/Logging-Options-for-BEGIN-QUERY-LOGGING�
https://docs.teradata.com/r/Teradata-VantageTM-SQL-Data-Definition-Language-Detailed-Topics/June-2020/BEGIN-QUERY-CAPTURE-COMMENT/BEGIN-QUERY-LOGGING/Logging-Options-for-BEGIN-QUERY-LOGGING�
https://docs.snowflake.com/en/sql-reference/sql/explain�
https://www.sqlite.org/eqp.html�

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -335-

Actual query plans are not supports with MySQL versions less than 5.7.

MariaDB 10.4 and later – A combination of EXPLAIN and query optimizer traces is used to retrieve additional
execution details.

 Important Note: Be sure to use LibMariaDB version 10.4 or later for your database connections. Earlier
MariaDB connector versions don't return the complete optimizer trace data and that impacts the quality of the
constructed Actual execution plans.

Actual query plans are not supports with MariaDB versions less than 10.4.

Redshift – Additional query statistics are retrieved from SVL_QUERY_REPORT function after the query
execution and merged with the estimated query plan.

Snowflake – The query result cashing is disabled during query execution. The query operators statistics are
retrieved after query execution using GET_QUERY_OPERATOR_STATS function and merged with the
estimated query plan.

Teradata – The query capture facility QCD is used with detailed STATSUSAGE option to trace query
execution. . After the query execution its operators statistics are retrieved from TDQCD.XMLQCD. In order to
use the Actual plans, you must have INSERT privileges for TDQCD and permissions to execute the
SYSPROC.EXPLAIN_FROM_ACTIVITY procedure.

Other databases – Actual query execution plans for the databases not listed above are not currently
supported.

Locating Performance Impacting Operations for Query Tuning

SQL Assistant provides an easy one-click method to find the most expensive operations in a query. Click on the
column header for a specific parameter to locate and highlight the costliest operations for that parameter.

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -336-

 Tips:

 The highlighted lines indicate "performance-expensive" operations. Red numbers in the highlighted
lines indicate specific "performance-expensive" factors. The highlighting can help you with identifying
operations in a query where tuning may be useful for improving query performance.

 The comparative analysis and highlighting of "performance-expensive" operations is based on the
chosen performance cost criteria, for example, CPU Cost, I/O cost, and so on. Different criteria may
produce different analysis results. You can choose the cost criteria metrics in the Highlight drop-down
list on the Execution Plan toolbar.

 You can also use the Chart tab for the comparative analysis. The bars on the chart represent
performance cost of different operations making it easy to identify the most expensive operations. You
can find an example chart in the Query Execution Plans topic.

Comparing Execution Plans of Different Query Versions

SQL Assistant's multi-tabbed interface enables easy comparison of execution plans for different versions of the
same query. A new tab and pane are opened for every query plan generated. Enter multiple query versions of
the query you are tunning and generate an execution plan for each of them. With a single click, you can switch
between tabs and visually compare the differences between plans.

Additional utilities are provided for Oracle and for SQL Server that enable graphical plan comparison and
changes over time. You can use AWR Explorer and Reports available in the Database -> Performance
Monitoring and Logging menu when connected to an Oracle database server. And Query Store Explorer and
Reports available in the same menu when connected to a SQL Server database server. See the next topic for
more details

Reviewing and Comparing Historical Execution Plans

SQL Server Query Store Explorer and Reports

The SQL Server Query Store feature available in SQL Server 2016 and later enables capturing a history of
executed queries along with their query runtime statistics and execution plans. This historical statistics and
execution plans can be browsed and analyzed using the Query Store Explorer. The Query Store Explorer
and related performance reports are accessible via the top level menu Database -> Performance Monitoring
and Logging menu in SQL Assistant Integrated Development Environments, and also using right-click menu in
the Database Explorer component, see the Performance Monitoring menu.

The Query Store Explorer utility gives a graphical view of the historical query performance data within SQL
Server database including historical queries executed, changes in their execution statistics over time, and also
enables you to review and compare historical query plans using graphical query plan diagrams.

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -337-

The Historical SQL Query Performance Reports utility provides reports for analyzing historical query
performance changes, such as identifying queries having poor performance that steadily deteriorated over a
certain time period, and identifying recurring queries continuously consuming a lot of database resources. This
feature Is accessible using the menus described above. A number of parameters is available to customize the
report behavior and filter our unimportant, rare, and other unwanted queries

 Important note: In SQL Server the Query Store feature used for capturing historical query performance
and plans is not enabled by default. You can use the Database Explorer to enable that feature.

1. Right-click the database for which you want to enable the Query Store.

2. Select the Properties… menu. This will display the Database Properties dialog for the selected
database.

3. In the Database Properties dialog click the Query Store tab. On that table change the Operation
Mode property to READ_WRITE. Consult SQL Server documentation for description of the supported
Query Store parameters, and if you wish to create a custom data capture policy.

4. Click the Save button to save changes in the Query Store state.

5. Wait for a few days or weeks to allow SQL Server to capture and record history of the executed
queries and their statistics. The more history length is available, the more accurate picture of historical
database performance changes can be reported by Historical SQL Query Performance Reports.

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -338-

Oracle Active Session History Explorer

The Active Session History (ASH) feature is available in Oracle 10g and later. It is enabled by default in all
editions, however its use requires licensing Oracle Diagnostic and Tuning Pack with the Enterprise Edition of
Oracle. ASH samples "Active" sessions into memory buffer every second and in the background saves that
data into ASH tables. That data is stored for a period of time, by default for 10 days. The storage policy can be
configured in Oracle database settings. The captured statistics can be used to analyze historical application
performance, identify periods of bad performance, and diagnose various performance issues. The SQL
Assistant's ASH Explorer utility can be used to browse historical resource usage statistics by different
database users and applications. The ASH Explorer is accessible via the top level menu Database ->
Performance Monitoring and Logging menu in SQL Assistant Integrated Development Environments, and
also using right-click menu in the Database Explorer component, see the Performance Monitoring menu.

The ASH Explorer gives a graphical view of the historical resource usage, including changes over time.
Optional filtering is available to ignore system processes, scheduled jobs and other unwanted activities. The
resource usage statistics are aggregated by users and/or application names, you can choose the aggregation
method in the Group By settings.

Oracle Automatic Workload Repository Explorer and Reports

The Automatic Workload Repository (AWR) samples periodic snapshots of database activity between two
points in time, and statistics are aggregated in hourly intervals and saved into AWR tables. AWR captures
many different statistics, the captured data can be used to compare statistics captured during a period of bad
performance to a baseline, and diagnose various performance issues. The captured data includes sampled
SQL queries and their execution plans. The SQL Assistant's AWR Explorer utility and related AWR based
performance reports can be used to browse historical query statistics and plans. The AWH Explorer and
reports are accessible via the top level menu Database -> Performance Monitoring and Logging menu in
SQL Assistant Integrated Development Environments, and also using right-click menu in the Database Explorer
component, see the Performance Monitoring menu.

The AWR Explorer utility gives a graphical view of the historical query performance data within Oracle
database including historical queries executed, changes in their execution statistics over time, and also enables
you to review and compare historical query plans using graphical query plan diagrams.

The Historical SQL Query and Application Performance Reports utility provides reports for analyzing

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -339-

historical query and application performance changes, such as identifying queries having poor performance
that steadily deteriorated over a certain time period, identifying recurring queries continuously consuming a lot
of database resources, and other performance reports. This feature Is accessible using the menus described
above. A number of parameters is available to customize the report behavior and filter our unimportant, rare,
and other unwanted queries.

 Important note: You will be able to use ASH and AWR Explorers and related performance reports if you
have licensing Oracle Diagnostic and Tuning Pack.

SQL Server SQL Profiler

The SQL Profiler provides an easy to use task oriented graphical interface to the SQL Server trace functions
which gather events as they occur in your SQL Server instance. The SQL Profiler gives you the ability to
monitor everything that is going on inside your SQL Server instance. In addition to supporting user defined
traces it provides a number of ready to run templates for the most common tasks including:

 Who is active? What's their performance impact?

 Which queries take most time?

 Which procedures run most frequently?

 What's causing deadlocks? Long waits because of locks?

 Which procedures are most CPU intensive?

 Which procedures are most I/O intensive?

 Profile stored procedure execution, capture query performance stats

 Profile table usage, who is reading or writing to it?

 Profile application activities, capture executed queries

 Profile user activities, capture executed queries

 Profile session activities, capture executed queries

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -340-

The SQL Profiler can be started from the main SQL Assistant menu from the Performance Tools menu. It is
closely integrated with the SQL Assistant SQL Editor and can be started in a number of ways from within the
SQL Editor with context specific preselected settings. For example, it can be started from the Sessions Monitor
to profile activities of any given session; from the Database Explorer to monitor table or view usage, or to profile
step by step execution of a stored procedure, and so on.

The captured trace events can be monitored in real time while the profiler trace is running. Charts are available
in performance related reports. The trace data can be exported to external CSV and spreadsheet files for
further analysis using office applications.

 Tip: Multiple instances of the SQL Profiler can be started and run concurrently.

Oracle SQL Profiler

The SQL Profiler provides an easy to use task oriented graphical interface for profiling Oracle performance
related usage by applications and users. It also includes graphical interface to the Oracle PL/SQL profiler,
which can be used to trace and profile code execution of PL/SQL stored procedures, functions, packages,
triggers, and other arbitrary PL/SQL code code and capture timing and execution statistics for individual SQL
statements within the procedural code. The profiler provides a number of ready to run templates for the most
common tasks including:

 Who is active? What's their performance impact?

 How scheduled jobs impact performance?

 Which queries take most time?

 Which PL/SQL procedures run most frequently?

 What's causing deadlocks?

 What's causing long waits because of locks?

 Which PL/SQL procedures are most CPU intensive?

 Which PL/SQL procedures are most I/O intensive?

 Profile PL/SQL code execution, capture query stats

 Profile errors, capture error-stack of faield code

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -341-

 Profile table usage, who is reading or writing to it?

 Profile application activities, capture executed queries

 Profile user activities, capture executed queries

 Profile session activities, capture executed queries

The SQL Profiler can be started from the main SQL Assistant menu from the Performance Tools menu. It is
closely integrated with the SQL Assistant SQL Editor and can be started in a number of ways from within the
SQL Editor with context specific preselected settings. For example, it can be started from the Sessions Monitor
to profile activities of any given session; from the Database Explorer to monitor table or view usage, or to profile
step by step execution of a stored procedure, and so on.

Performance reports and charts are available at the end of the SQL Profiler run. The trace data can be
exported to external CSV and spreadsheet files for further analysis using office applications.

 Tip: Multiple instances of the SQL Profiler can be started and run concurrently.

 Important note: Certain tasks supported by the Oracle SQL Profiler may require installation of additional
database objects:

1. SA_SQLPROF schema for SQL Profiler internal tables.

2. SQLPROF_TRACE_DIR directory object for accessing trace files.

3. Oracle DBMS_PROFILER package and tables if they are not installed yet.

If a selected profiler task requires one or more of the above and it's not yet installed in your database, you will
be prompted for permissions to install them. If you decline, you cannot use the selected profiler task. The
prompt will be shown again next time you select the same profiler task.

PostgreSQL SQL Profiler

The SQL Profiler provides an easy to use task oriented graphical interface for profiling PostgreSQL

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -342-

performance related usage by applications and users. It also includes graphical interface to the PostgreSQL
PL/SQL profiler, which can be used to trace and profile code execution of PL/SQL stored procedures, functions,
triggers, and other arbitrary PL/SQL code and capture timing and execution statistics for individual SQL
statements within the procedural code. The profiler provides a number of ready to run templates for the most
common tasks including:

 Who is active? What's their performance impact?

 What's causing deadlocks?

 Which queries take most time?

 Which SQL queries run most frequently?

 What's causing long waits because of locks?

 Which SQL queries are most CPU intensive?

 Which SQL queries are most I/O intensive?

 Which SQL queries consume most of shared memory?

 Profile PL/SQL procedure, capture query stats

 Profile errors, capture session and query details

 Profile table usage, who is reading or writing to it?

 Profile application activities, capture executed queries

 Profile user activities, capture executed queries

 Profile session activities, capture executed queries

The SQL Profiler can be started from the main SQL Assistant menu from the Performance Tools menu. It is
closely integrated with the SQL Assistant SQL Editor and can be started in a number of ways from within the
SQL Editor with context specific preselected settings. For example, it can be started from the Sessions Monitor
to profile activities of any given session; from the Database Explorer to monitor table or view usage, or to profile
step by step execution of a stored procedure, and so on.

Performance reports and charts are available at the end of the SQL Profiler run. The trace data can be
exported to external CSV and spreadsheet files for further analysis using office applications.

 Tip: Multiple instances of the SQL Profiler can be started and run concurrently.

 CHAPTER 21, SQL Performance Monitoring and Tuning

 -343-

 Important note: Certain tasks supported by the PostgreSQL SQL Profiler may require enablement or
installation of additional database features and objects:

1. pg_stat_statements PostgreSQL extension

2. plprofiler PostgreSQL extension

If a selected profiler task requires one or more of the above extensions and they are available, but not yet
enabled in your database, you will be prompted for permissions to enable them. If you decline, you cannot use
the selected profiler task. The prompt will be shown again next time you select the same profiler task.

Identifying Long Running and Resource Intensive Recurring
SQL Queries

Long running and resource intensive queries often cause intermittent problem with a database server. SQL
Assistant provides Top SQL monitors for identifying top 20 resource consumers based on a few different
metrics. It analyzes performance statistics available in the database dynamic performance views and historical
query logs reflecting cached and repeating SQL queries and their performance metrics. The data is digested,
aggregated, and then presented in a easy to understand graphical format along with query performance
comparison charts and their impact on the server.

You can modify the default selection criteria by choosing different metrics from the Criteria for Top Queries
drop-down list.

Mouseover the Query column cells to see the complete query text. Or double-click a sell to open its query text
in a new SQL Editor tab. You can then use the SQL Execution Plan to further analyze database strategy for the
query execution and identify hot spots and areas for improvements. See the Reading and Understanding
Execution Plans topic for more details on execution plans and how to analyze them.

 Tip: You can double-click a chart series of interest to quickly jump to the matching row and query text in
the data grid above the charts.

CHAPTER 22, Spell Checker

 -344-

CHAPTER 22, Spell Checker

Overview

SQL Assistant's Spell Checker seamlessly integrates Microsoft Word's multilingual in-line proofreading
functions into your SQL editor. The Spell Checker is an intelligent tool that selectively checks for spelling errors
in relevant parts of the SQL code. Because SQL scripts are special documents containing special SQL
instructions, object references and object attribute references, as well as other programming constructs,
checking the entire content of the script is really meaningless. Rather than checking the entire document, SQL
Assistant parses the content first, then applies spell check functions only to comments and to hard-coded string
values.

SQL Assistant provides two different ways to check spelling:

 On-demand Spell Checker – the interactive spell checker is activated manually using hot keys or context
menus. The spell checker scans the highlighted text and provides spelling suggestions as required.

 Real-time Spell Checker – this non-interactive spell checker runs in the background at all times. As you
type code, the spell checker checks the text and marks possible errors with red wavy underlines. You can
then use the context menus to display suggested changed for marked words.

 Important Notes: The Spell Checker requires that you have Microsoft Word 97 or later installed on the
system. The Spell Checker can only use installed proofreading tools and languages. To check spelling in other
languages, use the Microsoft Office installation CD to install additional language support.

 Tip: If you wish to check the correctness of your SQL code syntax rather then the spelling, use the SQL
Syntax Checker function. This function is described in Using SQL Syntax Checker topic in CHAPTER 3.

Using On-demand Spell Checker

The on-demand spell checker provides a straightforward interface that mimics spell check functions in many
office and email programs. When it finds a possible spelling error, it displays the SQL Assistant – Spelling
dialog window which lists suggested corrections and provides controls you can use to navigate, modify and
ignore errors.

Like most other SQL Assistant functions, the spell check can be run for the highlighted portion of the text only
or, if nothing is highlighted, for the entire content of the target editor. Typically, to run a spell check in SQL
code, you should highlight the relevant portion of the text and then activate the spell checker. Then use the
SQL Assistant – Spelling dialog to make necessary corrections. Note that the dialog disappears automatically
when you reach the last error in the text, although you can close it at any time using the Esc key or the Close
button.

You can use either of the following methods to invoke the interactive spell checker:

 Use the default Ctrl+Shift+F7 hot key or a custom hot key (if you changed the default key).
 Use SQL Assistant's system tray icon menu (see the Using System Tray Icon Menu topic for details)

and choose the Target / Check Spelling / Check command.
 Use target editor's context or top-level menus, if menu integration option is enabled (see the Using

Context and Top-level Menus topic for details). In that menu select the SQL Assistant / Check

CHAPTER 22, Spell Checker

 -345-

Spelling / Check command.

The following example screenshot demonstrates the on-demand spell checker used with "DB Tools for Oracle"
target editor.

The following functions and controls are available in the spell checker dialog:

Unknown Word – displays a word that the spell checker doesn’t recognize

Change To – displays the spell checker’s suggested correction, if any. Click the Change button to accept the
suggestion correction or type over the suggestion to insert a different correction.

Left Arrow and Right Arrow –controls used to navigate between misspelled words

Change – replaces the misspelled word with the text in the Change To edit box

Change All – updates all occurrences of the misspelled word in the editor with the text in the Change To edit
box. You can use this function if the same spelling error repeats multiple-time.

Ignore – instructs the spell checker to leave the highlighted word unchanged and move on to the next error

Ignore All – instructs the spell checker to skip this and all subsequent occurrences of the highlighted word
without making changes. Note that this selection is not persistent and applies only to the current spell check
session.

Undo – this button undoes the last change. The button can be used repeatable to recursively undo previous
changes. Note that only changes made in the current spell check session can be undone. To undo older
changes use your editors Edit / Undo features.

Close –closes the spell checker dialog and ends the spell check session. It can be used at any time.
Alternatively you can use the Esc hot key to dismiss the spell checker dialog

CHAPTER 22, Spell Checker

 -346-

 Important Notes:

Only the text in the editor is changed. If that text is associated with a file, the file is not updated until you
use your editor's File Save feature.

If, for whatever reason, you want to undo the changes, use your editor's Edit | Undo features to undo the
changes. If multiple spelling changes have been made, you may need to use the Undo feature multiple
times, to reverse each consecutive change.

Using Real-time Spell Checker

The Real-time Spell Checker is non-interactive. If activated, the spell checker quietly runs in the background
and marks possible errors as you type. Errors are marked with red wavy underlines. The spell checker only
checks text in comments and in hard-coded string values; in other words, values enclosed in single quotes.

To correct errors, simply edit the misspelled words directly in the editor. If the new text is correct, the wavy
underlines disappear automatically.

To see a list of spelling suggestions for a certain word, highlight the word in text and then use either of the
following methods to open the spelling suggestions popup list.

 Use SQL Assistant's system tray icon menu (see the Using System Tray Icon Menu topic for details)
and choose Target / Check Spelling / Suggestions command.

 Use target editor's context or top-level menus, if menu integration option is enabled (see the Using
Context and Top-level Menus topic for details). In that menu, select the SQL Assistant / Check
Spelling / Suggestions command.

The popup list with suggestions appears below the highlighted word. You can either select the correct word or
press the Esc key to dismiss the suggestions list.

Similarly, if you would like to see a list of synonyms for the highlighted word, you can use the Synonyms
command from the same menu to display a list of possible synonyms.

To deactivate the spell checker, use the Deactivate command available in the SQL Assistant menus, which are
described in the previous paragraphs.

CHAPTER 22, Spell Checker

 -347-

Choosing Spell Check Language

By default, the Spell Checker uses the language selected as the default language in the Microsoft Word
options. If you need to check spelling in a different language, make sure that language support is installed on
your system. If the required language is not available, use the Microsoft Office installation CD to install
additional language support.

To pick a non-default language for the spell check, use either of the following options:

 Use SQL Assistant's system tray icon menu (see the Using System Tray Icon Menu topic for details)
and choose Target / Check Spelling / Language command and then from the next level menu select
the required language.

 Use target editor's context or top-level menus, if menu integration option is enabled (see the Using
Context and Top-level Menus topic for details). In that menu, select the SQL Assistant / Check
Spelling / Language command and then from the next level menu select the required language.

 Tip: Language selection affects the current target editor session only. If you close the target editor and
then reopen it, or simply switch to a different editing window within the same target editor, you would need to
repeat the language selection again.

 CHAPTER 23, Database Source Code Control Interface

 -348-

CHAPTER 23, Database Source Code Control
Interface

Overview

SQL Assistant provides an advanced multi-platform and multi-database source code system (SCS) interface for
team-based database development. It allows the following:

 Several developers can work with the same databases, schemas, and schema objects concurrently
making changes in schema objects and application code.

 Store code of database schema objects in SCS repositories.

 Keep track of what was changed, when it was changed, and by whom and assign unique revision
numbers to each change.

 Deploy database and schema code stored in a SCS repository to one or more database servers.

 Retreat to older versions stored in SCS repository, if you decide that the current version is broken or
not yet fully ready for use.

 Undo accidental database schema object deletes.

 Developers can setup multiple SCS interfaces and concurrently use different SCS repositories with
different development tools, projects, and databases.

 Tip: SQL Assistant version 12.4 supports Subversion (SVN), Microsoft Team Foundation Server (TFS), Git
and GitHub, and Perforce based source code control systems. Future versions may support other types of
source code control systems.

Concepts and Source Code System Differences

Prerequisites

Source Control Interfaces

To use the Subversion interface you must have SVN client installed on your system .You can get the latest
version here http://subversion.apache.org/packages.html. Subversion client is free.

To use the Team Foundation Server interface you must have TFS client installed on your system .To install
TFS client, install Visual Studio 2008, Visual Studio 2010 or later, and make sure to select TFS related options.
You can also install the free Team Foundation Server Explorer which will install TFS client.

To use the Git interface you must have Git client installed on your system You can get the latest version here

http://subversion.apache.org/packages.html�

 CHAPTER 23, Database Source Code Control Interface

 -349-

http://git-scm.com/downloads. Git client is free.

To use the Perforce interface you must have Perforce Helix version client installed. You can get the latest
version here http://www.perforce.com/downloads/integrations?sitelink=PerforceClients.

SQL Server 2000, 2005, 2008, 2012, and 2014

Microsoft SQL Server's Server Management Objects (SMO) version 2008 or later must be installed on the
computer running SQL Assistant . SMO is preinstalled with Microsoft SQL Server Management Studio (SSMS)
and with Microsoft SQL Server Management Studio Express (SSMSE). if you don't have them installed, you
can download and install SMO separately as part of Microsoft SQL Server 2008 Service Pack 2 Feature Pack
http://www.microsoft.com/en-us/download/details.aspx?id=6375

SQL Azure

Microsoft SQL Server's Server Management Objects (SMO) version 2008 R2 SP2 or later must be installed on
the computer running SQL Assistant . SMO is preinstalled with Microsoft SQL Server Management Studio
2008 R2 SP2 (SSMS) and with Microsoft SQL Server Management Studio Express 2008R2 SP2 (SSMSE). if
you don't have them installed, you can download and install SMO separately as part of Microsoft SQL Server
2008 Service Pack 2 Feature Pack http://www.microsoft.com/en-us/download/details.aspx?id=6375

Repository

SQL Assistant uses temporary work area called workspace to maintain your client-side copies of database
schema objects code and source code repository objects. When you add, edit, drop, rename, or otherwise
manage any source-controlled item, your changes are persisted, or marked as pending changes, in the
workspace. Pending changes are isolated in your local workspace until you commit them to the repository
server and the database server.

Workspace

SQL Assistant uses temporary work area called workspace to maintain your client-side copies of database
schema objects code and source code repository objects. When you add, edit, drop, rename, or otherwise
manage any source-controlled item, your changes are persisted, or marked as pending changes, in the
workspace. Pending changes are isolated in your local workspace until you commit them to the repository
server and the database server.

You can synchronize your workspace with the most recent repository versions using the Get Latest from
Repository command. If you want to get latest copies from the database server, use Update Workspace from
Database command.

Creating a Workspace

To begin working with the SCS interface control, you need to establish at least one workspace. Creating a new
workspace is simple create-folder operations. You can use Windows Explorer or command line tools to create a
new workspace folder.

http://git-scm.com/downloads�
http://www.perforce.com/downloads/integrations?sitelink=PerforceClients�
http://www.microsoft.com/en-us/download/details.aspx?id=6375�
http://www.microsoft.com/en-us/download/details.aspx?id=6375�

 CHAPTER 23, Database Source Code Control Interface

 -350-

Multiple workspaces

Not all source code control systems allow using multiple workspaces. Changing workspace for a project may
require project rebinding to the repository server, as well as it may cause loss of some project specific
metadata.

If you need extra copies of project source files on your computer, you can use the Export command in the
Repository Browser to copy files from your source code repository to a arbitrary folder on your computer.

Connecting to SVN Repository Server

The following screenshot demonstrates SQL Assistant's SVN repository connection.

Connection parameters:

Project Name – logical project name grouping together business tasks and/or code releases. You can define
multiple projects as needed.

System Type – Type of the source code control system. For SVN based repositories this value must be set to
Subversion.

Repository URL – Repository server URL, typically HTTP or HTTPS URL pointing to the root folder of the SVN
repository. This can be also a path to a local file based SVN repository.

User Name – your user name for the repository server connection. If user authentication is not required, leave
this property blank. SQL Assistant will use Anonymous connection type.

Password – your password for the repository server connection. If user authentication is not required, leave
this property blank. SQL Assistant will use Anonymous connection type.

Workspace – location of the work-folder containing files checked out from the repository. In SQL Assistant
Options you can configure multiple workspaces and use different workspaces with different projects and/or
environments. If not specified, SQL Assistant will create and use default workspace located in
%APPDATA%\SQL Assistant\Workspace folder. Please note that the default location of the folder varies in
different Windows versions. If you do not know the value of %APPDATA%\ environment variable, open DOS
command prompt, and execute echo %APPDATA% command.

Project Path – Path to the project root in the repository, relative to the repository root. The combination of
Server URL + Project Path should point to absolute location of project files in the repository. You can enter
Project Path when entering connection parameter for the repository or you can select Project Path later using
graphical menus in the Repository Browser dialog. See the Choosing Project Path in the Repository topic in this
chapter for more details on how to properly choose Project Path and how it maps to the Workspace.

 CHAPTER 23, Database Source Code Control Interface

 -351-

Limit Repository View to Project Path Only – by default the Repository Browser shows all folders in the
repository under the repository root. This enables you to change Project Path on a fly as described in the
Choosing Project Path in Repository topic. In case the repository is very large, it might be undesirable to
retrieve and show all folders in the repository. If the Limit Repository View to Project Path Only option is
enabled, the Repository Browser shows folders in the Project Path only. That is faster and more efficient, but
effectively disables dynamic changing of the Project Path because no other folders are visible.

Connecting to TFS Repository Server

The following screenshot demonstrates SQL Assistant's TFS repository connection dialog.

Connection parameters:

Project Name – logical project name grouping together business tasks and/or code releases. You can define
multiple projects as needed.

System Type – Type of the source code control system. For TFS based repositories this value must be set to
Team Foundation Server.

Repository URL – Repository server URL, typically HTTP or HTTPS URL pointing to the root folder of the TFS
repository. This can be also a path to a local file based TFS repository.

User Name – your user name for the repository server connection. If user authentication is not required, leave
this property blank. SQL Assistant will use Anonymous connection type.

Password – your password for the repository server connection. If user authentication is not required, leave
this property blank. SQL Assistant will use Anonymous connection type.

Workspace – location of the work-folder containing files checked out from the repository. In SQL Assistant
Options you can configure multiple workspaces and use different workspaces with different projects and/or
environments. If not specified, SQL Assistant will create and use default workspace located in
%APPDATA%\SQL Assistant\Workspace folder. Please note that the default location of the folder varies in
different Windows versions. If you do not know the value of %APPDATA%\ environment variable, open DOS
command prompt, and execute echo %APPDATA% command.

Project Path – Path to the project root in the repository, relative to the repository root. The combination of
Server URL + Project Path should point to absolute location of project files in the repository. You can enter
Project Path when entering connection parameter for the repository or you can select Project Path later using
graphical menus in the Repository Browser dialog. See the following Choosing Project Path in the Repository
topic in this chapter for more details on how to properly choose Project Path and how it maps to the
Workspace.

Limit Repository View to Project Path Only – by default the Repository Browser shows all folders in the

 CHAPTER 23, Database Source Code Control Interface

 -352-

repository under the repository root. This enables you to change Project Path on a fly as described in the
Choosing Project Path in Repository topic. In case the repository is very large, it might be undesirable to
retrieve and show all folders in the repository. If the Limit Repository View to Project Path Only option is
enabled, the Repository Browser shows folders in the Project Path only. That is faster and more efficient, but
effectively disables dynamic changing of the Project Path because no other folders are visible.

Connecting to Git Repository Server

Whether you use shared Git repository, which is often called "remote" repository, or you use local repository
only, you can use the Source Code Repository Connection dialog to configure how SQL Assistant's database
source control communicates with the repository. The following screenshot demonstrates SQL Assistant's Git
repository connection dialog.

Connection parameters:

Project Name – logical project name grouping together business tasks and/or code releases. You can define
multiple projects as needed.

System Type – Type of the source code control system. For Git and GitHub based repositories this value must
be set to Git.

Repository URL – A remote (central) repository server URL, typically HTTP or HTTPS URL pointing to the root
folder of the Git repository. That URL could be your repository on GitHub, or another user's fork, or even on a
completely different server. Do not confuse this with the Git's local repository. You do not need to specify
location of your local Git repository in SQL Assistant's settings because that is transparent to SQL Assistant's
operations. SQL Assistant works in tandem with your Git client for staging, committing, and getting latest files
from the local repository.

 Note: If you don't use remote repositories, , you can leave this value blank.

User Name – your user name for the repository server connection.

Email – your email for the remote repository server connection. If you never commit your code to the remote
repository, you can leave this value blank.

Workspace – location of the work-folder containing files checked out from the repository. In SQL Assistant
Options you can configure multiple workspaces and use different workspaces with different projects and/or
environments. If not specified, SQL Assistant will create and use default workspace located in
%APPDATA%\SQL Assistant\Workspace folder. Please note that the default location of the folder varies in
different Windows versions. If you do not know the value of %APPDATA%\ environment variable, open DOS
command prompt, and execute echo %APPDATA% command.

 CHAPTER 23, Database Source Code Control Interface

 -353-

Project Path – Path to the project root in the remote repository, relative to the repository root. The combination
of Server URL + Project Path should point to absolute location of project files in the remote repository. You
can enter Project Path when entering connection parameter for the repository or you can select Project Path
later using graphical menus in the Repository Browser dialog. See the Choosing Project Path in the Repository
topic in this chapter for more details on how to properly choose Project Path and how it maps to the
Workspace.

Limit Repository View to Project Path Only – by default the Repository Browser shows all folders in the
repository under the repository root. This enables you to change Project Path on a fly as described in the
Choosing Project Path in Repository topic. In case the repository is very large, it might be undesirable to
retrieve and show all folders in the repository. If the Limit Repository View to Project Path Only option is
enabled, the Repository Browser shows folders in the Project Path only. That is faster and more efficient, but
effectively disables dynamic changing of the Project Path because no other folders are visible.

Connecting to Perforce Repository Server

The following screenshot demonstrates SQL Assistant's Perforce repository connection dialog.

Connection parameters:

Project Name – logical project name grouping together business tasks and/or code releases. You can define
multiple projects as needed.

System Type – Type of the source code control system. For Perforce based repositories this value must be set
to Perforce.

Depot URL – Depot server location, typically in host:port reference. Host is the name of the machine where
the Perforce server is running. Port is the port on which the Perforce server listens for requests.

User Name – your user name for the repository server connection. If user authentication is not required, leave
this property blank. SQL Assistant will use Anonymous connection type.

Password – your password for the repository server connection. If user authentication is not required, leave
this property blank.

Workspace – location of the work-folder containing files checked out from the repository. In SQL Assistant
Options you can configure multiple workspaces and use different workspaces with different projects and/or
environments. If not specified, SQL Assistant will create and use default workspace located in
%APPDATA%\SQL Assistant\Workspace folder. Please note that the default location of the folder varies in
different Windows versions. If you do not know the value of %APPDATA%\ environment variable, open DOS
command prompt, and execute echo %APPDATA% command.

Project Path – Path to the project root in the depot, relative to the repository root. You can enter Project Path

 CHAPTER 23, Database Source Code Control Interface

 -354-

when entering connection parameter for the repository or you can select Project Path later using graphical
menus in the Repository Browser dialog. See the following Choosing Project Path in the Repository topic in this
chapter for more details on how to properly choose Project Path and how it maps to the Workspace.

Limit Repository View to Project Path Only – by default the Repository Browser shows all folders in the
repository under the repository root. This enables you to change Project Path on a fly as described in the
Choosing Project Path in Repository topic. In case the repository is very large, it might be undesirable to
retrieve and show all folders in the repository. If the Limit Repository View to Project Path Only option is
enabled, the Repository Browser shows folders in the Project Path only. That is faster and more efficient, but
effectively disables dynamic changing of the Project Path because no other folders are visible.

Basic Database to Workspace to Repository Comparison

The Repository Browser uses internal metadata saved by SQL Assistant and the selected source code control
system as well as file and database object most recent modification times to locate and show differences
between the database, workspace and repository. Any found differences will be highlighted using different
colors and marked using overlay icons as described in the Icon Overlays topic later in this chapter.

The basic metadata based comparison is not always enough to locate all differences. When database objects
do not have correct last modification time or that is simply not supported by the database server, such as in the
case of PostgreSQL, Redshift and SQLite, the metadata can get outdated if database objects are modified by
users directly bypassing the source code control interface. Another common case is direct changes in the
database object attributes or related "child" objects. Such changes do not update the last modification date of
the main object. Examples include changes in table indexes or table triggers, changes in table permissions,
and some others that have a material impact on the table DDL code, but not update table's last modification
time. To workaround this issue and to refresh the metadata, use the Rescan Database command available in
the top-level and the right-click menus in the Repository Browser.

Advanced 3-Way Code Comparison and Synchronization

The Repository Browser allows you to manage and synchronize content of the database, workspace and
repository. You can synchronize the content between all 3 places. Note that any synchronization of the
database content to the repository or vice versa explicitly updates your workspace content with the latest
versions from the database server or from the repository server depending on the direction of the selected
synchronization method.

The Repository Browser reads internal metadata saved by SQL Assistant and the selected source code control
system as well as file and database object most recent modification times to show the differences between the
database, workspace and repository. Use of any "rescan" or "compare" type of operations implicitly causes it to
update the metadata.

Use the top-level or the right-click menus in the Repository Browser to start the Compare Database to
Repository, Compare Database to Workspace, and/or Compare Repository to Workspace processes.
SQL Assistant will perform scanning of your database schema objects for recent changes, content of your
workspace files, and content of your source code repository files and compare their differences. Any found
differences will be highlighted using different colors and marked using overlay icons as described in the Icon
Overlays topic later in this chapter.

 CHAPTER 23, Database Source Code Control Interface

 -355-

Configuring Multiple Source Code Control Projects

Each SCS project is a collection of settings defining SCS repository server connection and its mapping to the
local the workspace. Each project has a name. SQL Assistant' saves SCS project settings in the main
configuration file. You can use SQL Assistant Options dialog to customize project settings

Managing SCS Projects

Use project management icons available in the left-top corner of the Options dialog to create new, rename,
duplicate or delete SCS projects.

 Tips:

 To temporarily disable any project without deleting it, un-tick the checkbox displayed in front of the project
name. This will make the disabled project disappear from SQL Assistant SCS selection lists, and it can be
re-enabled at a later time in case you want to use it again.

 Project deletion simply removes project settings from SQL Assistant's configuration files. It does not make
any changes in the database server and in the SCS repository

 CHAPTER 23, Database Source Code Control Interface

 -356-

Repository Browser

The SCS Repository Browser is a convenient way to view all of the content of a repository and also content of
the database server

To launch the Repository Browser, right click anywhere in the target editor and in the right-click menu select
SQL Assistant Source Code Control Repository Browser menu. The Repository Browser window will
appear. If you are opening Repository Browser first time in the current target, editor type, you will be prompted
to enter repository server connection parameters. See Connecting to SVN Repository Server and Connecting to
TFS Repository Server topics in this chapter for more information on supported connection parameters.

The Repository Browser provides an in-depth, browsable view of all of the content in a repository. It is able to
show content of any folder, but it recognizes several special folder names as folders related to the database
source control system:

Tables
Views
Procedures
Functions
Triggers
Types
Packages
Sequences

Each of the special folders is expected to group schema objects of one type only. Mixing objects of different
types in one folder is not supported.

The Repository Browser uses so-called icon overlays to show you at a glance which of your database objects
have been modified. See Icon Overlays topic to find out what the different overlays represent.

 CHAPTER 23, Database Source Code Control Interface

 -357-

The Repository Browser contains 2 panes:

1. The database-tree pane lists all databases, schemas and objects visible to the current database
connection

2. The repository-tree pane lists all folders and files visible in the repository. Items within special folders
are recognized as DDL scripts for database schema objects. Different icons are used for rendering
folders and items with different types. the icons match icons used for rendering similar type objects in
the database tree

An action can be taken on individual items in both tress as well as multiple items. To action an item, select that
item in the database or repository trees and use Repository Browser menus to invoke specific actions. To
select multiple items of the same type, use standard Ctrl+click and Shift+click techniques available in Windows
for multiple item selection

Repository Browser Menus

Repository Browser features both right-click and top-level menus. Both menus can be used to •Inside the tree,
right clicking on items allows getting latest version, check-out, check-in (also called (Commit), lock/unlock, edit,
revert, delete, and other operations. Actions taken at the folder or database level affect all items in that folder
and/or database.

 Tips:

 The menus are context sensitive. The menu context depends on numerous factors including selected item
type, item state, SCS repository type, and so on…

 The database-tree actions are applied to the database and workspace items. The repository-tree actions
are applied to the repository and workspace items.

Icon Overlays and Item Colors

When you add, delete and edit database objects you can see them in the Repository Browser with changed
icons and colors. The Repository Browser adds a so called overlay icon to each modified object and folder
which overlaps the original item icon. Different overlay icons correspond to different item statuses as described
in the following bulleted list:

 A modified working item copy has a small orange box as overlay.

 An item that is scheduled to be deleted is shown in bright red color and has a small red X sign as
overlay.

 A new item scheduled to be added has a small blue plus sign as overlay.

 An item modified in more than one place and therefore containing conflicting changes is shown in dark
red color with a small warning sign overlay.

 An item locked n the repository has a small lock overlay.

 An item modified directly in the database (more recent in the database as compared to your
workspace) is shown in dark red color , but without an overlay icon

 CHAPTER 23, Database Source Code Control Interface

 -358-

Content Filtering

The Repository Browser offers super-fast content filtering. Type the substring you want to use as a filter for
database objects into the filter box available above the database-tree. Type the substring you want to use as a
filter for repository items into the filter box available above the repository-tree.

Target Editor Context Menus

SQL Assistant's menu branch in the editor context menu provides quick access to frequent SCS commands
such as

Get Latest from Repository – this command can be used for Getting Source Code from Source Control
Repository Server

Open Workspace Version – this command can be used for opening workspace version of object DDL script in
the editor in a new tab or window.

Commit Changes to Repository – this command can be used for Submitting Changes to Source Control
Repository Server

View Change History – this command can be used for reviewing Database Object Change History

The context commands apply to the single object under the mouse pointer

Database Explorer Integration

The Database Explorer context menu provides quick access to most SCS commands just like the rick-click
menu in the target editor described in the previous topic.

In addition, you can enable display of SCS state overlay icons directly in the Database Explorer. The icons are
the same as in the Repository Browser See Icon Overlays topic for details.

Choosing Project Path in Repository

Before you begin making changes in the repository or to the database, synchronizing their content, and
performing some other source control operations, you must choose the root folder in the repository where you
will store your database code. The simplest method for selecting such folder is expanding the repository tree,
navigating to the target folder and then using Set Database Project Root command in the right-click context

 CHAPTER 23, Database Source Code Control Interface

 -359-

menu for the repository-tree. Note that only objects under the selected folder are considered to be part of the
SCS project. They are rendering in normal colors. All other items outside of the Database Project path are
rendered using dimmed color. In the sample screenshot available in the Repository Browser topic, this
command was used for the "SQL" folder. As a result SQL Assistant was able to recognize and automatically
match the content of the "pubs" database against the content of the "pubs" folder in the repository which is a
subfolder of "SQL" database project root.

Getting Source Code from Source Control Repository Server

Use the Get Latest from Repository command available in the repository-tree pane of the Repository Browser
to retrieve the latest versions of source code files from the SCS repository server and save them in your local
workspace. This command will overwrite old non-modified files and retrieve new files not available in the
workspace. .Any files you modified n the workspace will remain as is and won't be overwritten.

When working with TFS and Perforce repositories you can also use the Checkout command available in the
repository-tree pane of the Repository Browser. This command performs Get Latest from Repository and
Lock in one step.

The scope of these commands depends on the current selection content. If a specific schema object is selected
in the tree, only that object is processed. If a folder is selected, all objects in that folder are processed. If a
database folder is selected, all objects in all folders of that database are processed.

 Tip: If you work with Git, and you use remote Git repository such as GitHub, and you need to get latest files
from the remote repository, you should first use the Pull Repository from Server menu command to refresh
your local repository from the remote repository, and then use the Get Latest from Repository to bring the
latest versions to your workspace.

To make a one-time copy of repository files to a place outside of the workspace you can use the Export
command. The copied files will not be managed by the source code control.

Getting Source Code from Database Server

Use the Update Workspace from Database command available in the database-tree pane of the Repository
Browser to retrieve the latest versions of schema object DDL scripts from the database server and save them in
your local workspace. This command will overwrite old non-modified files and retrieve DDL for new database
schema objects not available in the workspace. .Any files you modified n the workspace will remain as is and
won't be overwritten.

The scope of the command depends on the current selection content. If a specific schema object is selected in
the tree, only that object is processed. If a folder is selected, all objects in that folder are processed. If a
database folder is selected, all objects in all folders of that database are processed.

Submitting Changes to Source Control Repository Server

Source control files are checked in to the source control server using the Commit Changes to Repository
command available in the repository-tree pane of the Repository Browser. Each commit, finds modified objects
matches against item selecting in the repository tree and sends them to the repository server. Each commit
generates new unique revision number attached to the change. It is highly recommended that when prompted
you add comments to each change to simply source code version and change management.

 CHAPTER 23, Database Source Code Control Interface

 -360-

The scope of the command depends on the current selection content. If a specific schema object is selected in
the tree, only that object is processed. If a folder is selected, all objects in that folder are processed. If a
database folder is selected, all objects in all folders of that database are processed.

 Tip: If you work with Git, and you use remote Git repository such as GitHub, and you need to submit your
changes to the remote repository, you should first commit changes to the local repository as described above,
and then use the Push Repository to Server menu command to submit changes staged in your local
repository to the remote repository.

Submiting Changes to Database Server

Schema object changes are checked in to the database server using the Commit Changes to Database
command available in the database-tree pane of the Repository Browser.

The scope of the command depends on the current selection content. If a specific schema object is selected in
the tree, only that object is processed. If a folder is selected, all objects in that folder are processed. If a
database folder is selected, all objects in all folders of that database are processed.

 Important Notes:

 For a modified schema object that already exists in the database SQL Assistant generates DROP and
CREATE commands to rebuild that object in the database. If object type object is table, all data stored in
the table is lost during Commit Changes To Database; To avoid data loss, do not commit table
changes to database directly! It is recommended to commit table changes to the repository only. For the
database side changes use appropriate ALTER TABLE commands and execute them directly in the target
SQL editor.

 The CREATE command and other DDL commands are executed as they are entered in work-files in your
local workspace. If you edit the generated DDL code and manually remove GRANT/REVOKE, comments
and other by-side object properties, they will be lost during Commit Changes to Database.

 The order of schema object updates is often important. For example, a primary key table must be created
before a child table with a foreign key is created. When committing multiple objects in a single batch, use
small Arrow Up and Down buttons at the top of the Commit Database Changes dialog (see the following
picture) or use item drag-and-drop to arrange items in the proper order.

 CHAPTER 23, Database Source Code Control Interface

 -361-

Editing Schema Object Code

1. Open Repository Browser

2. Right-click required schema object in the database-tree or its matching file item in the repository-tree.
Select the Edit command in the right-click menu. SQL Assistant will open workspace code version of the
selected object code in your target SQL editor.

Database Object Change History

1. Open Repository Browser.

2. Right-click required schema object in the repository-tree. Select the View History command in the right-
click menu. The View History dialog will appear. You can use it to review object's change history.

3. To see specific changes in a specific revision, select that revision and click View Changes button at the
bottom of the History dialog. This will display SQL Assistant's Code Compare utility displaying changes
between code revisions. For more information how to use code compare functions, see CHAPTER 25,
Code Compare Utility

 Tips:

If you prefer to use other code compare and code merge utilities, modify SCS Settings options in SQL
Assistant's Options. Open the Options dialog. Activate Source Control tab. Expand SCS Settings option
group on the left. On the right modify External Compare Tool and External Merge Tool options as
needed. You will need to specify the complete external tool command line with all required parameters. For
example, enter

For example, to use the popular Beyond Compare utility from Scooter Software for the compare tool for 2-
way compare operations, enter
"C:\Program Files\Beyond Compare 3\bcomp.exe" %left %right
In that case %left parameter is used for the workspace file and %right parameter is used for whatever the
workspace file is compared to (current database code version or current repository version)

Or for 3-way merge operation (database-workspace-repository) enter
"C:\Program Files\Beyond Compare 3\bcomp.exe" %left %right /savetarget=%out
In that case the target %out parameter is used for the workspace file, %left is for the current database
version, and %right is for the current repository version.

Additional Workspace and Repository Management
Commands

Lock and Unlock

Locking is a mechanism used by SCS repository for mutual exclusion between users to avoid clashing code
commits. Use the Lock command in the repository-tree to lock an item and prevent other users of changing it
until you unlock that object.

 CHAPTER 23, Database Source Code Control Interface

 -362-

Note, locking is not supported by Git systems.

Cleanup

This command is specific to SVN repositories. It is used to clean up the workspace, removing locks and
resuming unfinished operations. If you ever get a “working copy locked” error, run this command to remove
stale locks and get your workspace into a usable state again.

Undo

If for whatever reason you want to undo your local changes in the workspace and restore the latest version
available in the repository, use the Undo command from the Repository side content menu.

Similarly, if for whatever reason you want to undo your local changes in the workspace and restore the latest
version available in the database, use the Undo command from the Database side content menu.

Create Folder

Using this command you can create new folders in the repository. For example you can use it to create folders
for data-seed scripts, for user authorization scripts, for unit test scripts, and so on

Automating Source Control Repository Updates

As an alternative to submitting all changes to the repository by each database developer and DBA you can use
SQL Assistant's automatic repository updates features. Basically you can schedule a nightly, daily, or hourly job
to automatically push database side schema changes to the source control repository.

To automate repository updates, schedule running of sacmd command with parameters using Windows Task
Scheduler or any other scheduler utility. The required parameters are:

Parameter Description

scs:"project-name" (required parameter)
This parameter instructs sacmd to execute source control operation using
source control system connection and settings stored in the specified SCS
project. Note that the SCS project can be entered and updated on the Source
control tab in SQL Assistant's Options. For more details, see Managing SCS
Projects topic in this chapter.

sas:"sas-file" (optional parameter)
The SQL Assistant's configuration file storing the required SCS and database
connection settings. If this parameter is not specified, the default configuration
file is used. For more details, see Overview topic in CHAPTER 51, Backing
Up and Sharing SQL Assistant Settings.

conn:"connection-name" (required parameter)

 CHAPTER 23, Database Source Code Control Interface

 -363-

Name of the preconfigured database connection saved in the chosen
configuration file.. For more details, see Managing Database Connections
topic in CHAPTER 48, Customizing SQL Assistant's Behavior.

[operation type] (optional parameter)
The following operation types can be specified:

dw:"item-list" - update workspace from database
dr:"item-list" - update repository from database
wr:"item-list" - commit workspace files to repository
wd:"item-list" - commit workspace files to database
rd:"item-list" - update database from repository
rw:"item-list" - update workspace from repository

If operation type is not specified, the dr operation is used by default for all
databases on the server.

The "item-list" contains semicolon separated list of database items.
Allowed database items are database, database/type, and
database/type/object, for example:

dr."Northwind;Adventure Works" – this will compare databases Northwind
and Adventure Works to the source control repository and commit found
changes to the repository.

dr."Northwind/Tables;Northwind/Views" – this will compare tables and
views in database Northwind to the source control repository and commit
found changes to the repository.

dr."Northwind/Tables/dbo.Employee;Northwind/Tables/dbo.Department;"
– this will compare dbo.Employee and dbo.Department tables in
database Northwind to the source control repository and commit found
changes to the repository.

Examples:

"C:\Program Files (x86)\SQL Assistant 12\sacmd.exe" scs:"My SVN project" conn:"ORA_SERVER /
system (OCI)"

"C:\Program Files (x86)\SQL Assistant 12\sacmd.exe" scs:"My SVN project" conn:"QA SQL
Server" rw:"AdventureWorks"

 Tips:

 Each command must appear on a single line. The above examples show wrapped text lines as a
result of limited page width.

 To execute several different operations or same operation with different settings, write all required
sacmd commands to a batch file and then schedule the resulting batch file.

 CHAPTER 23, Database Source Code Control Interface

 -364-

Automating Database Updates from Source Control
Repository

The required operations and parameters are the same as in the previous topic, except that you would need to
specify rd operation type explicitly. For example;

"C:\Program Files (x86)\SQL Assistant 12\sacmd.exe" scs:"My SVN project" con:"QA SQL Server"
rd:"AdventureWorks"

Scheduling Automated Source Control Operations

As an alternative to using SQL Assistant's interactive Source Control features you can schedule periodic
unattended database to source control updates as well as source control to database updates. To streamline
the scheduling SQL Assistant provides built in graphical dialogs for scheduling such updates.

To schedule automated source control operations:

1. Open SQL Assistant's Source Control Repository Browser.

2. Navigate to the database or repository folder whose updates you want to automate and right-click the
required item. If you want to use the same task for multiple items, select multiple items in the
database or repository tree and right-click one of them. . In the right-click content menu choose the
Schedule… command. The Schedule Repository Updates dialog will appear.

3. Fill in task name, user name and password.

4. Choose required task schedule. To enter new task schedule, click the button to the right of the
Schedule field. The SQL Assistant – Task Schedule dialog will appear on the screen.

 CHAPTER 23, Database Source Code Control Interface

 -365-

To schedule one time run of the SQL script, in the
Schedule Task drop-down select Once. Enter a date and
time to start the task.

If you select the Daily option, you can enter the recurrence
interval for the task and the date and time to start the task.
An interval of 1 produces a daily schedule and an interval
of 2 produces an every other day schedule. The task will
start at the specified time each day.

If you select the Weekly option, you can enter the
recurrence interval for the task, the date and time to start
the task, and the days of the week in which to start the
task. An interval of 1 produces a weekly schedule and an
interval of 2 produces an every other week schedule. The
task will start at the specified time on each of the specified
days.

If you select the Monthly option, you can enter the months
in which you want to start the task and the weeks and days
of the month in which you want to start the task. You can
also specify that you want to start a task on the last day of
each selected month.

5. Choose required database connection. The list of known and already configured connections
appears in the Connection drop-down. To specify new connection, click the button to the right of
the Connection field. The SQL Assistant – Options dialog will appear on the screen, which you can
use to add new connection. See CHAPTER 15, topic Managing Connection Groups and Connection
Settings for information of how to add, modify, and delete connections.

6. Click the OK button to complete task schedule setup and create the required windows task.

The create Windows task definition contains references to SQL Assistant code execution utility, required
parameters describing task and database connection properties.

 Tips:

 You can create multiple scheduled tasks for repository updates. For example, you can create a
separate task for each database or schema under source control. Or you can select multiple
databases and/or schemas at once, and schedule their updates or repository updates using a single
task.

 Scheduled tasks can be managed using standard Windows Task Scheduler user interface. For
example, you can use Windows Task Scheduler user interface to modify existing or add an additional
schedule to a task after it has been setup by SQL Assistant. Refer to your Windows documentation for
more details.

 Important Notes:

 The SQL Assistant's source control facility is kicked off by the Windows Task Scheduler. It is important
that the Task Scheduler service is running at the time of the scheduled update. If the service is
stopped, no tasks will run. Similarly the computer running the Task Scheduler must be powered at the
time of the scheduled task run. It is a good idea to use an always on server based computer for
scheduling and running repository updates.

 The database connection selected for the scheduled script can point to any database server that can
be connected over the network.

 If the task needs to run on a remote database server, make sure to select a domain user account to
run the scheduled Windows task. The account must have sufficient privileges to connect to the server.

 CHAPTER 23, Database Source Code Control Interface

 -366-

LocalSystem and other system accounts confined to the local system cannot be used for running tasks
requiring remote database server connections.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -367-

CHAPTER 24, Reporting, Data Pivot and
Analytics

Overview

SQL Assistant supports two different methods for creating reports:

 You can create named reports and save them to report definition files with extension .sarpt. You need
to use the Report Designer to create and modify report definition files. You can run these report files
as you would run SQL and other files. You can also add their references to SQL Assistant menus so
that reports can be preview with a mouse click without a need to browse and open files. See the
following Standalone Reports section for specific details.

 You can create nameless dynamic reports generated from the data retrieved into the data grids. Such
reports are very easy to use and create, but their definitions are not saved and they are not reusable.
See the following Data Grids Integrated Reporting topic for specific details.

SQL Assistant internally uses FastReport report engine that powers the reports and is also used for developing
reports graphically.

Standalone Reports

You can create and modify named standalone reports using the Report Designer utility accessible from the top
level Execute menu in SQL Assistant integrated development environment. Normally you would use the Report
Wizard to create a new report and then continue working on the report design in the Report Designer. Here are
the basic steps required to create a new report:

1. Select Execute / Report Designer … command in the menu. This will open the Report Wizard
dialog. By the default New Report – generate report from existing data source is going to be pre-
selected for you. This option enables quick report creating using user-provided SLQ query and one of
the selected templates.

2. Click the Next button to advance to the next step. Enter Report Name and enter main report SQL
Query. If multiple queries are required for the report, they can be added later.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -368-

3. Please be sure to verify the query is syntactically valid and returns some data before going to the next
step. You can use Syntax Checker, Execute SQL… and other tools accessible using the toolbar above
the SQL Query field. Click the Next button again when you are done with the query.

4. Select report Template and if required adjust column titles and column width. You can do that directly
in the wizard. To edit a column title or width, double-click the value shown in the fields list, and then
modify it as required. Alternatively you can select the field and click the Edit button on the toolbar to
the right of the column names.

You can also use Arrow Up and Down toolbar buttons to rearrange report columns. The columns do
not have to be in the same order as in the query, their order may be different. Click the Generate
button again when you are done with the basic properties.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -369-

5. The report definition will be now generated and opened for modification and finalization in the Report
Designer.. You can use to update chart properties, add or remove chart and other components.

 Tip: The report templates available in the Report Wizard provide some common report features
like header and footer bands, page enumeration, report title, and so called "no data" band. You can
freely move or modify them in the generated report as you see the fit. They are predefined for you to
help with easy report creation, but they are not required, and they can be removed if you do not need
them.

Predefined Reports

A number of predefined database administration reports are installed with SQL Assistant. The reports are
database type specific. They are accessible using right-click menu in the Database Explorer and available
for most of the supported database types. If you are working with SQL Assistant Integrated Development
Environment, in which the Database Explorer pane is always visible, right-click anywhere within the
Database Explorer pane and select Reports submenu.

If you are working with some other target type, first you need to open the Database Explorer pane. You can
do that using the menus or pressing the hot key assigned in SQL Assistant settings to View Database
Explorer function in your target database development tool. You can then follow the instructions provided
in the paragraph above.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -370-

Working with Report Designer

Overview

SQL Assistant provides visual Report Designer tool for creating and modify reports graphically. The Report
Designer can be opened using Execute / Report Designer… menu. Follow the instructions in the Report
Wizard dialog to create a new report or open a previously created report.

The Report Designer window is divided into several areas:

 The report design Workspace in the center of the window.

 The “Object Inspector” pane on the left where you can change properties of the object selected
in the Workspace

 The “Report Object Tree” pane showing object parent-child relationship within the report, such as
which components are located in which bands. You can use drag and drop within the tree to
modify their relationship.

 The “Data tree” pane on the right with the data sources and their fields. You can drag fields from
that tree to the Workspace to quickly add them to the report.

Keyboard and Mouse Controls

Here are important keyboard shortcuts that are often used in the Report Designer

Keys Description

Ctrl+O Same as “File > Open…” menu command

Ctrl+S Same as “File > Save” menu command

CHAPTER 24, Reporting, Data Pivot and Analytics

 -371-

Ctrl+P Same as “File > Preview” menu command

Ctrl+Z Same as “Edit > Undo” menu command

Ctrl+C Same as “Edit > Copy” menu command

Ctrl+V Same as “Edit > Paste” menu command

Ctrl+X Same as “Edit > Cut” menu command

Ctrl+A Same as “Edit > Select all” menu command

Arrow, Tab Moves object selection between objects in the Workspace

Del Deletes selected object(s) in the Workspace

Enter Opens object / expression editor for selected object

Shift+arrows Modifies sizes of selected object(s)
Shift + Arrow Right increases their width
Shift + Arrow Left decreases their width
Shift + Arrow Up increases their height
Shift + Arrow Down decreases their height

Ctrl+arrows Moves selected object(s) in the direction of the arrow.

Alt+arrows Moves and attaches selected object to adjacent object in the specified
direction. Make sure you have single object selected for this operation.

Mouse Operation Description

Left button click Multi-functional usage, depending on the context:
Selects an object
Pastes new object
Moves or resizes selected objects
Zooms in and out by dragging red square in the bottom left corner of
the selected objects’ group

Right button click Opens context menu for the selected objects. The menu commands
may different for different types of objects and bands

Double-click Opens editor for selected object

Mouse wheel Scrolls the report workspace or pane depending on the input focus

Shift + left button click Toggles object selection

Ctrl + left button click Selects multiple objects using mouse-lasso method.

Alt + left button click For Text objects activates in place text editor

Report Variables

System Variables

The report engine supports a number of system variables such as date, time, page number, and so on…
that can be used in report headers and footers, and in other places. They can be accessed through the
Report/Variables menu in the Report Designer. The system variables have self descriptive names.

Database Context Variables

The following variables can be used in expressions where database context information is required:

CHAPTER 24, Reporting, Data Pivot and Analytics

 -372-

_PARAMETER_DB_NAME_ - Current session database name

_PARAMETER_SCHEMA_NAME_ - Current session database schema name

_PARAMETER_SCHEMA_ID_ - Current session database schema ID if supported by the database type.

_PARAMETER_OBJECT_NAME_ - Context database object name if report is invoked for a specific
database object

_PARAMETER_OBJECT_ID_ - Context database object ID if supported by the database type and if report
is invoked for a specific database object

_PARAMETER_OBJECT_TYPE_ - Context database object type if report is invoked for a specific
database object

_PARAMETER_DBMS_TYPE_ - Current connection database system type

_PARAMETER_DBMS_VERSION_ - Current connection database system version

_PARAMETER_SERVER_ - Current connection server name, the server name known to SQL Assistant
derived from the session context details or the connection parameters.

_PARAMETER_LOGIN_ - Current connection login

_PARAMETER_DB_ - Current connection database name as defined in the connection settings, this
maybe different from the current session database name, which can be changed in the SQL editor before
running reports.

_PARAMETER_USER_ - Current connection user name as defined in the connection settings, this maybe
different from the current session user name, which can be changed in the SQL editor before running
reports.

_PARAMETER_OSUSER_ - Local operating system user name who is running the report.

_PARAMETER_MACHINE_ - Local machine name where the report is running.

_PARAMETER_SA_TARGET_ - SQL Assistant's target environment name

_PARAMETER_SA_VERSION_ - SQL Assistant's version

Report Objects

The Report Designer represents reports as a collection of schematic pages. Objects are placed anywhere
on the report pages within report bands and are used to define the report's appearance and to display
various information, such as text and graphics. Here are the types of objects available:

 - “Band” object : an area on a design page which behaves according to its type (e.g. Header band,
Data band)

 - “Text” object : displays one or more lines of text within a rectangular area

 - “Picture” object : displays a graphic file in “BMP,” “JPEG,” “ICO,” “WMF” or “EMF” format

 - “Line” object : displays a horizontal or vertical line

CHAPTER 24, Reporting, Data Pivot and Analytics

 -373-

 - “System text” object : displays either system information (date, time, page number, etc) or aggregate
values

 - “Subreport” object : allows insertion of another report design page within the host page

 - “Draw” category objects : displays various geometrical shapes

(diagonal line, rectangle, rounded rectangle, ellipse, triangle and diamond)

 - “Chart” object : displays data in various chart formats (pie chart, histogram, etc.)

 - “RichText” object : displays text in Rich Text Format (RTF)

 - “CheckBox” object : displays a checkbox with either a tick or a cross

 - “Barcode” object : displays data as one of several barcode types

The basic objects most commonly used are the “Band” and “Text” objects.

Report Bands

Report bands are used for placing the objects they contain at particular locations on the output page.
 When placing an object in the “PageHeader” band we tell the report engine that the given object must be
displayed at the top of each page in the finished report. Similarly, objects in the “PageFooter” band are
displayed at the bottom of each page. Let's demonstrate this with an example. We’ll create a report
containing “Hello!” at the top of the page, the current date to the right of it and the page number at the foot
of the page on the right hand side.

If you choose to use one of the prepackaged report templates when creating a new report, a number of
bands will be inserted automatically including page header and footer, report title, no data band, and some
other bands depending on the selected template type.

Among the bands that are typically used in all reports are various bands which are named "...Data". Such
bands typically host report field that will be printed on the output page, once for each record in the report
data source associated with the report page.

 Tip: There is a special band type called the “Child” band. A “Child” band is linked to (and displayed
after) its parent band. It enables fine layout of objects within the report page.

Text Objects

The “Text” object has many features. It can display text in a frame and be filled with a color. The text can
be displayed using any font of any size and style. All the properties can be set visually with the help of the
toolbars.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -374-

Here are some examples of text design:

Now let’s look at other features of this basic object. As an example, let's create a new "Text" object to
display two lines of text:

This is a very, very, very long text line.
And this is another line, the shorter one.

Enable the object frame from the toolbar and re-size the object up to 9x3 cm using the mouse. We see that
the object can display not only a single line but also several lines of text. Now reduce the object width to 5
cm. It is obvious that long lines did not fit across the object and were therefore wrapped. This is controlled
by the “WordWrap” object property. If wrapping is disabled (either in the object inspector or via the object
context menu) any long lines will be simply cut short.

Now let’s see how text alignment inside the object works. Alignment buttons are located in the “Text”
toolbar and control horizontal or vertical text alignment. Note the “Justify” button which lets you align
paragraphs to both object edges - to do this “WordWrap” must be enabled.

All the text in the object can be rotated to any angle in the range 0..360°. The button in the “Text”
toolbar allows you to quickly rotate the text to pre-sets of 0, 45, 90, 180 or 270°. For any other value set the
required angle in the “Rotation” property of the object inspector. When rotating text to angles other than 90,
180 or 270° the text may be cut off by the frame of the object, as shown below. To cure this increase the
object height a little so that all the text fits within the object.

Use of HTML tags

The “Text” object does understand some simple HTML tags. Tags can be located within the text of the
object. Tags are disabled by default, but to enable them either select “Allow HTML tags” in the object

CHAPTER 24, Reporting, Data Pivot and Analytics

 -375-

context menu or enable the “AllowHTMLTags” property in the object inspector. Here is the list of supported
tags:

 : bold text

<i> : italic text

<u> : underlined text

<sub> : subscript

<sup> : superscript

 : font color

<nowrap> : text which is not split when "WordWrap" is enabled, the whole text is shifted to the next line

 Note: Please note that only a few tags are supported, but this should be enough for the majority of
applications. It is not possible to modify the font size or name by means of HTML tags.

The following examples show how these tags can be used.

text bold text <i>text in italic</i> <i>bold and in italic</i>
E = mc²
A₁ = B²
this is a usual text, and this is a red one
this is a usual text, and this is an orange one

Expressions

One of the most important features of this basic object is its ability to display not only a static text but
expressions as well. Expressions can be located within the object mixed in with normal text. Let's see a
simple example of how this works. Type the following into the object:

Hello, World! Today is [DATE].

When the report is run we can get something like this:

Hello, World! Today is 01/01/2021.

How does this happen? When the report engine creates the report and encounters an expression enclosed
in square brackets the report engine calculates the expression's value and inserts this value into the text in
place of the expression. “Text” objects can contain any number of expressions mixed in with the normal
text. Complex expressions can contain brackets (for example [1+2*(3+4)]). Constants, variables, functions
and fields can all be used in expressions. We will learn more about these later in the chapter.

The report engine automatically recognizes expressions enclosed in square brackets in the text. But what
happens if our normal text contains square brackets which we do not want to be considered as
expressions? For example, if we need to display the following:

a[1] := 10

CHAPTER 24, Reporting, Data Pivot and Analytics

 -376-

The report engine would consider [1] as an expression and display that text as:

a1 := 10

which is not what we want, of course. One way to avoid this happening is to disable expression
recognition. Disable the “AllowExpressions” property (or “Allow Expressions” in the context menu) and all
expressions in the text will be ignored. In our example, the report engine would then display exactly what
we need:

a[1] := 10

But sometimes text is required to contain both an expression and normal text with square brackets, for
example:

a[1] := [myVar]

Disabling “AllowExpressions” lets us display square brackets in the required places, but it also disables
handling of expression. In this situation the report engine allows you to use an alternative set of symbols to
designate expressions. The “ExpressionDelimiters” property, “[,]” by default, is responsible for this. In our
example we can use angular brackets for the expressions instead of square ones:

a[1] := <myVar>

The “<,>” value must be set in the “ExpressionDelimiters” property, where the comma is required to
separate the opening and closing symbols. Another requirement is that the opening and closing symbols
cannot be identical, so “%,%” will not work. Complex symbols can be used, for example “<%,%>”. So our
example could look like this:

a[1] := <%myVar%>

Groups

The data in reports can be grouped using the Group bands feature which supports multi-level reports as
demonstrated in the following example

The “Group header” band is output only when the field to which it is linked changes in value. Otherwise the
data band connected to the “Group” dataset is displayed.

Reports having nested groups can be designed in a similar way. The depth of nesting of groups is
unlimited. Reports which use groups have some advantages over reports of the master-detail type:

 The whole report needs only one dataset (query)
 The number of data grouping levels is unlimited
 Data sorting becomes possible
 More optimal usage of the database resources (the query returns only one dataset for output, with

filtering done by the query).

There is another important group feature. The group header has a property called DrillDown. If you set it to
True, the group becomes interactive. This means you can click on the group header in the Report Preview

CHAPTER 24, Reporting, Data Pivot and Analytics

 -377-

window and the group will expand (display all records in the group) or collapse (display only the header
and, if ShowFooterIfDrillDown is True, then the footer).

You can control whether all groups are collapsed or expanded when the report first runs. By default a
group is collapsed but you can set ExpandDrillDown to True if you want it expanded. You can also use the
preview's context menu to expand or collapse all groups at once.

Line numbering within groups

To do this, we add a “Text” object containing a system variable [Line] to both of our bands (this is most
easily done by dragging & dropping from the “Variables” tab of the “Data Tree” pane).

When previewing the report, we can see that both the data levels now have their own line numbers:

To continuously number the second level data lines, use the [Line#] variable instead of [Line] in the “Text”
object on the data band. The result will then look like:

Aggregate Functions

In most cases group reports need to display some summary information (such as: “total of a group”,
“number of group elements” etc). The aggregate functions can be used for calculating aggregate values
over some data span. The aggregate functions are:

SUM returns the total of an expression

MIN returns the minimal value of an expression

MAX returns the maximal value of an expression

CHAPTER 24, Reporting, Data Pivot and Analytics

 -378-

AVG returns the average value of an expression

COUNT returns the number of lines (rows) in the data span

The syntax of all aggregate functions (except COUNT) is similar to that of the SUM function:

SUM(expression, band, flags)
SUM(expression, band)
SUM(expression)

The parameters are:

expression – the expression to be calculated

band – the name of the data band within which the calculation is performed

flags – a bit field, with values

1 - include invisible bands in calculation

2 - accumulate the aggregate as a running total, in other words, do not reset the aggregate when the
current data span resets.

3 - (both of the two previous options)

An expression is the only mandatory parameter, the other two are optional. Nevertheless, to avoid making
mistakes it is recommended that band parameters are always given.

The “COUNT” aggregate function has the following syntax:

COUNT(band, flags)
COUNT(band)

where the parameters have the same meaning as above.

There is a general rule for all aggregate functions: an aggregate can only be calculated over a data band
and can only be used in that band’s footer, which can be one of:

footer
page footer
group footer
column footer
report footer (summary band).

How do aggregate functions work?

We will look at this using our group report example. Let's add some new elements to the report:

CHAPTER 24, Reporting, Data Pivot and Analytics

 -379-

The Group.“ItemsTotal” field in the data band displays the current order total. Place a “Text” object in the
group footer containing the aggregate SUM shown above. It will display the total of all orders placed by the
given customer. Using a calculator, we can check that the result is correct:

Aggregate functions work like this : before outputting a report, the report engine scans the “Text” object
contents to find any aggregate functions. The aggregates found are linked to the data bands in their
parameters (in our example “SUM” is linked to the “MasterData1” band). During report output (when the
data band is displayed) the values of the aggregates linked to it are calculated. In our case the
Group.“ItemsTotal” field values are accumulated. Once the group footer displaying the aggregate has been
output the aggregate value is reset to zero, and the cycle is repeated for the next group, and so on.

What is the purpose of the optional “Flags” parameter in aggregate functions? Reports may have some, or
all, of the data bands hidden. We may, however, need to calculate aggregates over all the data bands,
whether visible or not. In our example, set the “Visible” property of the data band to false, so preventing its
display. To still have this hidden data band included in the calculations, we have to set the third, optional
parameter in the function call to the figure 1, i.e.:

[SUM(<Group."ItemsTotal">,MasterData1,1)]

This produces a report looking like tis:

When the “Flags” parameter value is set to 2, the aggregate value is not reset immediately after it is
displayed : the aggregate becomes a “running” calculation for each successive output. Let’s modify the
function call as shown here:

[SUM(<Group."ItemsTotal">,MasterData1,3)]

The value “3” is a bit combination of “1” and “2”, meaning that we need to include the invisible bands,
without resetting the total after each group. As a result, we have:

CHAPTER 24, Reporting, Data Pivot and Analytics

 -380-

Page and Report Totals

The usage of aggregate functions in page and report totals is exactly the same as in the group totals. The
only difference is that you will place them into page and report header and footer bands as demonstrated
in the following example

Conditional Highlighting

Please refer to the Conditional and Continuous Data Highlighting topic later in this chapter for specific
details on how to use conditional row and value highlighting in reports and data pivot.

Multi-page Reports

The report engine supports reports consisting of several design pages. Multi-page designs allow for the
adjustment of properties such as size and orientation of each page, as well as allowing variation in the
placement of objects and bands on the pages. When this type of report is output all bands from the first
design page are be displayed, then bands from the second page, and so on.

New reports contain one design page by default. You can add a new page by clicking on the button in
the toolbar or by selecting the “File>New page” menu command. Then you would see that a new page tab
appears in the designer:

You can easily switch between pages by clicking on the page tabs. Page tabs can be dragged to easily

change their printing order. An unnecessary page can be deleted using the button in the toolbar or by
selecting the “Edit>Delete page" menu command. You can also call the context menu by right-clicking on
the page tab:

The number of design pages in a report is unlimited. As a rule additional pages are used either for title

CHAPTER 24, Reporting, Data Pivot and Analytics

 -381-

pages or, in more complicated reports, for data coming from many data sources.

Here is a simple example of creating a title page. Let's use our previous report having one data level. Add
a new page to it, it will be added as a second page. Move it to the front of the report by grabbing the page2
tab with the mouse and dragging it over the first page tab, page1. This changes the page order. Select the
new page and place a “Text” object containing “Our report” in the middle of the page. That is all that is
needed. The report with a title page is complete:

 Tip: If the “PrintOnPreviousPage” property is enabled in the object inspector for the second output
page, then the second output page's objects will start printing on the white space of the first output page,
and not on the new output page.

Nested Reports (Subreports)

Sometimes very complex report are needed which contain blocks of additional data inserted at particular
points in the design. Although many of these reports can be designed using an arrangement of bands,
sometimes it just becomes too complicated. In these circumstances it is necessary to use the “Subreport”

object .

When a “Subreport” object is inserted into a page, the engine automatically adds a new page, which is
connected to the “Subreport”. Such a nested report resembles a multi-page report in terms of design
structure. The only difference is that the nested report is displayed in a specific location on the basic design
page, and not after it. When this report is output, as soon as the “Subreport” object is encountered the
report engine outputs the connected subreport page in its entirety. After that output continues with the rest
of the basic design page.

Further “Subreport” objects can be inserted into a subreport design page, so increasing the depth of
nesting.

The "Subreport" object has a "PrintOnParent" property which can sometimes be useful. This property is
False by default. Usually a subreport is output as a set of bands on the basic report page. When this is so,
the height of the parent band containing the "Subreport" object is not controlled by the bands in the
subreport, i.e. it cannot be stretched. If the subreport "PrintOnParent" property is set to True, either in the
object inspector or the context menu, the objects in the subreport are physically printed on the band which
contains the "Subreport" object. This band can be made to stretch and can have stretched objects placed
on it:

 Tips:

 Subreports enable deep data nesting. In comparison the number of data levels is limited to six
when the Detail data bands are used instead of the “Subreport” objects.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -382-

 Two or more “Subreport” objects can be placed side-by-side on the same data band to create
side-by-side subreports:

 Since subreports are placed on the basic design page, they cannot contain any of the following
bands: “ReportTitle/ReportFooter”, “PageTitle/PageFooter/PageBackground” or
“ColumnTitle/ColumnFooter”. If any of these bands are placed on a nested report page they will
not be recognized. For the same reason there is no point in changing any nested report page
options, as the options of the basic report page override those of any nested pages.

Report Scripts

A script is a program, which is part of a report. As the report runs, the script runs as well. A script can
handle data in ways that are not possible just using the normal operations of the reporting engine; for
example, a script can hide redundant data depending on a predefined condition, or show conditionally a
no-data band.

A script can be written in one of the languages supported by the script engine:

 PascalScript
 C++Script
 BasicScript
 JScript

The following features are supported by the engine:

 Standard language set : variables, constants, procedures, functions (which may be nested and
having variables, constants, default parameters)

 All standard operators (including case, try, finally, except, with), types (integral, fractional, logical,
character, line, multi-dimensional arrays, variant), classes (with methods, events, properties,
indexes and default properties)

 Type compatibility checking
 Access to any of the report’s objects

The Report Designer contains a script editor with syntax highlighting. There is also an embedded debugger
which has the following functions: “Step”, “Breakpoint”, “Run to cursor” and “Evaluate”.

 Important Notes:

The complete description of the supported scripting functions and interfaces can be found here
https://www.fast-report.com/public_download/html/FR5UserManual-HTML-en/index.html

Running Reports, Printing, Saving to PDF files

To run a predefined report, locate the report in the Database Explorer's right-click menu. The report will run
immediately and its preview will appear in the Report Preview window.

To run a user-defined report

1. Make sure your current editor is connected to the database in which you want to run your report.

2. Select Execute / Execute Report… menu. You will be prompted to select previously saved report
definition, a file with .sarpt extension. Select your report file and click the Open button in the file
browse dialog. The selected report will run and its preview will appear in the Report Preview
window.

https://www.fast-report.com/public_download/html/FR5UserManual-HTML-en/index.html�

CHAPTER 24, Reporting, Data Pivot and Analytics

 -383-

 Important Notes: The database connection details don't get saved in the report definition. The
same report can be run in multiple databases. Yet, it's very important to select the database
connection having the same type the report was created with. Failure to select correct connection type
may lead to report execution errors.

To send report to a printer for printing, click the Printer icon on the report preview toolbar

To save report to a PDF file, which can be opened later or emailed, click the PDF icon

To save report to a Prepared Report file which can be opened later without re-running the report, click the

Save icon . You will be prompted to select file name to save report to. The report will be saved along

with the data. To open previously saved report, click the Open Report icon . You will be prompted to
select previously saved prepared report file.

Adding Reports to Database Explorer

To have your custom reports appear in the Database Explorer right –click menu, copy or save them to
%APPDATA%\SQL Assistant\Reports\[SQL Assistance name] folder. Note that %APPDATA% is a
system environment variable. If you do not know the value of this variable, you can display it by opening
the DOS command window, and executing the command echo %APPDATA%. Note that [SQL Assistance
name] is a reference to the SQL Assistant type in SQL Assistant settings for the database you are working
with. See the Customizing SQL Assistance Types topic for more information. For example if your user
name is jack_the_user and the report you want to register is for Oracle and your report definition file name
is MyReport.sarpt, the location of the report would be C:\users\jack_the_user\AppData\Roaming\SQL
Assistant\Reports\Oracle\MyReport.sarpt. For schema object type specific reports place reports into
%APPDATA%\SQL Assistant\Reports\[SQL Assistance name]\[Object Type] subfolder. For example,
if you develop custom report named MySpaceUsage to check on table storage allocation, save it to
C:\users\jack_the_user\AppData\Roaming\SQL Assistant\Reports\Oracle\Table\MySpaceUsage.sarpt.

 Tip: If the report is saved to the correct location, it is going to be available in the menu immediately,
there is no need to reconnect or restart anything. Simply right-click in the Database Explorer, click Reports
submenu and check your report name is showing. Click it to preview and test.

Data Grids Integrated Reporting

The integrated reporting and analytics interfaces are coupled with the data preview and query execution
facilities. It is recommended that you read CHAPTER 11, Data Display and Editing and CHAPTER 14,
Executing SQL Scripts before you continue. In CHAPTER 11 and 13 you can learn how to execute SQL scripts
and different methods for retrieving and viewing the data using built-in data-grid controls.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -384-

 Using system generated reports:

1. Develop the SQL query to retrieve data required for the report and execute it in SQL Assistant’s SQL
Editor or in the other target editor. Be sure you use the SQL Assistant’s code execution facility (see
CHAPTER 14 for details) to run the SQL query.

1. Right click the result tab and choose Rename command from the context menu:

CHAPTER 24, Reporting, Data Pivot and Analytics

 -385-

2. Right-click the data grid and choose the Print Report/PDF… command in the context menu. This will
generate a report and display it in the report Preview dialog as in the following example.

3. Click the Print toolbar icon in the report Preview dialog to print the report.

4. Click the PDF toolbar icon in the report Preview dialog to save report to a PDF file. If the file already
exists, SQL Assistant will prompt to overwrite the file.

5. To close the report, click the Close button in the top right corner of the dialog.

Changing Column Sizes

Width of columns in the report matches width of columns in the data grid from which the report was generated.
To adjust the width, resize columns in the data-grid and then regenerate the report using Print Report/PDF…
command in the data-grid menu. If required, repeat adjust column width again until your satisfied with the report
column layout.

Data Pivot and Advanced Analytics

Overview

The data-grid integrates directly with pivot-grid based on the FastCube component developed by Fast Reports
corporation that can be used for fast data pivoting with advanced analytics functions. It’s a full featured OLAP
cube enabling instant in-memory data transformation, supporting simple and intuitive drag-and-drop interface,
multi-level row and column headers, conditional data formatting, drill down and drill through interfaces, dynamic
data sorting, grouping, and filtering, and a number of other advanced features. The headers are filled with the

CHAPTER 24, Reporting, Data Pivot and Analytics

 -386-

dimension values. The central part of the grid displays the values of the measures.

Pivot-grid User-Interface

The pivot-grid consists of several interactive regions, identified by the numbers above:

1. Filter region - dimensions included in this region can be used for filtering the data

2. Vertical dimensions (a.k.a. fields for row headers): - dimensions included in this region form the
grid's row headers.

3. Horizontal dimensions (a.k.a. fields for column headers): - dimensions included in this region form
the grid's column headers.

4. Row headers – filled with values from vertical dimensions. You define the dimensions for this region
by dragging field names from the “List of fields” drop-down control.

5. Column headers – filled with values from horizontal dimensions. You define the dimensions for this
region by dragging field names from the “List of fields” drop-down control.

6. List of fields available in the pivot cube – you can drag them to row and column headers, filters and
the main data region.

7. Data region – contains the computed values using the selected fields. You fill this region by dragging
field names from the “List of fields” drop-down control, and then optionally choose the kind of values
or aggregates to compute.

8. Quick aggregates – this region shows aggregates for the selected cells. The choice of aggregates
can be customized through the region’s context menu.

9. List of Top-N filters – the Top-N filters can be modified through the context menu for this region.

10. Scale control – the scale factor for the pivot-grid display. You can change the value by clicking the
scale value.

11. Toolbar – provides quick access to common pivot-grid functions, including saving the cube definition
to a disk file and reopening previously saved cubes.

12. Navigation links – links for switching back to the simple data grid, printing reports, saving results to
PDF files.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -387-

Quick Tutorial

The following tutorial demonstrates how to use the data pivot features. The tutorial analyses flight cancelations
by airports and carriers using flight cancelations and delays database populated with January 2017 data for
North America.

Step 1: Develop a query to retrieve raw data for pivoting and advanced data summarization. Typically you
should use a fairly simply query returning all required values. A query may join several tables, including lookup
tables returning all descriptive values that you need to use as dimensions and labels on the report. Execute the
query to retrieve result set into SQL Assistant’s regular data-grid.

Step 2 (optional): Rename the result tab if you are planning on printing or saving results and want to use
some meaningful name in the report title. If you don’t rename it, your raw query text will be usedi n the title.
Right-click the tab and choose the Rename command as shown on the following screenshot.

Step 3: Right-click the data-grid and select the Pivot/Analyze Data command from the context menu. The
data-grid will convert to data-pivot interface.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -388-

Step 4: Click the arrow to the right of the Fields drop-down to expand the field list and then drag-fields from the
list to row and column header regions. In this tutorial we have airports shown in columns and carriers shown in
rows. We also make cancelation reasons available as a dynamic filter. For more details see read annotations
on the following screenshot.

Finally drag the main measures column to the data pivot data region. In this tutorial we use the system
generated “System counter” column that calculates the number of occurrences for the each combination of
carrier and airport. The resulting grid is shown below.

Multi- dimensions: You can drag multiple fields to the row and column headers to create grouped dimensions
with granular field scope numbers break down. In the next step we will add the cancel_reason field to the row
headers immediately after the airline name. Note that now the cancelation counts for each airline are broken
down by cancelation reason with automatic totals calculated for each airline.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -389-

Dimensions and Measures

The pivot-grid can be considered a multi-dimensional generalization of a two- or three-dimensional
spreadsheet. For example, you might wish to summarize financial data by product, by time-period, and by city
to compare actual and budget expenses. Product, time, city and scenario (actual and budget) are the data's
dimensions. Each cell of the pivot-grid holds a number that represents some measure of the business, such as
sales, profits, expenses, budget and forecast. In the prior tutorial we summarized the North America’s flight
data by carrier and by airport to compare their average departure time delays. Carrier and airport were chosen
as the data's dimensions. Delay time was chosen as the measure.

The simplest method for setting up dimensions and measures is dragging fields from the Fields drop-down list
or the Fields list dialog to the three pivot-grid regions: filter region, row dimensions region, and column
dimensions region. To open the Fields list dialog, click the Fields List button on the pivot-grid toolbar.

All data pivot interface functions for dimensions and measures can be accessed using right-click menus. Note
that various menus are provided for different regions of the pivot grid and for different elements within the
regions. For example, to change automatic summaries and counts calculated after the initial pivot-grid is
generated to a different set of analytical functions, right-click the required dimension field in the column headers
region, and from its context menu choose the kind of function that you want to use for the totals, for example,
you can choose to calculate median values instead of averages or sums.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -390-

To change the kind of values displayed as measures in the pivot grid, right-click the cell values and then
choose value kind

Similarly to change value formatting for different dimensions and regions, right-click the required field and
choose the Properties command in its context menu, which will open the Measures Editor dialog . In the
dialog, select the Display Format tab and set the required formatting.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -391-

Totals

The pivot-grid supports Total values. Total value is an aggregated measure value over a group of dimension
values. A Total value is calculated using the aggregate function selected for the measure. Default aggregate
function is sum() for numeric values and count() for non-numeric values. Totals calculated by default for each
dimension as well as the grant totals for the entire data set displayed.

You can use the dimension field’s context menu to change the position of Totals (before or after), to hide or
show Totals, and to change the aggregate function for the dimension Totals. You can also choose different
aggregate functions for different dimensions.

You can also use the Measures Editor dialog to select a different analytical function and other related
properties. Right-click a cell in the pivot-grid for a measure whose totals calculation you want to change. Select
the Totals tab and modify it as required.

Drill-Down/Up and Drill-Through

The pivot-grid data can be collapsed (drilled up) to exclude the values of the nested dimensions from

CHAPTER 24, Reporting, Data Pivot and Analytics

 -392-

processing or can be expanded (drilled down) to include the values of the nested dimensions. These operations
are performed using the [-] and [+] buttons located in row and column headers of the pivot-grid.

Drilling up or drilling down changes the structure of the header and the data region. To group the data by the a
certain dimension, click the [-] button of the corresponding dimension. And conversely, to refine the data click
the [+] button.

 Tips:

 Only the main dimension Total is shown when a dimension item is fully collapsed.

 It is possible to collapse the grand totals. The result depends on whether or not the measure fields are
placed in the collapsed axis. An axis without measures collapses with the hiding of all the cells except
the Grand Total cell. An axis with measures can collapse grand totals for each measure
independently. The collapse of measure grand totals hides all the cells of that measure. Collapsing the
grand totals of all the measures hides all the cells except the grand total cells for each measure.

Double-clicking a data cell within the Measures regions opens a window showing the Detail Table containing
the source data rows used for calculation of the selected cell.

Partial Rotation and Full Transposition

The pivot-grid layout can easily be changed on the fly by moving dimensions between the three regions: filter
region, row dimensions region, and column dimensions region. In OLAP terms, this operation is called rotation,
because it corresponds to rotating a multidimensional data array. Data rotation enables the same information to
be analyzed from different perspectives.

To rotate the data drag-and-drop the dimension fields from one region to another.

As the dimension field is dragged over the pivot-
grid, a special pointer shows where the dimension
would go if the button mouse is released at that
moment;

This is the result after the "Item" dimension has been moved
from the row dimensions region to the column dimensions
region:

Another way to rotate dimensions is to use the Field list dialog. Drag fields from the dialog and drop them into
filter region, row dimensions region, or column dimensions region. If a field is already in one of the regions, it’s
automatically moved to the new region.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -393-

Full Transposition

To perform the total rotation (pivot-grid transposition), use the Transpose button on the pivot-grid toolbar.
This operation moves all the row dimensions to the column region and all the column dimensions to the row
region. Unlike partial rotation after moving a subset of dimensions, the transposition does not require the
recalculation of data cells, and as a result, it is instantaneous.

Grouping

The pivot-grid can join several dimensions into a group. Grouping is a two stage process; first you define the
group, and then you chose how to populate them with values.

Grouping features:

 Unlimited number of dimension groups

 Empty groups allowed

 Empty groups not shown on axes

 Groups must have unique names inside a dimension

 A dimension value cannot belong to more than one group

 Inclusion of a dimension value in one group automatically excludes it from all other groups

 A dimension value can be excluded from grouping

 A system group "others" can be created, which includes all values not belonging to any other group

 Group deletion automatically excludes all the values it contains

 Group creation, deletion, renaming, value inclusion and exclusion can be performed while the cube is
active

 A filter window shows all groups and their members : group filtering state depends on member states

 Moving a dimension from one region to another does not reset groups

 Dimension groups are saved in cube files together with the dimension members

The axis shows dimensions having groups at two levels: group level and member level. The group level
contains dimension group names and also dimension values that do not belong to any group. The member
level contains the values which belong to the groups. A group can be in a collapsed state, in which case the
group members are not shown. If all groups are collapsed then the member level is not shown.

To create a new group, use dimension field’s right-click menu.

Or use right-click menu for the dimension member

CHAPTER 24, Reporting, Data Pivot and Analytics

 -394-

 Important Note: Any operation involving a group, including collapse/expansion, causes measures
recalculation because of the change to the axis.

Sorting

All data in the pivot-grid is always displayed in certain order, irrespective of the original order in the source data-
grid populated from your SQL query. The sort order is either ascending or descending. Numeric values and
date/time values are sorted in their natural order, ascending or descending. Strings are sorted alphabetically,
ascending or descending. The default sort order is ascending for all dimensions.

Every dimension in the grid can have its own sort order. To change order for a given dimension, right-click it in
the dimensions region and then choose Sort command from the context menu as demonstrated o nthe
following image.

Filtering

In the optional step 4 of the prior tutorial we dragged canel_reason field to the filters bar. As a result, all
possible values for that field appeared in the “cancel_reason” drop-down list shown above the grid. To
dynamically change the filters, expand the drop-down and select the values that you want to keep or hide as
demonstrated on the following screenshot.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -395-

 Important Note: It does not matter in which region of the pivot-grid the filtered filed is located, it could be
in filter region, row dimensions region or column dimensions region. Filtered values are not only hidden in the
grid header but are also excluded from measures and Totals calculations.

Values of dimensions can be filtered using the drop-down list which is opened with a click on the dimension
filtering button displayed to the right of the dimension field.

Conditional and Continuous Data Highlighting

The pivot-grid supports conditional cell highlighting. For example, a rule can be setup for displaying numbers
inside or outside a particular number range with a different background. The following screenshot demonstrates
two rules setup for a pivot grid used for the tutorial in the beginning of this chapter.

To setup a rule for a particular field, right-click that field and choose the Properties command in its context

CHAPTER 24, Reporting, Data Pivot and Analytics

 -396-

menu, which will open the Measures Editor dialog . In the dialog, select the Data Marker tab. Click the plus
icon and add the required formatting style and range.

The second rule on the following screenshot illustrates conditional formatting rule.

Highlight rules can process measure data as value, text or data, or NULL. Allowable conditions depend on the
type of the measure's data. So, for example, value processing allows "greater" and "lower" conditions while text
processing allows "contains" and "not contains" conditions, which search for the specified substring within
measure’s data values.

The display style provides options for choosing cell’s background fill style and color, as well as cell’s text style
and color.

The pivot-grid also supports continuous highlighting, which applies highlighting to all cells dependent on their
values. The example rule on image above illustrates continuous highlighting.

Each type of continuous highlighting is described below:

 Two color scale and three color scale - Color scale highlighting fills each cell's background with a
color calculated from the given color gradient scale. The Highlighting Rule Editor dialog sets the
values for the extreme points and their corresponding colors, and also for one intermediate point for
the three color scale.

The values for the points can be set either as absolute numbers using the "Number" option, or as one
of the following relative options:
Minimum by row/column - minimal measure value in row/column

CHAPTER 24, Reporting, Data Pivot and Analytics

 -397-

Percent by row/column - value field sets the percent relative to minimal and maximal measure
values in row/column
Percentile by row/column - value field sets the percentile relative to measure values in row/column

 Bar - This type of highlighting draws a colored bar within the measure cell. The length of the bar
depends on the values set under the Shortest bar and the Longest bar properties. The property
values, as previously, can be set with either the absolute or the relative option. The bar can be drawn
either in a solid color or with a gradient color to white. The frame color for the bar is set independently.
The cell value can also be hidden for this type of highlighting, leaving only the bar visible.

 Icon set – This type of highlighting displays an icon related to the value inside the measure cell. Icons
are drawn to the left of the cell's value. The Highlighting Rule Editor dialog has options for sets of 3,
4 or 5 icons. Each icon requires a value range to be set. The cell value can also be hidden for this type
of highlighting, leaving only the icon visible. Here is an example of icon set highlighting with and
without visible cell values:

and here is a sample result of using
this kind of highlighting style:

Saving Data-Pivot for Continued Data Analysis

Use the Save button on the data-pivot toolbar to save the current pivot sate with the data to an .MDC file.
You can later open the save file using the Open button and continue working with it.

The .MDC file can be also shared with coworkers provided they too have the SQL Assistant software installed
on their computers.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -398-

Printing Data-Pivot and Saving it

In the right-top corner of the pivot grid click the Print Report/PDF… link. The report preview will open.

To send report to a printer for printing, click the Printer icon on the report preview toolbar

To save report to a PDF file, which can be opened later or emailed, click the PDF icon

To save report to a Prepared Report file which can be opened later without re-running the report, click the Save

icon . You will be prompted to select file name to save report to. The report will be saved along with the data.

To open previously saved report, click the Open Report icon . You will be prompted to select previously
saved prepared report file.

Charts

Charts are available in Standalone Reports through the charts component, as well as in the data grids through
the integrated Data Pivot and Advanced Analytics feature. In the first case, when you design reports you need
to add chart component to the report and then add the date series. In the second case you do not need to do
anything special to enable them, they are available to you instantly when you switch to the Pivot-grid view as
described in the Quick Tutorial topic earlier in this chapter. A variety of chart types are supported, including line,
pie, bar, area, and scatter.

As you choose dimensions and measures in the pivot-grid, apply various filters and totals, your chart will
automatically update. If you want to disable automatic updates, choose the Freeze Chart toolbar button.

Use the charts toolbar to customize chart behavior and appearance. You can optionally save your preferred
chart type and appearance to a template file and later quickly apply it to future charts.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -399-

Basic Chart Operations

 Save current chart type and selected style to chart template file with .MDT extension.

 Open previously saved chart template and apply it to the current chart.

Select chart type using drop-down menu, such as Vertical Bar, Horizontal Bar, Line, Pie, Area,
and Point (a.k.a. Scatter chart).

 Important Note: The drop-down list contains most common chart types. Changes in the
chart type selection apply to all series. To change type of specific series only, and for complete
gallery of all supported chart types, open the Visual Chart Properties dialog as described in the
Customizing Visual Properties topic, select the Series item in the left side navigation menu, and
then click the Change… button.

 Select chart sub-type, such as Stacked, Stacked 100% (Normalized), Self Stack, Side, Side All,
and None.

Freeze / un freeze automatic chart updates on pivot-grid properties and data changes.

 Open the Chart Properties dialog. In the dialog you can choose the chart data source, series
and categories.

 Show / hide data marks next to data points, or pie chart slices. Data marks show precise value
and category labels for the given the data point.

Show / hide chart legend.

 Open the Data Management dialog, which you can use to drill-down to specific data elements
for the calculated totals.

 Copy chart to the Clipboard.

 Open the chart Visual Properties dialog, which you can use to customize colors for different
series, to customize axes lines and other chart elements.

 Tips:
 You can copy charts to the Clipboard and then paste them into your documents and presentations, or

simply paste into email and send to colleagues.

 To save chart to an image file, open Chart Visual Properties dialog. On the left side of the dialog
click the Export option in navigation tree, this is second last option. Then the Save… button.

 To create multiple charts using the same data set, execute the same query as many times as many
charts you require. In each data-grid pane switch to the pivot-grid, choose different dimensions and
measures for the analytical data aggregation. Customize chart appearance as required.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -400-

Data Source Selection

Click button in the Chart toolbar to open the Chart Properties dialog. Using the dialog select the source of
the chart data. For the selected source, customize the source of series and categories. You can also choose
how many dimension and measure fields to add to the chart from the selected data source.

Note that the properties available for customization in the Chart Properties dialog depend on the selection of
the data source type.

Customizing Visual Properties

To customize chart appearance, double-click anywhere within the chart area. The Chart Visual Properties
dialog will appear. The dialog allows fully customization of all chart elements, as well as individual data series.

Use the navigation menu on the left side of the dialog to choose specific elements that you want to customize.

CHAPTER 24, Reporting, Data Pivot and Analytics

 -401-

The right side of the dialog is filled with tabs and controls specific to the type of the element selected in the
navigation menu.

 Note: The complete description of all customizable chart elements and their properties is outside of the
scope of this manual. Please refer to the on-line documentation for the TeeChart © component by the Steema
Software for complete details and tutorials. A copy of the online documentation can be found here
http://www.teechart.net/docs/TeeChartGeneralWiki.htm

http://www.teechart.net/docs/TeeChartGeneralWiki.htm�

 CHAPTER 25, Code Compare Utility

 -402-

CHAPTER 25, Code Compare Utility

Overview

SQL Assistant provides an integrated Code Compare utility that can be used to compare changes in code or
text data files. This utility offers unique features that allow comparing differences between the following objects:

 Two text files with any file extension.

 Text file with any file extension against text in the target editor.

 Code of a procedural object in the database (such as stored procedure, user-defined function,
package or type) against text of in the target editor.

 Code of a procedural object in the database (such as stored procedure, user-defined function,
package or type) against text of any text file.

 Text in two edit windows running in the same or different applications both of which are open on
the same desktop; for example, text loaded in a Notepad window against text loaded in SQL
Server Management Studio window.

The Code Compare utility can be invoked from SQL Assistant's menus. The Compare Code and Data
Compare Code command is available from either the right-click context menu in the target editor or the top-
level menu (if the target editor top-level menu integration is enabled). This command opens the SQL Assistant
– Text Compare dialog. In this dialog you can select the target files or edit windows to be compared. The Code
Compare utility can be also invoked using special shortcuts in the Code View pane. This pane can be used to
compare code of procedural objects from the database against code in the editor window or against code of an
external text file. The following screenshot shows where to find these shortcuts.

See CHAPTER 10, One-click DDL Code View for information on how to open and display the Code View
pane.

 CHAPTER 25, Code Compare Utility

 -403-

Using External File Compare Tools

If you prefer using some other code compare tool, you can configure SQL Assistant to use the external
compare tool instead of the built-in tool.

1. In SQL Assistant Options dialog, select Source Control tab.

2. Click the SCS Settings section on the left.

3. In the External Compare Tool, choose one of the preconfigured tools or enter a new command
line with parameters for an external file compare tool of your choice.

Using Code Compare Dialog

The following screenshot shows an example code comparison dialog.

Color Highlighting

The Code Compare function uses different colors to highlight text different differences. Pink indicates deleted
lines, light blue indicates new lines, light green indicates modified lines, and bright green within modified lines

 CHAPTER 25, Code Compare Utility

 -404-

indicates actual text differences.

Dialog Controls:

Left-side drop-down list – This list contains recent files selected for comparison. Use this list to quickly pick a
file against which you want to compare current text in the editor or code in the database. The content of the
selected file appear in the left pane of the dialog. You can also type the desired file name directly in the top part
of the control.

Right-side drop-down list – This control operates the same as the left-side drop-down list except that it
controls files loaded in the right pane of the dialog.

 Left-side File Browse button – Click this button to select a text file on a local disk or network share. The
content of the selected file will appear in the left pane of the dialog. See the following topics for more
information.

 Right-side File Browse button – Click this button to select a text file on a local disk or network share. The
content of the selected file will appear in the right pane of the dialog. See the following topics for more
information.

 Left-side Target Window Finder button – Drag this button to select a target editor window. The content of
the selected window will appear in the left pane of the dialog. See the following topics for more information.

 Right-side Target Window Finder button – Drag this button to select a target editor window. The content
of the selected window will appear in the right pane of the dialog. See the following topics for more information.

Previous button – Click this button to jump to the previous difference.

Next button – Click this button to jump to the next difference.

Abort button – This button is only enabled while the comparison routine is in progress. Click this button to abort
the comparison routine.

Ignore Case check box – Select this option to specify that comparisons should be case insensitive. In other
words, character strings like "CASE", "Case" and "case" should be treated as matching.

Ignore blanks check box – Select this option to specify that code comparisons should ignore the number of
spaces between words, as well as the number of leading and trailing spaces on each line.

Refresh button – Reruns the comparison and refreshes the content of files being compared. Use this control if
the content of compared files or windows may have changed while the Code Compare dialog was open.

Close button – Closes the Code Compare dialog

Interactive Difference Map bar (displayed on the right side of the Code Compare dialog) – Color marks on the
bar indicate the relative locations and types of differences within the compared text. Change indicators on the
bar have the same color as the color of the type of the difference within the code. For more details, see the
Color Highlighting topic in this chapter. The red rectangle on the Interactive Difference Map indicates the
relative position of the section of text displayed in the visible area of the Code Compare dialog.

 CHAPTER 25, Code Compare Utility

 -405-

Selecting Text Files for Comparison

To open a file you have used in a previous comparison, simply select it from the left-side or right-side drop-
down list. You can also type the desired file name and path directly in the top edit box of the drop-down list.

You can also use the left-side or right-side File Browse button to open the standard Select Open dialog. By
default, this dialog displays only files with SQL or DDL extensions. You can change this filter to select files with
any other extensions.

The comparison is run automatically as soon as two target files or objects are chosen for comparison.

Selecting Window Targets For Comparison

If you have a script open in one of the edit windows and you want to compare it with another script, use the left-
side or right-side Target Window Finder button. The following describes steps for using the Target Window
Finder button:

1. Arrange the desired window so that the Compare dialog and the target window are both visible.

2. Drag the Target Window Finder button to the desired window. As you drag the button over a
window, a green rectangle appears around the window so that you can see which window is the
current target. As you drag the button, the SQL Assistant copies details of the highlighted window and
its caption to the corresponding drop-down list in the Compare dialog.

3. With the desired target window highlighted, release the left mouse button. SQL Assistant will load the
content of the window into the Compare dialog.

 Important Notes:

 Applications may be constructed using multiple windows. Only very simple applications like
Windows Notepad consist of a single window. More sophisticated applications such as SQL
Server Management Studio, Visual Studio, Eclipse, DB Tools for Oracle, Toad, and many others,
consist of many windows having smaller specialized windows contained within the main
application frame. When dragging the Finder control, make sure to drop it on the window within
the frame containing the actual text that you want to select for the comparison.

 Only edit windows that respond to the standard EM_GETTEXT message can be used with this
method. Some objects on the screen that look like standard edit windows may not be. They are
painted on the screen in such a way that they look like windows while in fact they are just
dynamically painted pictures. A typical example of a painted window can be found in most Java
based applications. Edit "windows" in Java based SQL editors such as Oracle Developer, Sybase
ISQL and others, cannot be used with SQL Assistant's Code Comparison utility.

Using Synchronized and Independent Content Scrolling

To scroll both text panes synchronously, drug the scroll bar's thumb control on either left-side or right-side
vertical bar of the Compare dialog.

To scroll each pane independently, click the up or down arrow controls at the extremes of the vertical scroll bar
in the pane you want to scroll.

 CHAPTER 25, Code Compare Utility

 -406-

To scroll content to the previous or next difference, use the Previous and Next buttons. Both buttons will
perform synchronized scrolling of the content in each pane.

To quickly jump to any place in the text, use the Interactive Difference Map bar. The bar performs
synchronous scrolling of both panes.

Navigating Content

You can use any standard means for navigating content within the Code Compare dialog, including standard
keyboard navigation keys, scrollbars, the Previous and Next buttons, and the Interactive Difference Map bar.
The Interactive Difference Map bar allows you to quickly jump to any place in the comparison text. When you
click on a colored mark displayed on the map, the content is automatically scrolled to that portion of the text
visible on the screen. Refer to the previous screenshot for more info.

Resizing Content

To resize the Compare dialog window, drag the resizer handle in the bottom-right corner of the window. See the
screenshot at the beginning of the Working with SQL Assistant Popups topic for information on where to locate
the resizer handle.

To adjust size of left and right panes within the dialog, drag the vertical split bar separating text panes on the
dialog.

 CHAPTER 25, Code Compare Utility

 -407-

Visualizing Code Differences

Since version 10.0 in addition to displaying textual differences SQL Assistant supports visualization of the
logical differences and program flow control. The dialog features 3 different tab pages

 Code Differences

 Logical Differences

 Flow Differences

The tab captions are self-descriptive. The following screenshots demonstrate how the visual comparison results
are shown. The screenshots utilize default display style for code visualization, the actual appearance may very
for various display styles and can be customized in the SQL Code Visualizer utility. See CHAPTER 39, SQL
Code Visualizer and Database Documenter for more details on the display styles.

Note that elements with red borders indicate source code changes and removals, while elements with blue
borders indicate code additions.

 CHAPTER 25, Code Compare Utility

 -408-

 CHAPTER 26, Data Compare Utility

 -409-

CHAPTER 26, Data Compare Utility

Overview

SQL Assistant provides an integrated Data Compare utility that can be used to compare data difference in
database tables and synchronize them too. It supports comparing data differences between the following
targets:

 Two tables in the same or different databases.

 All tables in two schemas in the same or different databases.

 All tables in all non-system schemas in two different databases.

 Tip: The compared databases, schemas, and tables can reside on the same or different database servers.
The compared servers can be of the same or different types. For example, you can compare a schema in SQL
Server against a schema in Oracle or MySQL database servers. The Data Compare utility is best used to check
for the data differences after database deployments, application conversions and upgrades, and other tasks
involving large data migrations and changes.

The Data Compare utility can be invoked from SQL Assistant's menus. The Compare Code and Data
Compare Data command is available from either the right-click context menu in the target editor or the top-
level menu (if the target editor top-level menu integration is enabled). This command opens the Data Compare
dialog. In this dialog you can select the target servers, databases, schemas and tables to compare. The
following topics describe how to use the Data Compare utility

The Data Compare utility performs data comparison operations on data in the selected tables only. It first
matches tables in the source and destination databases and schemas by their names. It then compares table
definitions and columns by column names and data-types. It also retrieves definitions of table primary keys and
compares them too. It then matches data rows in the source and destination tables by primary keys. For rows
with matching primary keys it compares values in all remaining table columns.

The Data Compare Dialog

The Data Compare dialog guides you through a 5-step data comparison process:

 Step 1: Enter required data comparison options and scope.

 Step 2: Review table and column matches for the selected scope. If required map key columns for
tables without primary keys and unique constraints.

 Step 3: Execute the data comparison operation.

 Step 4. Review and optionally save comparison results.

 Step 5 (Optional): Synchronize the data differences.

 CHAPTER 26, Data Compare Utility

 -410-

Comparison Scope and Options

Scope – The scope of the data comparison. One of the following:

 Single Table – Select this option to compare data in a single database table against another table
residing on the same or different database server.

 Schema - Select this option to compare data in all tables in a database schema against another
schema residing on the same or different database server.

 Database - Select this option to compare data in all tables in a database against another
database residing on the same or different database server.

Ignore system generated columns – Instructs SQL Assistant to ignore system generated columns such as
TIMESTAMP columns in SQL Server tables, IDENITY and AUTO_INCREMENT columns in SQL Server,
MySQL and DB2 databases, which are not part of a table primary index, COMPUTED columns in SQL Server,
and GENERATED ALWAYS columns in Oracle in DB2 tables, and so on. If this option is selected, SQL
Assistant does not compare data in the system generated columns.

Use case –sensitive column and object name matching – Instructs SQL Assistant to use case-sensitive
matching method when selecting tables and columns for the data comparison. If this option is selected, SQL
Assistant will treat tables named "Account" and "ACCOUNT" as two different tables.

Treat empty-string values as NULLs - Instructs SQL Assistant to use to teat empty string values '' as NULL
values. For example, if a value in the source table is an empty string '' and a value in the destination table is
NULL, they are be considered to be equal.

Ignore BLOB, IMAGE, and similar large data columns – Instructs SQL Assistant to not compare values in
the binary and other large data columns. This may significantly improve the speed of data comparison
operations and significantly lower the memory usage requirements for the data comparison and display of the
data comparison results.

 CHAPTER 26, Data Compare Utility

 -411-

Selecting Databases, Schemas, and Tables for Comparison

Connection and Name Filters

Multiple server connections are organized into logical connection groups. You can use the right-click menu to
manage connections in place. To manage connection groups use either the SQL Assistant main Options dialog
or the Multi-server Code Execution utility. For more information on managing connection groups and connection
settings see Managing Connection Groups and Connection Settings topic in CHAPTER 15.

The Filter combo-box offers super-fast content filtering. Type the substring you want to use as a filter for
database objects into the Filter box available above the object tree. Previously used filters are available in the
drop-down portion of the Filter combo-box.

 Tip: You can add new connections directly in the same dialog. Use the right-click menu in the connection
tree. The same right-click menu can be used to modify saved connections.

Navigation

All server connections, databases, schemas, and tables are displayed in a single Object Tree. You can select
only 2 items of the same type. The type must match the selected comparison Scope option.

Object Tree Legend

The following types of checkboxes could be displayed in the object tree.

 Item is not selected for data comparison. This item is available for selection.

 Item is not available for selection because the item scope does not match the Scope option or you
already have two items selected for comparison. In the latest case, If you want to change the
selection, first unselect one of the selected items and then select another item.

 Item is selected for data comparison.

 For an expandable schema or database item, this type of checkbox indicates that only a subset of
"child" items has been selected in the object tree branch for this item.

 CHAPTER 26, Data Compare Utility

 -412-

Matching Tables and Columns

Step 2 of the Data Compare dialog is where you can review tables and columns matched for the data
comparison fine tune the selection criteria. In Step 2, the dialog is split into two parts: the table matches in the
top section of the dialog, and the column matches in the bottom part. the bottom part is populated when a table
match is selected in the top part. Checkboxes in front of item icons can be used to select and unselect tables
and columns you want to compare.

The tables in the top part of the dialog are grouped in several folders:

 Matching Tables – Tables referenced in this folder are structurally matching at the column and data type
levels in the compared databases and ready for the data comparison. All tables in this folder are
automatically preselected for the data comparison operation.

 Tables Without Matching Primary Key – Tables referenced in this folder do not have primary keys and
unique indexes, and as result, their key columns cannot be matched automatically. If you need to compare
the data, please map the key columns for each table in this group that you want to compare.

 Structurally Different Tables – Tables referenced in this folder are structurally different at the column or
data type levels. However you can still select them if there is a subset of matching columns that you wish
to compare.

 Source Database Only Tables – Tables referenced in this folder do not exist in the destination database.
They can be compared only if you manually select the matching table in the destination database.

 Destination Database Only Tables – Tables referenced in this folder do not exist in the source database.
They can be compared only if you manually select the matching table in the source database.

 CHAPTER 26, Data Compare Utility

 -413-

Matching Differently Named Tables

1. Select a table in Source Database Only Tables or Destination Database Only Tables folder.

2. Right-click the selected line and then in the context menu select Map To menu branch.

3. Select a table from the other database schema to compare against the selected table.

 Note: Depending on the state of the matched tables 9has primary keys or not, same structure or
different), the matched pair is moved to one on of the three folders above for the matched tables.

Defining and Matching Key Columns

Matching of physical or logical unique keys is required for the data comparison operations. Tables having
primary or unique keys with the same definitions have their keys matched automatically. All other tables require
that you logically define and match their keys.

To define the keys:

1. Select a pair of matched tables. The bottom part of the dialog will show side-by-side view of table
columns for the selected tables.

2. Right-click the columns that can be used as unique keys and from the context menu select Key
Columns menu item. A key column icon will appear in front of the column name indicating its logical
key status.

3. Using right-click menu or drag-and-drop method match the source and destination columns that you
want compare.

 Note: It’s required that all key columns are matched in order for the comparison to proceed
further. Matching all other columns is optional.

 CHAPTER 26, Data Compare Utility

 -414-

Data-Types Handling and Compatibility

The Data Compare utility supports comparing data stored in different database systems powered by different
types of database engines. It can also compare data stored in columns having different data-types as long as
their base data-types are compatible or can be converted to compatible data-types. For example, all numeric
data types are compatible for the data comparison, values from an INTEGER column can be compared to
values in a FLOAT column. The following rules are used:

 Table columns having numeric data types can be compared to table columns having the same or any
other numeric data-type. This includes INTEGER, BIGITEGER, FLOAT, DOUBLE, SMALLINT and
other numeric data types.

 Table columns having string data types can be compared to table columns having the same or any
other string data-type. Automatic Unicode to ANSI conversion is used internally to compare
NVARCHAR to VARCHAR, NCHAR to CHAR and other double-byte data-types. . In addition, certain
other not string data-types are treated as compatible after their values are converted to string data-
types containing string representations of the original values. This include XML, UNIQUEIDENTIFIER,
TEXT and some other types.

 Table columns having date-time and related data types can be compared to table columns having the
same or any other date time based data-type. This include DATE, DATEIME, and TIME data-types.

 Table columns having BLOB and IMAGE data-type values can be compared to similar data-types.
The comparison is done at the byte level.

Data Comparison Results

The last step in the Data Compare dialog is where all comparison results are shown. The dialog features a
classical master-detail display of the results. It is split into 2 parts. The top part lists compared tables. The
content of this list can be filtered to reduce the clutter and show only relevant objects. The bottom part shows
rows of data from the tables selected in the top part list. The rows list can be filtered too to show non-matching
rows only.

 CHAPTER 26, Data Compare Utility

 -415-

The following example screenshot demonstrates how comparison results are shown and provides some helpful
tips for how to read them.

 Usage:
 The table filter controls and options provided at the top of the top part of the Data Compare dialog can

be used to filter the table list. To quickly limit the list to non-matching tables only, select the Show
non-matching tables option. To show the complete list, select the Show all option. To filter the name
by names, type the filter string into the Filter combo-box, or select one of the previously entered filters
from the drop-down list. Note that the filter string is applied on top of the "show…" filters.

 Numbers in parenthesis after table names indicate total number of records in the compared tables.

 The resizer control between the top and bottom parts can be used to adjust the size of each part.

 The table filter controls and options provided at the top of the bottom part of Data Compare dialog can
be used to filter the compared rows. To quickly limit the list to non-matching rows only, select the
Show non-matching rows only option. To show the complete list, select the Show all rows option.

 The numbers after the Show all rows option indicate number of rows in the compared source and
destination tables. The row numbers are separated by <– > symbol.

 The numbers after the Show non-matching rows only option indicate number of no-matching rows
broken by non-match type. the first number indicates number of rows found in the source table only,
the second number indicates number of non-matching rows with the same primary key found in both
tables, and the third number indicates number of rows found in the destination table only. The 3 row
numbers are separated by <– > symbols.

 CHAPTER 26, Data Compare Utility

 -416-

 Data from both the source and the destination tables are displayed within the same rows using pairs of
columns. Column from the source table are indicated by the "src' suffix in the column headers.
Columns from the destination table are indicated by the "dst" suffix in the column headers.

 The Sync button can generate and execute the data synchronization SQL script.

 The Report button can print the Comparison Report which is a summary report for all found
differences. The report can be printed to PDF file or saved to an editable Excel file.

 The Save button can save all data comparison results in an XML file, which you can keep for your
records and share with other people in your organization. This XML file can be opened in Microsoft
Excel and in other programs for further analysis of the comparison results.

 The Save button can also save the data difference synchronization SQL script which you can execute
later to synchronize the differences

 For your convenience different types of records in the comparison results are grouped into 3 folders:

 Matching Keys – This folder contains rows with matching primary keys rows

 Source Only – This folder contains rows with primary keys found in the source table only.

 Destination Only – This folder contains rows with primary keys found in the source table only.

Color Coding

SQL Assistant uses color coding for visualizing the differences in the data. Color coding provides a convenient
way to see the comparison results at a glance. Non-matching values are displayed in pink-colored cells. All
other cells have either white or light gray background

Reducing the Clutter, Hiding Columns without Differences

It is very common for compared tables with many columns to have their differences in a small subset of the
columns only. In case you are only interested in seeing the columns with differences you can easily hide all
other columns.

In the data comparison results right-click anywhere in the comparison results grid.

In the right-click menu choose the Hide Equal Columns menu..

Printing Comparison Results Summary Report and Exporting it to Excel and

 CHAPTER 26, Data Compare Utility

 -417-

PDF

The Summary Report can be used for:

 Printing high level database, schema, and table-level results and/or saving them as PDF versions.

 Documenting database changes.

 Sharing results with coworkers who do not have the SQL Assistant software installed and cannot use
the Data Compare tools.

 Using Excel interface applying advanced filtering, sorting, and commenting which are important tools
in the decision making process for which changes to promote or ignore.

Printing and saving comparison report is a two-step process. First you have to use the button
shown in the Comparison Results view to display comparison results in a tabular format. After that use the
toolbar buttons at the top of the table to generate a printable version of the reports or to save the table to Excel
file.

The Print button generates printable version of the report that includes report header with the database
connection details, selected comparison options, etc.. and sends it to a printer of your choice.

The Preview button displays printable version of the report on the screen.

The Save as PDF button saves printable version of the report to a PDF file.

The Save as XLS button saves tabular version of the report to editable Excel file. Unlike other report actions,
this output format is not optimized for printing. The report data is exported to Excel so that you can manipulate it
as needed and then save or print only what you want.

To return back to the graphical Comparison Results view, click the Back button at the bottom of the report
table.

To advance to the Data Synchronization step, click the Next button.

Saving Complete Comparison Results to External Files

You can use this feature to save row-level comparisons results to XML and CSV files. To save the result,

When in results view, click the Save button at the bottom of the Data Compare dialog. The context menu will
appear.

In the context menu choose either Save as XML.. or Save as CSV… command. The file dialog will appear.

Choose the destination file name, and the then click the Save button in the file dialog.

 CHAPTER 26, Data Compare Utility

 -418-

Copying Sample Comparison Results to Clipboard

When investigating data differences it might be useful to copy some data to the SQL editor in use it in your
queries.

In the data comparison results select the cells with the data you want to copy.

Right-click the selection and choose Copy Selected Rows from the right-click menu.

Synchronizing Data in Destination Tables

1. After you review the reported differences, choose the tables that you want to synchronize.

2. Click the button to generate and execute the data synchronization SQL script.

Resizing Content

To resize the Data Compare dialog window, drag the resizer handle in the bottom-right corner of the window.
See the screenshot at the beginning of the Working with SQL Assistant Popups topic for information on where
to locate the resizer handle.

To adjust size of top and bottom parts within the dialog, drag the vertical split bar separating table and row lists.

Opening and Saving Projects

To open an existing data compare project for modification or rerun

1. In the Data Compare dialog, click the Menu drop-down in the right-top corner of the dialog

2. Click the Open Project… command. The Open Data Compare Project dialog will appear.

3. Select the project file you want to open, then click the Open button. The Data Compare dialog will be

 CHAPTER 26, Data Compare Utility

 -419-

populated with previously selected database connections and project settings.

To save initial project settings in a project file:

1. In the Data Compare dialog, click the Menu drop-down in the right-top corner of the dialog

2. Click the Save Project… command. The Save Data Compare Project dialog will appear.

3. Select the project file you want to save project settings to, then click the Save button. It is a good idea
to use "project" or similar prefix or suffix when naming project files in order to distinguish them from
other XML files.

 Note: As you go through the options selection steps, then table matching, and then column matching
steps, you can use the Save button displayed at the bottom on the Data Compare dialog window to save the
current settings.

Scheduling Automated Data Comparisons

The Schedule button on the Data Compare dialog enables you to automate periodic data comparison
operations or to schedule data comparison runs at night or other quiet times when the database server is not
very busy. This opens the Schedule dialog providing graphical interface to the data comparison command line
interface described in the next topic. For information on how to manage scheduled tasks in SQL Assistant, see
CHAPTER 50, Managing Scheduled Tasks

The scheduled task uses data comparison command line interface described in the next topic to run the
comparison at the specific date and time.

Command Line Interface

To run data comparison operations from a DOS command line window, use the following command:

sacmd dc srcconn:"src-connection-name" dstconn:"dest-connection-name" srcname:"src-object-
path" dstname:"dest-object-path" outfile:"file-name" dcflags:"flag-chars" sas:"path-to-sa-
settings-file"

The above command must be entered as a single line

Substitute values in the command as follows:

src-connection-name The database connection name for the source database connection

dest-connection-name The database connection name for the destination database connection

src-object-path The fully qualified dot separated path to the source table, schema or
database. This also defines the scope of the comparison. If you specify just
database name, then all tables in the database will be compared. If you
specify database.schema name, then all tables in the specified schema will

 CHAPTER 26, Data Compare Utility

 -420-

be compared. If you specify database.schema.table name , then only the
specified table will be compared

dest-object-path The fully qualified dot separated path to the target table, schema or
database. This also defines the scope of the comparison. If you specify just
database name, then all tables in the database will be compared. If you
specify database.schema name, then all tables in the specified schema will
be compared. If you specify database.schema.table name , then only the
specified table will be compared.

 Important Notes:

 The source and destination path must have the same scope.

 For database servers without database element in the path, such
as Oracle, DB2, MySQL, SQLite, and others use noDB name in
place of the database name

file-name The output file in which the comparison results will be saved in XML format.

flag-chars Combination of flags for the data comparison. The following symbols
can be used in this parameter:

s - Ignore system-generated columns
b - Ignore BLOB, IMAGE and similar large data columns
c - Use case-sensitive object and column name matching
t - Ignore trailing spaces
n - Treat empty string values as NULLs

path-to-sa-settings-file The full file name of the SQL Assistant settings file containing the required
database connection parameters. This is an optional parameter. If not
specified, the default path for the current user account is used.

Example:

cd "C:\Program Files (x86)\SQL Assistant 12"

sacmd dc srcconn:"DEV001 (sa)" dstconn:"PROD (sa)" srcname:"AdventureWorks.Sales"
dstname:"AdventureWorks.Sales" outfile:"C:\TEMP\DataCompareResults.xml" dcflags:"sbt"
sas:"%APPDATA%\SQL Assistant\12.4\sqlassist.sas"

 Important Notes:

 The SQL Assistant settings file location is version and user profile specific. See the Notes in the
Overview topic in CHAPTER 51 for details on how to find out the location of that file.

 You can find out the connection name in the DB Connections group of settings on the DB Options tab
page in SQL Assistant Options. If a connection requires a user id and password, make sure that both
are saved in the settings. The command line interface does not display interactive prompts and is
unable to prompt for credentials during command processing. For more information about storing and
managing database connections, see the Managing Database Connections topic in CHAPTER 48.

 CHAPTER 27, Schema Compare Utility

 -421-

CHAPTER 27, Schema Compare Utility

Overview

SQL Assistant provides advanced fully customizable Schema Compare utility. The Schema Compare utility
provides a quick and easy way to compare structures and attributes of databases and database schema
objects, identify and display their differences. It highlights objects and attributes that were modified, including
exact lines of modified code. It generates the required database and schema synchronization script can be
used to propagate schema changes from one environment to another.

The Schema Compare supports comparing schema differences between the following target types:

 Two objects in the same or different schemas residing on the same or different servers.

 All objects in two schemas residing on the same or different servers.

 All objects in all non-system schemas in two different databases residing on the same or different
servers.

 All objects in all non-system schemas in all non-system databases residing on the same or
different servers.

You can compare schema differences in two databases of the same or different types. For example, you can
compare a schema in PostgreSQL database against a schema in MySQL database. It also supports smart
cross version comparison, for example, you can compare a schema in SQL Server 2008 against a schema in
SQL Server 2012 automatically ignoring version specific differences and comparing only schema objects and
attributes supported by both versions. In case of comparing schema differences in two databases of different
types, the data types of table columns and procedure/function arguments are compared based on their
compatibility rather than names, for example, a column with BYTEA data type in PostgreSQL database is
considered compatible with a column having VARBINARY(MAX) data type in SQL Server database, a column
with VARCHAR(100) data type in MySQL is considered compatible with a column having VARCHAR2(100)
data type in Oracle database, and so on...

The Schema Compare utility supports flexible comparison filters enabling you to choose to include or exclude
particular object types, particular object attributes and properties, to choose to ignore minor differences, such
as differences in comments, extra spaces, or ignore attributes with database-wide default values that are
different in different databases, and so on...

 Note: The Schema Compare utility supports scriptable interface comprised of comparison rules, database
queries, and templates for schema synchronization. It enables users to extend the existing functionality, adding
new features for supporting new object types and properties and altering behavior of pre-configured
comparison features. See the Extending and Customizing Schema Compare Functions topic for more details
on customizing the Schema Compare.

The Schema Compare utility can be invoked from SQL Assistant's menus. The Compare Code and Data
Compare Schema command is available from either the right-click context menu in the target editor or the top-
level menu (if the target editor top-level menu integration is enabled). This command opens the Schema
Compare dialog. In this dialog you can select the target servers, databases, schemas and objects to compare.
The following topics describe the usage of the Schema Compare utility.

 Tip: If you have a need to compare current schema design against a snapshot saved in the source code
repository, use the Repository Browser dialog for this purpose. For example, you can use Compare Database
to Repository command described in the Advanced 3-Way Code Comparison and Synchronization topic in
CHAPTER 23, Database Source Code Control Interface.

 CHAPTER 27, Schema Compare Utility

 -422-

How Schema Comparison Engine Works

The schema comparison engine implements rule based database catalog data loading and comparison. It uses
scriptable templates similar to code snippets for generating schema change synchronization scripts. Users can
add and modify rules as needed for handling new comparison widgets and for managing sets of comparable
attributes of the existing widgets.

The schema comparison engine is not limited to schema objects only. It can be used to compare database
scope and server scope features as well as user-defined widgets.

The engine uses regular SQL queries to retrieve the required database catalog data. The result sets of the
queries define comparable sets of objects and their attributes. Each query is associated with a single object
type. There should be only one query for each type within a single rule set, with the exception of overloaded
queries used for different database server versions. However, the same query can be used to return data for
multiple object types. For example, a single query can be used to retrieve table and view properties. The
"Target Type" column in the result set can return either TABLE or VIEW value. It is important to note that the
query structure is flexible. Different queries can contain different sets of columns depending on the object type
and other factors. See The Anatomy of Queries topic in this chapter for more details.

The following image demonstrates how query definitions drive schema comparison behavior and visual results

The queries control both the types of objects that can be compared and the comparable object attributes. The
schema comparison process is fully dynamic; it can be extended using new user-defined queries.

To support multiple database server versions, the engine allows defining so called overloaded queries. The
overloaded queries are associated with the same object type but their code is tweaked for different database
server versions, not server types. For example, within the same rule set you can define different queries for
SQL Server 2008 and for SQL Server 2012. The "Minimum Version" query property indicates the version of
SQL Server the query is compatible with.

 CHAPTER 27, Schema Compare Utility

 -423-

The schema engine uses scriptable templates to generate database and schema change synchronization
scripts. Different templates are used for different object types. Just like queries templates can be overloaded for
different versions of database servers. Several templates can be associated with the same object type to
handle different types of changes such as ALTER, RENAME, CREATE, and DROP operations. The type of the
template is defined by the Template Type template property. Templates can reference nested templates for
handling repetitive elements such as, for example, columns within the CREATE TABLE template are handled
by separate template. In this example the template named "Table (CREATE)" is invoked for the CREATE
TABLE script generation and that template internally calls the "Column (CREATE)" template for each column
defined in the table being processed and then similarly it calls the "Foreign Key (CREATE)" template for each
foreign key constraint, and so on. The template code defines the output script syntax and the nested templates
that it needs to call during the script generation process. Here is a sample template code for MySQL specific
rule set for column change synchronization template named "Column (ALTER)":

ALTER TABLE `$SCHEMA_NAME$`.`$OBJECT_NAME$` MODIFY COLUMN $|=COLUMN DEFINITION$;

When processing this template code the comparison engine performs the following steps:

3. The simple value macro $SCHEMA_NAME$ is replaced with the target schema name.

4. The simple value macro $OBJECT_NAME$ macro is replaced with the target table name.

5. The last part $|=COLUMN DEFINITION$ is a reference to the nested template named "Column
Definition". This part is processed separately and then the output of that nested template is inserted
into the output of the "Column (ALTER)".

The referenced nested template "Column Definition" has the following code:

`$NAME$` $TYPE$ $CHARACTER SET$ $COLLATE$ $ISNULL$ $DEFAULT$ $AUTO INCREMENT$
$COMMENT$

In this template code the macros between $..$ signs are references to attribute values populated in the
"Columns" query. In other words, NAME, TYPE, CHARACTER SET, COLLATE, ISNULL, DEFAULT, AUTO
INCREMENT, COMMENT are column names defined in the result set of the "Columns" query for MySQL.

The template code also supports basic conditional logic for implementing control of flow code generation. For
example, the following sample "Index (CREATE)" template will produce code for synchronizing index allocation,
storage, and statistics computation options only if they have been selected for comparison.

CREATE IS_UNIQUE $TYPE_DESC$ INDEX [$NAME$] ON [$SCHEMA_NAME$].[$OBJECT_NAME$]
($COLUMNS$)
$|=INDEX INCLUDE$ $FILTER$
$|=INDEX OPTIONS$

To support multiple database server versions, the engine allows defining so called overloaded templates. The
overloaded templates are associated with the same object type but their code is tweaked for different database
server versions, not server types. For example, within the same rule set you can define different templates for
SQL Server 2008 and for SQL Server 2012. The "Minimum Version" template property indicates the version of
SQL Server the template is compatible with.

For more details on templates read The Anatomy of Templates topic in this chapter.

Read Extending and Customizing Schema Compare Functions topic later in this chapter for more details on
schema comparison rules and internal organization, and for specific examples for how to customize the engine
working.

 CHAPTER 27, Schema Compare Utility

 -424-

The Schema Compare Dialog

Navigation

The Schema Compare dialog is a wizard-like dialog that guides you through a 3-step schema comparison and
synchronization process:

 Step 1: Choose comparison scope, database connections, and comparison options.

 Step 2: Run the comparison engine. Review the comparison results. Optionally, filter results in place;
Save of print comparison reports to PDF files or editable Excel files.

 Step 3 (Optional): Review, edit, save, and execute the schema synchronization script.

Use the Next button at the bottom of the dialog to advance to the next step. Use the Back button to go back to
the previous step. If you click the Back button while there is an active comparison operation in progress, the
operation is automatically aborted.

To close the dialog, at any time click the Close button in the right bottom corner.

 CHAPTER 27, Schema Compare Utility

 -425-

Comparison Scope and Options

Scope – The scope of the schema comparison. One of the following:

 Object – Select this option to compare a single schema object against another object of the same
type residing on the same or different database server.

 Schema – Select this option to compare all objects in a database schema against another schema
residing on the same or different database server.

 Database – Select this option to compare all schema objects in a database against another
database residing on the same or different database server.

 Server – Select this option to compare all schema objects in all databases against another
database server.

 CHAPTER 27, Schema Compare Utility

 -426-

Schema Compare Rules – The set of comparison queries and templates designed for specific database
server type and version that will be used for the selected Source and Target items. Typically the rule names are
matching database server types but in fact they are just names and can be anything you like. It is important to
choose rules that match your database type and version in order to produce correct comparison results and
generate valid schema synchronization scripts.

Compare options tree –The collection of database and schema object types and their attributes available for
comparison. In the options tree you can choose which types of schema objects and their attributes you want to
compare. If you want to ignore certain object types and/or some of their attributes, for example, fill factor for
indexes and primary keys, unselect them in the Compare list as demonstrated on the following screenshot.

 Tip: The content of the Compare tree depends on the Schema
Compare Rules selected. Certain item types and attributes appear
deselected by default as defined by the default options. To
select/deselect any item, tick or un-tick the checkbox in front of the
item. To select / unselect individual types of attributes, for example,
to ignore index fill factor when comparing indexes in SQL Server
databases, expand the Indexes item and un-tick the fill_factor item.

 Tip: The default options drive what is initially selected for
comparison in the Compare tree. If you often need to change the
comparison options, you can modify their defaults to your liking in
the SQL Assistant Options dialog. See Customizing Default
Comparison Options topic for more details.

Ignore options

In the Ignore box you can choose generalized options that you want ignored for all applicable schema objects
during their comparison. The following options are supported:

System objects – ignore all system schema objects, system schemas, and system databases.

Names (Constraints, Indexes) – ignore names of constraints and indexes. Compare their columns and
attributes only. This option is helpful when working with system generated constraint and index names that
vary in every schema.

Character case – ignore character casing, in other words, if checked, apply case insensitive comparison.

White spaces (DDL) – ignore leading and trailing white spaces when comparing procedural objects such
as stored procedures, triggers, and so on.

Comments (DDL) – ignore differences in comments when comparing procedural objects such as stored
procedures, triggers, and so on.

 CHAPTER 27, Schema Compare Utility

 -427-

New line format (DDL) – ignore differences in line ending symbols when comparing procedural objects
such as stored procedures, triggers, and so on.

 Tip: Line endings can differ on different systems, for example on Windows system text line
typically end with a pair of CR+LF characters, while on Linux systems they typically end with a
single LF character.

Synchronize options

Auto-fix target db and schema names – when comparing differently named databases or schemas, allow
SQL Assistant to automatically replace source database and schema names with target names in the
generated synchronization scripts.

Do not rename indexes and constraints – this option is used in conjunction with Ignore Names
(Constraints, Indexes) option. When comparing indexes and constraints definitions and ignoring their names
(typically system generated names), if definitions match, do not rename target constraints and indexes to match
the source names.

Selecting Servers, Databases, Schemas, and Objects for Comparison

Connection and Name Filters

Multiple server connections are organized into logical connection groups. You can use the right-click menu to
manage connections in place. To manage connection groups use either the SQL Assistant main Options dialog
or the Multi-server Code Execution utility. For more information on managing connection groups and connection
settings see Managing Connection Groups and Connection Settings topic in CHAPTER 15.

The Filter combo-box offers super-fast content filtering. Type the substring you want to use as a filter for
database objects into the Filter box available above the object tree. Previously used filters are available in the
drop-down portion of the Filter combo-box.

 Tip: You can add new connections directly in the same dialog. Use the right-click menu in the connection
tree. The same right-click menu can be used to modify saved connections.

Navigation

All server connections, databases, schemas, and schema objects are displayed in a single Object Tree. You
can select only 2 items of the same type. The type must match the selected comparison Scope option.

Object Tree Legend

The following types of checkboxes could be displayed in the object tree.

 Item is not selected for schema comparison. This item is available for selection.

 Item is not available for selection because the item scope does not match the Scope option or you
already have two items selected for comparison. In the latest case, If you want to change the
selection, first unselect one of the selected items and then select another item.

 Item is selected for schema comparison.

 For an expandable schema, database or server item, this type of checkbox indicates that a "child"
item has been selected in the object tree branch for this item.

 CHAPTER 27, Schema Compare Utility

 -428-

Opening and Saving Projects

To open an existing schema compare project for modification or rerun

4. In the Schema Compare dialog, click the Menu drop-down in the right-top corner of the dialog

5. Click the Open Project… command. The Open Schema Compare Project dialog will appear.

6. Select the project file you want to open, then click the Open button. The Schema Compare dialog will
be populated with previously selected database connections and project settings.

To save project settings in a project file:

4. In the Schema Compare dialog, click the Menu drop-down in the right-top corner of the dialog

5. Click the Save Project… command. The Save Schema Compare Project dialog will appear.

6. Select the project file you want to save project settings to, then click the Save button. It is a good idea
to use "project" or similar prefix or suffix when naming project files in order to distinguish them from
other XML files.

 CHAPTER 27, Schema Compare Utility

 -429-

Schema Comparison Results

The second step in the Schema Compare dialog is where all comparison results are shown.

The following example screenshot demonstrates how comparison results are shown.

The dialog features 4 parts display of the results. There are the Source server schema objects tree and the
Target server schema objects tree at the top and the DDL code views of the same at the bottom. The
displayed items can be filtered using the predefined or custom filters at the top of the dialog to reduce the
clutter and show only relevant differences. The DDL code differences navigation map is called change
map, and it is displayed adjacent to the right side of the target object DDL code. For procedural objects
there is also a separate tab showing logical differences in the programs using

 Usage:
 The filter options available in the Filter box at the top of the Schema Compare dialog can be used to

filter the comparison results. For specific details on the usage of the filter options see the following
Filtering Results topic.

 The resizer control separating the the Source tree and Target tree parts can be used to adjust the size
of each part.

 The resizer control separating the tree and the bottom DDL code comparison results can be used to
adjust the size of top and bottom parts.

 Use standard tree view control navigation methods to collapse, expand, and navigate items in the
Source schema object and Target schema object trees.

 CHAPTER 27, Schema Compare Utility

 -430-

Color Coding

SQL Assistant uses color coding in the Source and Target schema object trees for visualizing the differences.
Color coding provides a convenient way to see the comparison results at a glance. For your convenience the
color legend is displayed at the top of the Schema Compare dialog in the Filter options box in front of the filter
selection checkboxes.

It also use color coding for highlighting code differences in the Source and Target DDL code boxes. The color
coding method and color schema are the same as in the integrated Code Compare utility. See Color
Highlighting topic in CHAPTER 25, Code Compare Utility for more details.

Action Legend

The following types of checkboxes could be displayed in the Action column.

 Item is not selected for schema synchronization. This item is available for selection. If not selected,
it will not be included in the change synchronization script.

 Item is not available for selection. This item is identical in the Source and Target databases and no
synchronization is required.

 Item is selected for schema synchronization. The type of action CREATE, DROP, or ALTER is
indicated in the Action column.

 For an expandable schema, database, or server item, this type of checkbox indicates that a "child"
item has been selected in its tree branch for schema synchronization.

Resizing Content

To resize the Schema Compare dialog window, drag the resizer handle in the bottom-right corner of the
window. See the screenshot at the beginning of the Working with SQL Assistant Popups topic for information
on where to locate the resizer handle.

To adjust size of top and bottom parts within the dialog, drag the vertical split bar separating table and row lists.

Visual Comparison Results for Procedural Objects

In addition to textual comparison of DDL code differences, when procedurals objects are selected in the object
tree, two additional tabs appear at the bottom of the Schema Compare dialog window:

 Logical Differences’

 Flow Differences

The Visual Code Compare utility is used to visualize the differences. See Visualizing Code Differences topic in
CHAPTER 25, Code Compare Utility for more information.

Filtering Comparison Results

The Filter box provides multiple options for filtering the comparison results.

 CHAPTER 27, Schema Compare Utility

 -431-

Category Filters

Use the category checkboxes to choose which groups of objects and their properties to show

For example, to quickly limit the list to new schema objects only, un-tick all checkboxes and tick only the
Objects in Source only checkbox. To show the complete list, tick all checkboxes.

Name and Attribute Filters

The Text and Filter Type controls enable filtering comparison results by schema object names, by their
attributes names, or by their attribute values.

For example, to filter the list to objects whose names contain substring “EMP”, type EMP in the Text edit box
and select “Schema object names” option in the Filter Type drop-down

To filter the list to show only tables or views having column names containing substring “EMP”, type EMP in the
Text edit box and select “Property names” option in the Filter Type drop-down.

The following Filter Type options are supported:

 Schema object names – filtering is applied to the schema object names level in the source objects
and target objects trees. The text entered in the Text box is used as a name matching filter condition.

 Property names – filtering is applied to all kinds of attributes appearing below the object name level in
the trees, including table and view column names, procedure and function parameters, type fields, and
so on… The text entered in the Text box is used as a name matching filter condition.

 Schema object and property names – this works just the two options above combined.

 Custom object filter – complex expression based filtering rules are applied to object and attribute
names. The logical expression entered in the Text box is used as a filter condition. The expression
can refer not only to object names but also to object types, attributes names and their values. It can
contain functions, regular expressions, and multiple logical conditions joined by logical AND, OR, and
NOT operators as described below.

Custom Filter Expressions

If you choose Custom object filter option, you can specify a Boolean expression in the Text box that may
contain complex name references, functions, comparison operators, and so on. For example, to hide all objects
whose name contains _BAK and _OLD suffixes, specify

(Pos('_BAK', Name) = 0) and (Pos('_OLD', Name) = 0)

In the above example, the Pos function returns 0 if the value in the first argument cannot be found in the value
of the second argument. The filter is satisfied if both _BAK and _OLD cannot be found in object names.

In the expressions you can refer to the following special elements

Name: string – the Name refers to object and attribute name. For example, to hide table
DEPARTMENT_BAK_20161204 in the results, enter filter expression like
Name <> 'DEPARTMENT_BAK_20161204'

Value: string – the Value refers to attribute values. For example, to filter all elements with attribute value is
equal USERSPACE1, you can use filter like
Value = 'USERSPACE1'

ObjectType: string – the ObjectType refers to the type of the object, for example, to show objects that are not

 CHAPTER 27, Schema Compare Utility

 -432-

tables and having names containing EMP substring, enter filter expression like
(ObjectType <> 'Table') and (Pos('EMP', Name) > 0)

Level: integer – the Level refers to item level as it is displayed in the source and Target object trees in the
results. For example, to show only second and third level objects, enter filter expression like
(Level = 2) or (Level = 3)

Attribute(aname: string) – the Attribute refers to the value of a particular object attribute. The actual attribute
name must be specified as an argument in the Attribute reference. For example, to show only tables stored in
USERSPACE1 table-space, enter filter expression like
Attribute('Table space') = 'USERSPACE1'

 Tip: The applicable attribute names are data base type specific. To find out attribute names that can
be used with the Attribute element, see column and expression names returned by the associated Schema
Compare queries that can be found in the SQL Assistant’s Options dialog. For more information about
Schema Compare queries see The Anatomy of Queries topic later in this chapter.

Within the filter expression you can use functions listed in the following topic.

 Tip: You can use the RegExprMatch function to apply regular expression based filters. This function
returns True or False based on the value matching status. For example, to filter out all objects containing
names containing numeric suffixes at the end of their names with numbers between 2000 and 2099, you
can enter an expression like
not RegExprMatch(Name, '*20[0-9][0-9]$')

For more information about regular expressions syntax see Using Regular Expressions topic in CHAPTER
34, Integrated SQL Editors.

Functions Supported in Custom Filter Expressions

The following Pascal like functions can be used with filter expressions

function HasAttribute(aname: string): boolean

function RegExprMatch(str: string; expr: string): boolean

function ChildrenCount(chldObjType: string): integer

function IntToStr(i: Integer): String

function FloatToStr(e: Extended): String

function DateToStr(e: Extended): String

function TimeToStr(e: Extended): String

function DateTimeToStr(e: Extended): String

function StrToInt(s: String): Integer

function StrToFloat(s: String): Extended

function StrToDate(s: String): Extended

function StrToTime(s: String): Extended

function StrToDateTime(s: String): Extended

function Length(s: String): Integer

function Copy(s: String; from, count: Integer): String

function Pos(substr, s: String): Integer

function Uppercase(s: String): String

 CHAPTER 27, Schema Compare Utility

 -433-

function Lowercase(s: String): String

function Trim(s: String): String

function CompareText(s, s1: String): Integer

function Chr(i: Integer): Char

function Ord(ch: Char): Integer

function ValidInt(cInt: String): Boolean

function ValidFloat(cFlt: String): Boolean

function ValidDate(cDate: String): Boolean

Saving, Reusing, and Managing Filters

Use toolbar button adjacent to the Filter Type drop-down to save the current filter definition. You will be
prompted to choose a name for the saved filter. The filter can be referenced later by that name.

Use toolbar button adjacent to the Filter Type drop-down to reopen and reapply previously save filter. This
will open the Schema Compare Filters dialog. Choose the required filter and click the OK button to apply it.

To make additional changes before applying the filter, or to add or delete filters, tick the Edit filter checkbox
available at the bottom of the dialog. The Filters grid becomes editable, and the filters management toolbar will
appear on the right hand side of the Filters grid.

Printing Comparison Report, and Exporting it to Excel and PDF

The Comparison Report provides the following:

 Printing table scope comparison result summaries or saving as PDF versions.

 Documenting database changes

 Sharing results with coworkers who do not have the SQL Assistant software installed and cannot use
the Schema Compare tools.

 Using Excel interface applying advanced filtering, sorting, and commenting which are important tools
in the decision making process for which changes to synchronize or ignore.

 CHAPTER 27, Schema Compare Utility

 -434-

Printing and saving comparison reports is a two-step process. First you click the button available
at the bottom the Comparison Results dialog to display comparison results in a tabular format. After that use
the toolbar buttons at the top of the table to generate a printable version of the reports or to save the table to an
Excel file.

 Important Note: The Report button is available on the last step of the comparison process when the
comparison results for all objects are known.

The Print button generates printable version of the report that includes report header with the database
connection details, selected comparison options, etc.. and sends it to a printer of your choice.

The Preview button displays printable version of the report on the screen.

The Save as PDF button saves printable version of the report to a PDF file.

The Save as XLS button saves tabular version of the report to editable Excel file. Unlike other report actions,
this output format is not optimized for printing. The report data is exported to Excel so that you can manipulate it
as needed and then save or print only what you want.

To return back to the graphical Comparison Results view, click the Back button at the bottom of the report
table.

Schema Synchronization

By default all differences are included in the scope of the synchronization action. In the Schema Comparison
Results you can exclude differences that you do not want to synchronize. To do so, un-tick checkboxes in the
Action column on the right side of each row in the Source tree. When it is time to update the target schema, this
row will not be considered for any pending changes.

Ticking or un-ticking a checkbox in a group row is equivalent to ticking or un-ticking all differences in that group.
You can use this speedy selection method at any group row, for example, you can use it at the database row to
quickly unselect everything and then at a specific table row to quickly select that table only.

To quickly select or deselect everything displayed using current filters in the comparison result trees, right-click
anywhere in the Source tree. The context menu will appear. Choose Select All or Deselect all commands as
required.

After you have selected everything you want to synchronize, click the Next button. SQL Assistant will generate
the synchronization script for the selected schema objects and attributes and will display the resulting script.
The following example screenshot demonstrates how the synchronization script may look like.

 CHAPTER 27, Schema Compare Utility

 -435-

The generated synchronization script is displayed in a new code editor connected to the destination database
server. Review the synchronization script and correct it if required. Note that the script syntax is validated
automatically for syntax errors, but it is not checked for any logical errors or other issues that only a developer
can recognize. The syntax errors are displayed on the syntax bar adjacent to the right side of the editor. For
details on how to use the Syntax bar see CHAPTER 20, SQL Syntax Checker.

For your convenience the script Structure View is displayed to the left of the generated script with quick
navigation link to SQL statements in the script. For instructions on how to use the Structure View see
CHAPTER 4, Code Structure View and Bird's Eye View.

Three actions are available. You can:

 Save the script to a file on your computer.

 Open the script in external editor. In case if you started the Schema Compare tool from a development
environment having SQL Assistant running as an add-on, the script will be opened in a new tab in the
host development environment. Otherwise the script will be opened in SQL Assistant's integrated SQL
Editor. See Professional SQL Editor IDE topic in CHAPTER 34, Integrated SQL Editors.

 Execute the script immediately.

 Important Note: It is strongly recommended that you create a backup of the Target database before
executing a schema synchronization script so that you can roll back all unwanted changes later.

 CHAPTER 27, Schema Compare Utility

 -436-

Extending and Customizing Schema Compare Functions

Comparison Rules

The Comparison Rules are named collections of rules and various settings used for schema comparison and
synchronization. The pre-defined Comparison Rules have names aligned with targeted database types so that
they can be easily recognized. While it is possible to mix together settings and queries designed for different
versions of the targeted database server software in a single comparison rules set, it is recommended that for
manageability reasons when developing custom rules you create different collections of rules for different
versions taking care of different database server features.

You can create new and customize existing Comparison Rules in the SQL Assistant's Options dialog on the
Schema Compare tab.

Adding, Copying, Deleting and Disabling Comparison Rules

Use the Options dialog, the Schema Compare tab to manage Comparison Rules and their settings

To add a new comparison rule set:

1. Right-click the Comparison Rules list in the top left window, and select the Add command. A new
rule set will be added to the list with the input focus in the rule set name.

2. Enter new rule set name. In the right window, fill in property values for the new rule set.

3. In the left bottom window in the Queries section enter the required queries. In the right window, fill in
appropriate properties for the new queries.

4. In the left bottom window in the Templates section enter the required templates. In the right window,

 CHAPTER 27, Schema Compare Utility

 -437-

fill in appropriate properties for the new templates.

5. After you done with the Queries and Templates return to the rule set and enter the composite value
of Object Types property. Specify objects types that you want to show in the list

To create a new comparison rule set from an existing one:

1. Select an existing rule set from the list box on the top left (the Comparison Rules list).

2. Right-click the Comparison Rules list in the top left window, and select the Copy command.

To delete a rule set:

1. Select the rule set from the list box on the top left and press the Delete button.

To disable a rule set:

1. In the top left window deselect the checkbox next to the rule set name.

To enable a rule set:

1. In the top left window deselect the checkbox next to the rule set name.

 Note:

If a rule set is disabled, its definition remains in the SQL Assistant options, but the rules are not active and
cannot be used. For more information on how to use and change SQL Assistant's options, see CHAPTER 48.

 Additional Tips:

 Use the rules management icons available in the left-top corner of the Options dialog to create a new
rule set or to rename, duplicate or delete code rule sets, their queries and templates.

Note that the icon functions are sensitive to the location of the focus in the Schema Compare tab. For
example, if you click the X button when a rule set is selected in the Comparison Rules window on the
upper left, the selected rule set deleted entirely, including all queries and code templates included
within the rule set. However, if the focus is set to the left-bottom list box containing template names
and a template name is highlighted, clicking the X button deletes only the selected template.

 The content of the right side of the Schema Compare tab is also context sensitive. If a rule set is
selected, the rule set properties are displayed in the right window. If a query is selected in the Queries
section on the lower left, the query code and properties are displayed in the right window. If a
synchronization template is selected in the Templates section on the lower left, the template code and
properties are displayed in the right window.

 You can drag-and-drop rule set names in the left-top list to rearrange their order. You can use this
method to push most commonly used rules to the top of the list and minimize the amount of scrolling
and clicking required for customizing rules. Similarly you can drag-and-drop queries and templates in
the left bottom lists to rearrange their order. However, it is important to remember that their order is
very important as it controls the results of the schema comparison and code change synchronization.

 CHAPTER 27, Schema Compare Utility

 -438-

Customizing Default Comparison Options

1. Open the Options dialog and select the Schema Compare tab.

2. In the top left window select Schema Comparison rule set that you want to customize.

3. On the right side of the dialog select required DB Type for the selected rule set.

4. On the right side of the dialog select Use Assistance Queries option. For all database servers types
but SQLite and MS Access this option should be set to "No" value. For SQLite and MS Access this
option should be set to "Yes" value. The "No" value means that the schema comparison engine can
use SQL queries defined for the rule set in the Queries section. The "Yes" value means that the
schema comparison engine cannot use queries, and it has to rely on the catalog data from SQL
Assistant's data cache., for both database types SQL Assistance populates its data cache using non-
query based programmatic interfaces to retrieve schema object definitions and attributes.

5. In the right window modify Object Types settings. The settings are saved in plain text format in a form
of simple two-level tree having object types and their dependencies in the first level, and then their
attributes as indented elements in the second level. To set a specific object type or attribute ignored by
default in comparison options, prefix that object type or attribute name with a minus sign.

Below is an example of SQL Server specific rule set. In this example, "Permissions", column "Not for
Replication", index "Fill Factor", assembly full "Filename" with path, and some other attributes are set
to the "ignore" by default state. Every time you open the Schema Compare dialog and choose SQL
Server rule set, they will not be selected by default in the Schema Object Tree.

User
 Default schema
Role
Application Role
Assembly
 Content
 -Filename
Partition Function
Partition Scheme
Table
 Data space
View
Procedure
Function
Synonym

 CHAPTER 27, Schema Compare Utility

 -439-

Data Type
 Type
 Nullable
Table Type
 -Nullable
Sequence
 Type
 Start value
 Increment
 Min value
 Max value
 Cycling
 Cached
XML Collection
Aggregate
 Assembly
 Assembly class
 Return
Assembly Function
 Assembly
 Assembly class
 Assembly method
 Return
Assembly Table Function
 Assembly
 Assembly class
 Assembly method
-Permission
DDL Trigger
Default
Rule
Column
 Type
 Nullable
 Collate
 Rowguidcol
 Filestream
 Sparse
 -Not for replication
Primary Key
 -Fill factor
 Pad index
 Ignore dup key
 Statistics norecompute
 Allow row locks
 Allow page locks
Unique Key
 -Fill factor
 Pad index
 Ignore dup key
 Statistics norecompute
 Allow row locks
 Allow page locks
Foreign Key
 On delete
 On update
 -Not for replication
Check Constraint
 -Not for replication
Default Constraint
DML Trigger
Index
 -Fill factor
 Pad index
 Ignore dup key
 Statistics norecompute
 Allow row locks
 Allow page locks
Property

 CHAPTER 27, Schema Compare Utility

 -440-

 Notes:

 Object type names in the Object Types tree must appear at the start of the lines. Attribute names
must be indented and must appear below object types they belong to. You can use spaces or tab
characters for the indenting. At least one space or one tab character must be in front of the
attribute name.

 Object type names might be followed by a comma separated list of dependent object types. This
is to aid the comparison engine with calculating the proper display of items in the visual
comparison results.

 To customize the appearance of an object type in the visual comparison results, click the icon in
front of the type name. A list of stock icons will be displayed from which you can choose the
desired icon. Optionally, you can enter the icon name as a pipe-separated text at the end of the
line.

In case no icon name is specified, the comparison engine will use the default icon for that object
type or folder icon in case it does not recognize the object type.

 The names of object types and their attributes in the comparison options should match the data
returned by the database queries specified for the rule set. If you have customized the
prepackaged queries or added your own, you should also add matching object types and
attributes to the Object Types settings.

For example, if in the SQL Server rule set you customized the "Indexes" query and extended it by
adding new [Table Type] column to the query definition and you want the value in that column to
be comparable to values returned for other indexes, you need to add Table Type to the Object
Types tree and inserted between the Index line and the next object type specified in the tree, in
the above example, you would need to insert it between the Index and the Property lines.

The following graphical diagrams demonstrate the changes required for adding [Table Type] as a
new comparable attribute for Indexes.

Before the change:

 CHAPTER 27, Schema Compare Utility

 -441-

After the change:

The Anatomy of Queries

Two types of queries are supported in the schema comparison rules:

 Objects – this query type is used to retrieve information about database and schema objects and
optionally their attributes if they can be retrieved in one go.

 Attributes – this is an auxiliary query type used to retrieve object attributes. Queries of this type
accompany predecessor Objects queries.

Queries retrieving data for schema comparison can have variable number of column. The order of columns in
an Objects query is very important and must follow a certain pattern. The names of columns are not important
and could be anything you like.

The header columns must return qualifying object name parts followed by target type, which is typically the
same as schema object type. The number of header columns varies for different target types depending on
their scope and name qualification. The query may reference additional non-header columns returning values
of object attributes.

 CHAPTER 27, Schema Compare Utility

 -442-

The following example "Schemas" query for SQL Server has 2 header columns and no attributes columns. The
first column [Schema name] is "Name part 1." The second column with fixed value 'Schema' is "Target Type."

SELECT
 [name] AS [Schema name],
 'Schema' AS [Target type]
FROM sys.schemas
WHERE schema_id < 16384
ORDER BY [name]

The following example "Default constraints" query for SQL Server has 4 header columns and 3 attributes
columns. The first column [Schema name] is "Name part 1", the second column [Table name] is "Name part 2",
and the third column [Constraint name] is "Name part 3." The fourth column [Target type] with fixed value
'Default Constraint' is "Target Type." The rest are attribute columns "Attribute 1," "Attribute 2" and so son

SELECT
 s.name AS [Schema name],
 o.name AS [Table name],
 d.name AS [Constraint name],
 'Default Constraint' AS [Target type],
 c.name AS [Column name],
 d.is_system_named AS [IsSystem__DONT_COMPARE],
 d.definition AS [Definition]
FROM sys.default_constraints AS d
 JOIN sys.objects AS o
 ON o.[object_id] = d.parent_object_id
 JOIN sys.schemas AS s
 ON s.[schema_id] = o.[schema_id]
 JOIN sys.[columns] AS c
 ON c.[object_id] = o.[object_id]
 AND d.parent_column_id = c.column_id
WHERE ('$SCHEMA_NAME$' = '' OR s.name = '$SCHEMA_NAME$') AND
 ('$OBJECT_NAME$' = '' OR o.name = '$OBJECT_NAME$')

 Important Note: The value returned by the [Target Type] column is very important. The schema compare
engine dynamically locates templates having their Target Type property set to the same value when it
generates schema change synchronization scripts.

Query Properties

Query Type – Objects or Attributes. Objects – this query type is used to retrieve information about database
and schema objects and optionally their attributes if they can be retrieved in one go. Attributes – this is an
auxiliary query type used to retrieve object attributes. Queries of this type accompany predecessor Objects
queries.

Qualification Name Parts – A zero-based index of name parts in the record header. In other words, this is the
number of columns in the query preceding the Target Type column less one. It is expected that each preceding
column refers to a qualifying part of the object. For example,
SELECT
 a.name AS [Database name],
 s.name AS [Schema name],
 o.name AS [Table name],
 d.name AS [Constraint name],
 'Default Constraint' AS [Target type],

(the rest of the query goes here)

In the above query [Database name], [Schema name], [Table name], [Constraint name] fully qualify database
constraint. In that case the Qualification Name Parts property should be set to 3. It tells the engine how many
parts are in the path before the Target Type value. Note that column names in the query are unimportant. You
can chose any appropriate names. But column position is very important, all qualifying parts must be specified
before the column returning Target Type values.

 CHAPTER 27, Schema Compare Utility

 -443-

 Note: This property is used with Objects type queries only.

Target Type – the comparison scope (target type) for which the schema comparison engine will execute the
query. If "Server" is specified, the query will be executed only in case server scope comparison is performed. If
"Database" is specified, the query will be executed in case of server scope or database scope comparison. If
anything else is specified or the parameter is empty, the query will be executed in case of server scope or
database scope or schema scope comparison.

This is an optional property which is not required for schema object specific queries. It is required for database
and server scope queries.

 Important Note: For your convenience the customizable drop-down list for the Target Type property
is populated with some common values. Sometimes you may need a value which is not in that list. If you
cannot find the required value in the drop-down list, simply type it into the property value edit box.

 Important Note: The comparison engine is allowed to use database scope queries when comparing
schema level objects. This is done for performance reasons to avoid recursive queries and allow the
engine to load in bulk definitions of schema objects and their attributes.

Loaded Objects – The type of objects returned by the query. The value of this property should be the same as
the values returned in by the Target Type column or expression in the query. In case the query returns multiple
object types, specify them as a comma-separated list in the Loaded Objects property. For example, the
following query for SDQL Server returns both database roles and application roles. For that query the value of
the Loaded Objects property should be set to Role,Application Role.

SELECT
 p1.[name] AS [Role name],
 CASE
 WHEN p1.[type] = 'A' THEN 'Application Role'
 ELSE 'Role'
 END AS [Target type],
 p2.[name] AS [Owner]
FROM sys.database_principals p1
 LEFT JOIN sys.database_principals AS p2
 ON p1.owning_principal_id = p2.principal_id
WHERE p1.is_fixed_role = 0
 AND p1.principal_id <> 0
 AND p1.[type] IN ('A', 'R')
ORDER BY p1.name

Minimum Version – the minimum database server version (major version number) the query is compatible
with. Within the same comparison rule set you can define multiple queries for the same Target Type with
different Minimum Version values. The comparison engine will automatically select the query whose Minimum
Version matches or exceeds the server version.

 Note: For easy of management it is recommended to create different rule sets for different database
server versions instead of creating single rule set with multiple version specific variations of same queries
and templates.

Has Value – specifies whether the column following the [Target Type] column in the query returns object's
value that can be used for object comparison. For example, table CHECK and DEFAULT constraints can be
compared by their definition without looking at their system generated constraints names. For example, the
CREATE TABLE command such as CREATE TABLE test(col INT DEFAULT 1) will produce 2 schema
objects: table object named "test" and default constraint object with a system generated name. If executed
again in a different database, the system generated name for the constraint will be different from the first one.
The schema comparison engine can still compare both test tables and identify them as identical if constraint
names are ignored and it can use the value returned in the column after [Target Type] as the constraint
definition.

 Note: This property is used with Objects type queries only.

Match Method – this property specifies how to compare objects in the source and target schemas. The
following options are available:

 Match by name – the source and target schema objects and their properties should be matched by
their names. For example, this is typically used for matching views and procedural object names, as

 CHAPTER 27, Schema Compare Utility

 -444-

well as matching tables and table columns.

 Match by value, no rename – the source and target schema objects and their properties should be
matched by their values rather than their names. If selected, the Has Value property must be set to
"Yes", and the query itself should return the value for the source and target comparison. The value can
be used in comparison results, but cannot be changed or renamed using simple ALTER TABLE
commands. In case of differences found and selected for schema synchronization, the schema
synchronization script will attempt to drop and recreate the entire schema object.

 Match by value, allow rename – the source and target schema objects and their properties should be
matched by their values rather than their names. If selected, the Has Value property must be set to
"Yes", and the query itself should return the value for the source and target comparison. The returned
value can be used in comparison results, and it can be also changed or renamed using simple ALTER
TABLE commands.

 Note: This property is used with Objects type queries only.

Do not Compare – if set to "Yes", the query is an auxiliary query returning data for use by schema
synchronization scripts only. The query is executed just like other queries, but the retrieved data is not
displayed in the comparison results. For example, the "Table External References" query used in the
predefined "SQL Server" rule set is used to retrieve table dependencies which the schema synchronization
script needs to drop before it can change the selected table, and then recreate for synchronizing the
differences, so it can restore the existing dependencies. The "Table External References" query has Do not
Compare property value set to "Yes."

Hidden – if set to "Yes", the query is an auxiliary query returning data not displayed directly in the comparison
results, but still used for object comparison. This property is reserved for future use and is not currently used.

Query – the actual text of the query. The text of the query may contain standard macro variables referenced in
the Menu drop-down on the Schema Compare tab in the Options dialog. See Macro-variables and Dynamic
Code Generation topic in CHAPTER 7 for more details.

Attribute Value Modifiers

Names of attribute type columns in schema comparison queries can be optionally tagged with special suffixes
to indicate their special treatment. The following tags are supported:

__DONT_USE – instructs the engine to do create an attribute display for this column value. This tag
effectively suppresses the column without modifying the result set of the query.

__DONT_COMPARE – instructs the engine to not compare values in this column. The column values can
be still referenced in scheme change synchronization templates and used in conditional logic in templates,
but their value differences between the source and target ignored.. You can also use the short notation
__DC instead of the long notation __DONT_COMPARE.

__NAME_REFERENCE – instructs the engine that the value in this column is a reference to an attribute
name. Basically, this is like a pointer, the value indicates which other attribute should be used for the
comparison or further operations. You can also use the short notation __NR instead of the long notation
__NAME_REFERENCE.

__HIDDEN – instructs the engine to not show values in this column in the visual comparison results. A
good example of hidden columns is a column returning some internal system properties, or system
generated identifiers, which are important for correlating different schema objects or elements together but
the value itself is not that important. A case in point, internal numeric table object id is needed to locate its
columns in the data dictionary, and yet that numeric value can be different for two structurally identical
tables. The values in columns tagged with __HIDDEN can be still referenced in scheme change
synchronization templates.

__AGG – instructs the engine to aggregate all values in the column. If the query with this column modifier
returns multiple records, all values in that column are concatenated to a single comma separated list.

 CHAPTER 27, Schema Compare Utility

 -445-

__SQL – instructs the engine that the value in this column contains SQL code and it should be compared
using DDL comparison rules controlling comparison of spaces, comments, object name quoting, and so
on...

 Note: Multiple tags can be appended to the same column, for example, __DONT_COMPARE__HIDDEN.

The following sample query demonstrates the use of tags

SELECT
 s.name AS [Schema name],
 o.name AS [Table name],
 d.name AS [Default name],
 'Default Constraint' AS [Target type],
 c.name AS [Column name],
 d.is_system_named AS [IsSystem__DONT_COMPARE],
 d.definition AS [Definition]
FROM sys.default_constraints AS d
 JOIN sys.objects AS o
 ON o.[object_id] = d.parent_object_id
 JOIN sys.schemas AS s
 ON s.[schema_id] = o.[schema_id]
 JOIN sys.[columns] AS c
 ON c.[object_id] = o.[object_id]
 AND d.parent_column_id = c.column_id
WHERE ('$SCHEMA_NAME$' = '' OR s.name = '$SCHEMA_NAME$') AND
 ('$OBJECT_NAME$' = '' OR o.name = '$OBJECT_NAME$')

In addition to attribute value modifiers, the engine recognizes the following several column names as columns
returning special attributes. For example, in the above sample query, the "IsSystem" column is recognized as a
special attribute. The special names are:

 IsSystem – The values in this column are expected to be either 0 or 1. The values indicate whether
the object referenced in the result set features a system generated name that can be omitted when
generating schema synchronization scripts and the target system can generate its own name for the
target object.

 IsSystemObject – The values in this column are expected to be either 0 or 1. The values indicate
whether the object referenced in the result set is a system object and it should not be included in
schema synchronization script.

 SyncConfig – The value in this column contain additional instructions for the comparison engine
indicating how the object needs be processed when generating schema synchronization scripts. The
value is bitwise OR combination of following flags:

1 – Generate CREATE statements for dependent logical "children" objects after CREATE statement
for this object.
2 – Generate DROP statements for dependent logical "children" objects before DROP statement for
this object.
4 – Do not generate ALTER statement for dependent logical "children" objects after altering this
object.
8 – Do not generate CREATE statement for this object.
16 – This object is independent of its logical "parent" and it can be created or dropped independently.
32 – This object is code based, for example, it's a stored procedure or view.
64 – Do not generate synchronization statements for this object, this is typically a case for system
objects.

Here are default SyncConfig attribute values for standard object types:

Object Type Flags (as Bitwise
Expressions)

Value

Server, Database 1 OR 8 9

 CHAPTER 27, Schema Compare Utility

 -446-

Schema 1 OR 2 OR 8 11
Comment, Property, Permission 16 16
Reference, Dependent 64 64
Column 8 8

Using Macros in Queries

The following standard macros used in snippets engine are also supported in templates: $DATE$, $TIME$,
$SERVER$, $LOGIN$, DB, $USER$, $OSUSER$, $MACHINE$, SA_TARGET, $SA_VERSION$. In
addition, the following schema comparison queries specific macros can be used in template codes:

DB_NAME - item's database name (level 1, database)

$SCHEMA_NAME$ - item's schema name (level 2, schema, user, role, partition function, etc.)

$OBJECT_NAME$ - item's object name (level 3, table, view, etc.)

$SUBOBJ_NAME$ - item's sub-object name (level 4, constraint, column, etc.)

$NAME_LEVEL_[number]$ - generic reference to an object at a certain hierarchy level. For example:

$NAME_LEVEL_1$ is the same as DB_NAME but a more generic name.

$NAME_LEVEL_2$ is the same as $SCHEMA_NAME$ but a more generic name.

$NAME_LEVEL_3$ is the same as $OBJECT_NAME$ but a more generic name.

$NAME_LEVEL_4$ is the same as $SUBOBJ_NAME$ but a more generic name.

$NAME_LEVEL_5$, $NAME_LEVEL_6$, and so on... Levels 5 and above have no schema scope
analogues.

 Tip: Use of generic references is more convenient in object hierarchies not based on database or schema
names, such as jobs, schedules, resource governors, tablespace files, and so on, which are not schema bound
in most database systems.

The Anatomy of Templates

The schema engine uses scriptable templates to generate database and schema change synchronization
scripts. Templates work exactly like code snippets described in CHAPTER 7, Code Entry Automation using
Code Snippets but in addition to that they can also call recursively other templates, for example, a "Table
("CREATE)" template can call "Column (CREATE)" template for each table column and that template in turn
can call "Column definition" template to output column definition syntax required for the CREATE TABLE
syntax.

Different templates are used for different object types. The "Target Type" property in the template used by the
schema comparison engine to select the required template for each processed database and schema object
type. Different templates are required to handle different types of changes such as ALTER, RENAME,
CREATE, and DROP operations. The type of the template is defined by the "Template Type" template property.

Template Properties

Template Type – the type of the DDL operation the template is used for. The following types are supported:

 ALTER

 RENAME

 CHAPTER 27, Schema Compare Utility

 -447-

 CREATE

 DROP

For ALTER DDL operation type, if ALTER template is not defined, the schema comparison engine will
attempt to use DROP and CREATE templates.

 Note: The Template Type value need not be specified for templates invoked by other templates, in
other words for nested templates, which are reusable and not specific to an operation type. For example, a
"Column definition" template should not have Template Type specified.

Target Type – the type of database or schema object the template is used for. Example types are: "Table",
"Table function", "Check constraint", "Column", "Partition schema" and so on...

 Note: For your convenience the drop-down list for the Target Type property is prepopulated with
some common values. If you cannot find the required value in the list, simply type it into the property value
edit box.

This is an optional property. It is not required for generic nested templates.

Minimum Version – the minimum database server version (major version number) the template is compatible
with. Within the same comparison rule set you can define multiple templates for the same Template Type and
Target Type with different Minimum Version values. The comparison engine will automatically select the
template whose Minimum Version matches or exceeds the server version.

 Note: For easy of management it is recommended to create different rule sets for different database
server versions instead of creating single rule set with multiple version-specific variations of same queries.

Condition – An optional condition for using the template. Conditional expression must be specified n the
following format:

<[operator][<|state_option>][{attribute_name}{comparison}{value}]>

 A logical operator joining multiple conditions within the same conditional expression.

Operator Meaning

& AND operator

| OR operator

An object state. The state element is optional

State Meaning

+ If object exists in source only

-| If object exists in target only

* If objects are different

= If objects are equal

 CHAPTER 27, Schema Compare Utility

 -448-

Attribute name. The attribute name is optional.

Attribute Meaning

Name of attribute
column in the
associated query

Check the specified
attribute value.

. If "." check the object
name itself

Value comparison operator. The comparison operator is optional.

Comparison Meaning

= Equal

<> Not equal

Value – an optional attribute value to check in this conditional expression. The value can be specified only
if the attribute name is specified too.

Examples:

*Type – a template with this condition will be used only when the attribute named "Type" is different in
compared objects.

IsSystem=0 - a template with this condition will be used only when the value of attribute named
"IsSystem" is equal to zero.

Auto=0 & Nullable=NOT NULL - a template with this condition will be used only when the value of
attribute named "Auto" is zero and the value of attribute "Nullable" is "NOT NULL"

Template – the code of the template

Using Macros in Templates

The templates support four types of macros:

 A number of standard macro variables supported by SQL Assistant in code snippets and in the Smart
Database Refactoring templates.

 Simple macro variables returning comparison operation scope values such as source or target
schema name, object name, and so on. They are described in detail in the following paragraphs.

 Simple macro variables returning values from columns of the associated database query, in other
words, the attributes of the referenced schema objects. See The Anatomy of Queries topic for more
details.

 Nested templates.

 CHAPTER 27, Schema Compare Utility

 -449-

Use of SQL Assistant's Standard Macros

The following standard simple value macros supported in the code snippets are also supported in the schema
comparison templates:

$DATE$
$TIME$
$SERVER$
$LOGIN$
DB
$USER$
$OSUSER$
$MACHINE$
SA_TARGET
$SA_VERSION$

For the description of the above macros refer to CHAPTER 7, Code Entry Automation using Code
Snippets.

Use of Comparison Engine-specific Macros

The following comparison engine specific simple value macros can be used in the schema comparison
templates:

$SOURCE$ - name of the relative top-level item in the source database. The returned value depends on the
selected comparison scope and comparison options.

$TARGET$ - name of the relative top-level item in the target database. The returned value depends on the
selected comparison scope and comparison options.

DB_NAME - item's database name (level 1, database)

$SCHEMA_NAME$ - item's schema name (level 2, schema, user, role, partition function, etc.)

$OBJECT_NAME$ - item's object name (level 3, table, view, etc.)

Example:
CREATE INDEXTYPE "$SCHEMA_NAME$"."$OBJECT_NAME$" FOR
$,\n|INDEX OPERATOR=INDEX OPERATOR$
USING $IMPLEMENTATION TYPE$$ WITH ARRAY DML {, |INDEX DML=INDEX DML}$
$WITH {PARTITIONING} PARTITION $$WITH {MAINTENANCE} STORAGE TABLES$

$SUBOBJ_NAME$ - item's sub-object name (level 4, constraint, column, etc.)

$NAME[;default]$ - object's name. The parameter's default value is used when the target object name is
empty and the default value is known or specified in the macro. Here, object name is a name of schema object
as specified in the Object Types tree, see Customizing Default Comparison Options topic for more information.

Example: CREATE APPLICATION ROLE $NAME$
 WITH PASSWORD = '/* {password} */' , DEFAULT_SCHEMA = $OWNER;dbo$

$VALUE[;default]$ - object's value. Default value (if specified) is used when the specified value is empty.

DDL - source object's DDL with optionally substituted target database and schema names. The substitution
is applied in case the Auto-fix target db and schema names option is selected and target database or
schema names differ from the source names.

$ALTER_DDL$ - This is the same as the DDL macro with additional change of the object's CREATE
statement to ALTER or CREATE OR REPLACE depending on the target database type.

You can also append source and target reference modifiers to macro names. Use ".SRC" to refer to the source

 CHAPTER 27, Schema Compare Utility

 -450-

value, and ".TRG" to refer to the target value. For example:

/**
 * Code generated by SoftTree SQL Assistant © v$SA_VERSION$
 * using Schema Compare templates
 * Time: $DATE$ $TIME$
 * Source: $NAME.SRC$
 * Target: $NAME.TRG$
 **/

Use of Macros Returning Schema Object Attributes

The attribute macros are simple value macros copying object attribute values from the database query
associated with the template. The association between comparison templates and queries are based on the
templates Target Type and Condition properties and the Loaded Objects types specified in the query
properties.

$attribute_name[;default]$ - object's attribute value. The engine searches for attribute name specified in the
attribute_name part using case insensitive search. If the specified attribute name cannot be found or it returns
an empty string, then the default value is used.

Example

The "Application Role (CREATE)" template for SQL Server is associated with the "Database Roles" query. This
"Application Role (CREATE)" template has its Target Type property value set to "Application Role" and the
"Database Roles" query has its Loaded Objects property value set to "Roles,Application Roles." Below is the
template code referencing the "Owner" attribute from the query and specifying "dbo" as the default value in
case the value of the "Owner" attribute is empty (an empty string or NULL value).

The "Application Role (CREATE)" template:

CREATE APPLICATION ROLE $NAME$
WITH PASSWORD = '/* {password} */' , DEFAULT_SCHEMA = $OWNER;dbo$

The "Database Roles" query code:

SELECT
 p1.[name] AS [Role name],
 CASE
 WHEN p1.[type] = 'A' THEN 'Application Role'
 ELSE 'Role'
 END AS [Target type],
 p2.[name] AS [Owner]
FROM sys.database_principals p1
 LEFT JOIN sys.database_principals AS p2
 ON p1.owning_principal_id = p2.principal_id
WHERE p1.is_fixed_role = 0
 AND p1.principal_id <> 0
 AND p1.[type] IN ('A', 'R')
ORDER BY p1.name

Use of Text Prefixes and Suffixes with Macros, and Default Values

The comparison engine supports optional prefixes and suffixes appended to the value returned by a macro
variable, as well as the default values used in case of macro variable returning an empty value. Prefixes,
suffixes, and default values can be specified using the following notation:

$Prefix{Macro}Suffix;Default$

Prefix and Suffix are text strings which are appended to the returned macro value. If the actual macro value is
empty then the Default string will be returned. Each part before or after the {Macro} is optional. For example,
you can specify prefix without suffix, or specify a default value without prefixes or suffixes specified. Note that
the Macro could be a name of a simple macro variable or a name of a nested template.

 CHAPTER 27, Schema Compare Utility

 -451-

Example:
CREATE INDEXTYPE "$SCHEMA_NAME$"."$OBJECT_NAME$" FOR
$,\n|INDEX OPERATOR=INDEX OPERATOR$
USING $IMPLEMENTATION TYPE$$ WITH ARRAY DML {, |INDEX DML=INDEX DML}$
$WITH {PARTITIONING} PARTITION $$WITH {MAINTENANCE} STORAGE TABLES$

In this example, the PARTITIONING in the highlighted part is a name of a simple macro variable referencing
values returned by the PARTITIONING column of the preconfigured Index type query used for Oracle schema
comparison. Every partitioning value is prefixed with "WITH " text and suffixed with " PARTITION " text, with the
final result inserted into the schema synchronization script.

Additional Modifiers for Macro-variables

The following suffixes can be added to macro variable names used in the templates to indicate which specific
value to insert in the place of the macro variable and how to format it.

.SRC – instructs the engine to use the original source value for the referenced name or attribute. This modifier
can be used with object and column names.

.TRG – instructs the engine to use the target value for the referenced name or attribute in case it is different
from the original name. This modifier can be used with object and column names. For example, when you
compare 2 differently named schemas, the DDL for target objects in the synchronization script differs from the
original, because the schema name is not the same. In the case $SCHEMA_NAME.SRC$ will return the
schema name in the source database, while $SCHEMA_NAME.TRG$ - schema name in the target database.

.PREV – instructs the engine to use the value of the previous sibling object.

.STRING – instructs the engine to use convert the value to a valid string format and enclose it in single quotes.
All nested single quotes are doubled.

 Note: The modifiers can be concatenated together if required

Example: The below code is used in the "Table Object (RENAME)" template in the comparison rule set for
SQL Server databases for renaming system generated constraint and index names in the target schema to
match their system generated names in the source schema.

EXEC sp_rename @objname = N'$SCHEMA_NAME$.$NAME.TRG$', @newname = N'$NAME.SRC$'

Calling Nested Template

Call syntax for calling nested templates:

$separator|ObjectType1.SetModifier1=TemplateName1,ObjectType2.SetModifier1=Templat
eName2,...,ObjectTypeN.SetModifier1=TemplateNameN$

Every part in the syntax is optional except the special "|" and "=" symbols separating the parts.

separator – an optional separator string used when concatenating text returned by nested templates. The
following special symbols are supported in separator strings: \n - line break; \t - TAB character; \\ - "\" character.

 Important Note: The separator string must be followed by the pipe "|" symbol. In case the separator
string is not specified, the pipe symbol must be still specified.

CREATE PARTITION FUNCTION [$NAME$] ($PARAMETER$)
AS $FUNCTION TYPE$
FOR VALUES ($, |PARTITION RANGE VALUE=NAME UNDELIMITED$)

 CHAPTER 27, Schema Compare Utility

 -452-

In this example, ", " (comma and space) is the separator string, and NAME UNDELIMITED is a name of
the nested template.

ObjectType – an optional reference to the type of child object to which the nested template will be applied. If
this parameter is omitted, nested template is applied to the object itself. For example,

 Important Note: The object type with an optional modifier string must be followed by the equal sign
"=" symbol. In case the object type is not specified, the equal sign symbol must be still specified.

CREATE PARTITION FUNCTION [$NAME$] ($PARAMETER$)
AS $FUNCTION TYPE$
FOR VALUES ($, |PARTITION RANGE VALUE=NAME UNDELIMITED$)

In this example, "PARTITION RANGE VALUE" is the object type, and NAME UNDELIMITED is a name of
the nested template.

SetModifier – This property specifies custom objects subset to apply the nested template to. One of the
following can be used:

Not specified - new selected source and target objects, all modified objects, all equal objects.

TARGET - equal objects, modified objects (source if selected, and target is not selected), selected new
source objects, not selected new target objects

TARGET_OLD - same as TARGET but without new source objects

TARGET_ONLY - only target objects (equal, modified, new)

ONLY_NEW - only new selected source objects

TemplateName – the name of the nested template. If this parameter is specified, the engine searches for the
specified template name. If this parameter is not specified, the engine searches for a template associated with
the object type matching of ObjectType value and having the same template type as the calling template.

Here is an example of template code for MySQL specific rule set for column change synchronization template
named "Column (ALTER)":

ALTER TABLE `$SCHEMA_NAME$`.`$OBJECT_NAME$` MODIFY COLUMN $|=COLUMN DEFINITION$;

When processing this template code the comparison engine performs the following steps:

1. The simple value macro $SCHEMA_NAME$ is replaced with the target schema name.
2. The simple value macro $OBJECT_NAME$ macro is replaced with the target table name.
3. The last part $|=COLUMN DEFINITION$ is a reference to the nested template named "Column

Definition". This part is processed separately and then the output of that nested template is inserted
into the output of the "Column (ALTER)".

Extending Schema Comparison, a Practical Example

The following example demonstrates how to compare SQL Server's server scope properties.

1. Double-click SQL Assistant's icon in the system tray to open the Options dialog and select the
Schema Compare tab.

2. Right-click the Comparison Rules list in the top left window, and select the Add command from the
context menu. A new rule set will be added to the list with the input focus in the rule set name. Enter
"SQL Server Properties" name (without quotes), and then click the right window to set focus to the
Properties table.

3. Fill in property values for the new rule set as specified below:

 CHAPTER 27, Schema Compare Utility

 -453-

DB Type – SQL Server
Use SQL Assistance Queries – No
Object Types – Server

4. Right-click the left bottom window in the Queries section, and select the Add command from the
context menu. A new query will be added to the list with the input focus in the query name. Enter
"Server Properties" as the query name (without quotes), and then click the right window to set focus to
the Properties table.

5. Fill in property values for the new query as specified below:
Query Type – Objects
Qualification Name Parts – 0
Target Type – Server
Minimum Version – 9
Has Value – No
Match Method – Match by name
Do not Compare – No
Hidden – No
Query – enter the following SQL query text

SELECT propertyname,
 'Property' AS [Target Type],
 is_fixed AS is_fixed__HIDDEN,
 0 AS is_advanced__HIDDEN,
 0 AS is_dynamic__HIDDEN,
 CAST(SERVERPROPERTY(propertyname) AS NVARCHAR(255)) AS [value]
FROM
(
 SELECT 'BuildClrVersion' AS propertyname, 1 AS is_fixed
 UNION SELECT 'Collation', 1
 UNION SELECT 'Edition', 1
 UNION SELECT 'EngineEdition', 1
 UNION SELECT 'IsClustered', 1
 UNION SELECT 'IsFullTextInstalled', 1
 UNION SELECT 'IsIntegratedSecurityOnly', 0
 UNION SELECT 'IsSingleUser', 0
 UNION SELECT 'LCID', 1
 UNION SELECT 'ProductVersion', 1
 UNION SELECT 'ProductLevel', 1
 UNION SELECT 'ResourceVersion', 1
 UNION SELECT 'SqlCharSetName', 1
 UNION SELECT 'SqlSortOrderName', 1
 UNION SELECT 'FilestreamShareName', 1
 UNION SELECT 'FilestreamConfiguredLevel', 1
) AS t

UNION ALL
SELECT name AS propertyname,
 'Property' AS [Target Type],
 0 AS is_fixed,
 is_advanced,
 is_dynamic,
 CAST([value] AS NVARCHAR(255))
FROM master.sys.configurations
ORDER BY 1 ASC

 CHAPTER 27, Schema Compare Utility

 -454-

 Note: The following steps are optional and only required if you want to automate generation of server
properties synchronization scripts. Note that properties returning 1 in the is_fixed column cannot be changed
through scripting, they require running SQL Server installation program or in case of SQL Server version or
clustering configuration differences, a complete reinstall.

6. Click the Schema Compare Templates for SQL Server Properties bar to expand the Templates
section.

7. Right-click the Templates section, and select the Add command from the context menu. A new
template will be added to the list with the input focus in the template name. Enter "Server Properties
(ALTER)" as the template name (without quotes), and then click the right window to set focus to the
Properties table.

8. Fill in property values for the new query as specified below:
Template Type – ALTER
Target Type – Server
Minimum Version – 9
Condition – leave this property value blank
Template– enter the SQL script that can be used to update different server properties. The following
example demonstrates how to do that for a few different properties, we will leave the rest for you to
complete as an exercise.

USE [master]
GO

IF '$NAME$' = 'awe enabled'
BEGIN
 EXEC sp_configure N'show advanced options', N'1' RECONFIGURE WITH OVERRIDE
 EXEC sp_configure N'awe enabled', N'1' RECONFIGURE WITH OVERRIDE
 EXEC sp_configure N'show advanced options', N'0' RECONFIGURE WITH OVERRIDE
 PRINT 'IMPORTANT: You must restart the server before the new
 "Use AWE Memory" settings will take effect.'
END
GO

 CHAPTER 27, Schema Compare Utility

 -455-

IF '$NAME$' = 'cost threshold for parallelism'
BEGIN
 EXEC sp_configure N'show advanced options', N'1' RECONFIGURE WITH OVERRIDE
 EXEC sp_configure N'cost threshold for parallelism', N'$VALUE$' RECONFIGURE
 WITH OVERRIDE
 EXEC sp_configure N'show advanced options', N'0' RECONFIGURE WITH OVERRIDE
END
GO

IF '$NAME$' = 'IsIntegratedSecurityOnly'
BEGIN
 DECLARE @RegValue INT = (CASE WHEN '$VALUE$' = '1' THEN 1 ELSE 2 END)
 EXEC xp_instance_regwrite N'HKEY_LOCAL_MACHINE',
 N'Software\Microsoft\MSSQLServer\MSSQLServer', N'LoginMode',
 REG_DWORD, @RegValue
 PRINT 'IMPORTANT: You must restart the server before the new
 "Server Authentication" settings will take effect.'
END
GO

IF '$NAME$' = 'nested trigger'
BEGIN
 EXEC sp_configure N'show advanced options', N'1' RECONFIGURE WITH OVERRIDE
 EXEC sp_configure N'nested trigger', N'$VALUE$' RECONFIGURE WITH OVERRIDE
 EXEC sp_configure N'show advanced options', N'0' RECONFIGURE WITH OVERRIDE
END
GO
....

9. Click the Ok button to save the entered settings. The new Server Properties comparison rules can be
used immediately.

 CHAPTER 27, Schema Compare Utility

 -456-

Scheduling Automated Data Comparisons

The Schedule button on the Data Compare dialog enables you to automate periodic data comparison
operations or to schedule data comparison runs at night or other quiet times when the database server is not
very busy. This opens the Schedule dialog providing graphical interface to the data comparison command line
interface described in the next topic. For information on how to manage scheduled tasks in SQL Assistant, see
CHAPTER 50, Managing Scheduled Tasks

The scheduled task uses data comparison command line interface described in the next topic to run the
comparison at the specific date and time.

Command Line Interface

To run schema comparison operations from a DOS command line window, use the following command:

sacmd sc srcconn:"src-connection-name" dstconn:"dest-connection-name" srcname:"src-object-
path" dstname:"dest-object-path" outfile:"sql-file-name" logfile:"log-file-name"
srcflags:"flag-chars" sas:"path-to-sa-settings-file"

The above command must be entered as a single line

Substitute values in the command as follows:

src-connection-name The database connection name for the source database connection

dest-connection-name The database connection name for the destination database connection

src-object-path The fully qualified dot separated path to the source table, schema or
database. This also defines the scope of the comparison. If you specify just
database name, then all tables in the database will be compared. If you
specify database.schema name, then all tables in the specified schema will
be compared. If you specify database.schema.table name , then only the
specified table will be compared

dest-object-path The fully qualified dot separated path to the target table, schema or
database. This also defines the scope of the comparison. If you specify just
database name, then all tables in the database will be compared. If you
specify database.schema name, then all tables in the specified schema will
be compared. If you specify database.schema.table name , then only the
specified table will be compared.

 Important Notes:

 The source and destination path must have the same scope.

 For database servers without database element in the path, such
as Oracle, DB2, MySQL, SQLite, and others use noDB name in
place of the database name

srcrules:"rules-name" Source schema comparison rule set name. This is an optional parameter. If
not specified, the comparison engine will use default rules for the source
database server type and version.

 CHAPTER 27, Schema Compare Utility

 -457-

dstrules:"rules-name" Destination schema comparison rule set name. This is an optional
parameter. If not specified, the comparison engine will use default rules for
the destination database server type and version.

sql-file-name The output SQL file for the schema synchronization script.

log-file-name The log file for the schema comparison log messages. This is an optional
parameter. If not specified, log file is not generated.

flag-chars Combination of flags for the schema comparison. The following symbols can
be used in this parameter:

s - Ignore system objects
f - Ignore names (constraints, indexes)
c - Ignore character case
w - Ignore white spaces (DDL)
x - Ignore comments (DDL)
l - Ignore newline format (DDL)
d - Ignore delimiters (DDL)
n - Auto-fix target database and schema names
r - Do not rename indexes and constraints

path-to-sa-settings-file The full file name of the SQL Assistant settings file containing the required
database connection parameters. This is an optional parameter. If not
specified, the default path for the current user account is used.

Example:

cd "C:\Program Files (x86)\SQL Assistant 12"

sacmd sc srcconn:"DEV001 (sa)" dstconn:"PROD (sa)" srcname:"AdventureWorks.Sales"
dstname:"AdventureWorks.Sales" outfile:"C:\TEMP\SchemaSyncScript.xml" srcflags:"sbt"
sas:"%APPDATA%\SQL Assistant\12.4\sqlassist.sas"

 Important Notes:

 The SQL Assistant settings file location is version and user profile specific. See the Notes in the
Overview topic in CHAPTER 51 for details on how to find out the location of that file.

 You can find out the connection name in the DB Connections group of settings on the DB Options tab
page in SQL Assistant Options. If a connection requires a user id and password, make sure that both
are saved in the settings. The command line interface does not display interactive prompts and is
unable to prompt for credentials during command processing. For more information about storing and
managing database connections, see the Managing Database Connections topic in CHAPTER 48.

 CHAPTER 28, Job Compare Utility

 -458-

CHAPTER 28, Job Compare Utility

Overview

The Job Compare Utility is based on the Schema Compare Utility and provides similar functions and the user
interface, but it is focused on the comparison of the scheduled automated database jobs and tasks.

You can compare job differences in two database servers of the same types having the same or different
versions. The utility ignores version specific differences and compares only objects and attributes supported by
both versions.

The Job Compare utility supports flexible comparison filters enabling you to choose to include or exclude
particular object types, particular object attributes and properties, to choose to ignore minor differences, such
as differences in user privileges, extra spaces in the code, and so on...

 Note: The Job Compare utility supports scriptable interface comprised of comparison rules, database
queries, and templates similar to queries and templates used by the Schema Compare Utility for schema
synchronization. It enables users to extend the existing functionality, adding new features for supporting new
object types and properties and altering behavior of pre-configured comparison features. See the Extending
and Customizing Schema Compare Functions topic for more details on customizing the Job and Schema
Compare.

The Job Compare utility can be invoked from SQL Assistant's menus. The Compare Code and Data
Compare Jobs command is available from either the right-click context menu in the target editor or the top-
level menu (if the target editor top-level menu integration is enabled). This command opens the Job Compare
dialog. In this dialog you can select the target servers, jobs, schedules, programs, pre-defined conditions, and
other related objects to compare. The following topics describe the usage of the Job Compare

How Job Comparison Engine Works

The schema comparison and job comparison share the same engine. For job comparison the engine utilizes
job specific comparison rules, queries and templates predefined in SQL Assistant's options. For details on how
the engine works see How Schema Comparison Engine Works topic.

The Job Compare Dialog

Navigation

The Job Compare dialog is a wizard-like dialog that guides you through a 3-step job comparison and
synchronization process:

 Step 1: Choose database connections and comparison options.

 Step 2: Run the comparison engine. Review the comparison results.

 CHAPTER 28, Job Compare Utility

 -459-

 Step 3 (Optional): Review, edit, save and execute the job synchronization script.

Use the Next button at the bottom of the dialog to advance to the next step. Use the Back button to go back to
the previous step. If you click the Back button while there is an active comparison operation in progress, the
operation is automatically aborted.

To close the dialog, at any time click the Close button in the right bottom corner.

Comparison Options

Job Compare Rules – The set of comparison queries and templates designed for specific database server
type and version that will be used for the selected Source and Target items. Typically the rule names are
matching database server types but in fact they are just names and can be anything you like. It is important to
choose rules that match your database type and version in order to produce correct comparison results and
generate valid job synchronization scripts.

Compare options tree –The collection of job related object types and their attributes available for comparison.
In the options tree you can choose which types of objects and their attributes you want to compare. If you want
to ignore certain object types and/or some of their attributes, for example, Comments attribute of Program
object, unselect that attribute in the Compare list.

Selecting Servers for Comparison

Connection and Name Filters

Multiple server connections are organized into logical connection groups. You can use the right-click menu to
manage connections in place. To manage connection groups use either the SQL Assistant main Options dialog
or the Multi-server Code Execution utility. For more information on managing connection groups and connection
settings see Managing Connection Groups and Connection Settings topic in CHAPTER 15.

 CHAPTER 28, Job Compare Utility

 -460-

The Filter combo-box offers super-fast content filtering. Type the substring you want to use as a filter for
database objects into the Filter box available above the object tree. Previously used filters are available in the
drop-down portion of the Filter combo-box.

 Tip: You can add new connections directly in the same dialog. Use the right-click menu in the connection
tree. The same right-click menu can be used to modify saved connections.

Navigation

All server connections, databases, schemas, and schema objects are displayed in a single Object Tree. You
can select only 2 items of the server type.

Object Tree Legend

The following types of checkboxes could be displayed in the object tree.

 Item is not selected for job comparison. This item is available for selection.

 Item is not available for selection because the item is not a server or you already have two servers
selected for comparison. In the latest case, If you want to change the selection, first unselect one of
the selected items and then select another item.

 Item is selected for job comparison.

Job Comparison Results

The second step in the Job Compare dialog is where all comparison results are shown.

The results dialog features 4 parts display of the results. To the top portion is split into 2 parts – the Source
server objects tree and the Target server objects tree. The content of both parts can be filtered using the
predefined filters at the top of the dialog to reduce the clutter and show only relevant differences. The bottom
portion is split into 2 parts too. The left box shows DDL code of the object selected in the Source tree. The right
box shows DDL code of the object selected in the Target tree. The code differences navigation map is
displayed adjacent to the right side of the Target DDL code box.

 Usage:
 The Filter options box provided at the top of the Job Compare dialog can be used to filter the

comparison results.

To quickly limit the list to new objects only, un-tick all checkboxes and tick only the Objects in Source
only checkbox. To show the complete list, tick all checkboxes.

The Text and Filter Type controls enable filtering comparison results by object names, by their
attributes names, or by their attribute values.

 The resizer control separating the the Source tree and Target tree parts can be used to adjust the size
of each part.

 The resizer control separating the tree and the bottom DDL code comparison results can be used to
adjust the size of top and bottom parts.

 Use standard tree view control navigation methods to collapse, expand, and navigate items in the

 CHAPTER 28, Job Compare Utility

 -461-

Source object and Target object trees.

Color Coding

SQL Assistant uses color coding in the Source and Target object trees for visualizing the differences. Color
coding provides a convenient way to see the comparison results at a glance. For your convenience the color
legend is displayed at the top of the Job Compare dialog in the Filter options box in front of the filter selection
checkboxes.

It also use color coding for highlighting code differences in the Source and Target DDL code boxes. The color
coding method and color schema are the same as in the integrated Code Compare utility. See Color
Highlighting topic in CHAPTER 25, Code Compare Utility for more details.

Action Legend

The following types of checkboxes could be displayed in the Action column.

 Item is not selected for job synchronization. This item is available for selection. If not selected, it will
not be included in the change synchronization script.

 Item is not available for selection. This item is identical in the Source and Target databases and no
synchronization is required.

 Item is selected for job synchronization. The type of action CREATE, DROP, or ALTER is indicated
in the Action column.

 For an expandable item, this type of checkbox indicates that a "child" item has been selected in its
tree branch for job synchronization.

Resizing Content

To resize the Job Compare dialog window, drag the resizer handle in the bottom-right corner of the window.
See the screenshot at the beginning of the Working with SQL Assistant Popups topic for information on where
to locate the resizer handle.

To adjust size of top and bottom parts within the dialog, drag the vertical split bar separating table and row lists.

Printing Comparison Report, and Exporting it to Excel and PDF

The Comparison Report provides the following:

 Printing comparison results or saving them as PDF versions.

 Documenting database changes

 Sharing results with coworkers who do not have the SQL Assistant software installed and cannot use
the Job and Schema Compare tools.

 Using Excel interface applying advanced filtering, sorting, and commenting which are important tools
in the decision making process for which changes to promote or ignore.

 CHAPTER 28, Job Compare Utility

 -462-

Printing and saving comparison reports is a two-step process. First you have to use the button
shown in the Comparison Results view to display comparison results in a tabular format. Note that the button is
visible in the Comparison Results view only. After that use the toolbar buttons at the top of the table to generate
a printable version of the reports or to save the table to Excel file.

The Print button generates printable version of the report that includes report header with the database
connection details, selected comparison options, etc.. and sends it to a printer of your choice.

The Preview button displays printable version of the report on the screen.

The Save as PDF button saves printable version of the report to a PDF file.

The Save as XLS button saves tabular version of the report to editable Excel file. Unlike other report actions,
this output format is not optimized for printing. The report data is exported to Excel so that you can manipulate it
as needed and then save or print only what you want.

To return back to the graphical Comparison Results view, click the Back button at the bottom of the report
table.

To advance to the Schema Synchronization step, click the Next button

Job Synchronization

By default all differences are included in the scope of the synchronization action. In the Job Comparison
Results you can exclude differences that you do not want to synchronize. To do so, un-tick checkboxes in the
Action column on the right side of each row in the Source tree. When it is time to update the target database,
this row will not be considered for any pending changes.

Ticking or un-ticking a checkbox in a group row is equivalent to ticking or un-ticking all differences in that group.
You can use this speedy selection method at any group row, for example, you can use it at the database row to
quickly unselect everything and then at a specific job row to quickly select that job only.

To quickly select or deselect everything displayed using current filters in the comparison result trees, right-click
anywhere in the Source tree. The context menu will appear. Choose Select All or Deselect all commands as
required.

After you have selected everything you want to synchronize, click the Next button. SQL Assistant will generate
the synchronization script for the selected objects and attributes and will display the resulting script.

The generated synchronization script is displayed in a code editor connected to the Target database server.
Review the synchronization script and correct it if required. Note that the script syntax is validated automatically
for syntax errors, but it is not checked for any logical errors or other issues that only a developer can recognize.
The syntax errors are displayed on the syntax bar adjacent to the right side of the editor. For details on how to
use the Syntax bar see CHAPTER 20, SQL Syntax Checker.

For your convenience the script Structure View is displayed to the left of the generated script with quick
navigation link to SQL statements in the script. For instructions on how to use the Structure View see
CHAPTER 4, Code Structure View and Bird's Eye View.

 CHAPTER 28, Job Compare Utility

 -463-

Three actions are available. You can:

 Save the script to a file on your computer.

 Open the script in external editor. In case if you started the Job Compare tool from a development
environment having SQL Assistant running as an add-on, the script will be opened in a new tab in the
host development environment. Otherwise the script will be opened in SQL Assistant's integrated SQL
Editor. See Professional SQL Editor IDE topic in CHAPTER 34, Integrated SQL Editors.

 Execute the script immediately.

 Important Note: It is strongly recommended that you create a backup of the Target database before
executing a job synchronization script so that you can roll back all unwanted changes later.

 CHAPTER 29, Code Search & Replace in Files

 -464-

CHAPTER 29, Code Search & Replace in Files

Overview

SQL Editor Professional Edition is equipped with a file search and replace utility that provides advanced
capabilities for file search and replace operations. You can use it to very quickly find and replace strings and
text patterns across multiple files and folders. Regular expression engine and Template engines enable you to
create sophisticated searches, preview replace, perform batch operations on multiple files, and more. The utility
provides a number of additional functions to create automatic backup copies of files before they are modified, to
log all operations, to run repeatable searches, and so on…

To open the file search and replace utility, in the SQL Editor click the Search menu and select File and
Replace in Files…menu. The Find in Files dialog will open.

Supported File Search Options

Text to find - To run search for a new text string or expression, enter it in the box. To repeat search for strings
that you searched for most recently, you can choose them from the drop-down list.

Replace with - To replace instances of the string or expression in the Text to find box with another string, enter
the replacement string in the Replace with box. To delete instances of the string in the Text to find box, leave
the Replace with field blank. To replace the text with one of the recently entered Replace with values, you can
select them from the drop-down list.

Case-sensitive – By default the search operations are not case sensitive. This option converts the search to
case sensitive search.

Whole words only - When selected, the search results will include only instances of the Text to find string that

 CHAPTER 29, Code Search & Replace in Files

 -465-

are matched in complete words. For example, a search for "TableA" will return "TableA" but not "TableAB"

Regular expression - if selected, this option indicates that the value in the Text to find is a regular expression
used for the string matching. The search and replace utility supports powerful PCRE regex engine, which
provides the same syntax and functions as Perl regular expressions engine.: Please see
http://perldoc.perl.org/perlre.html for the syntax description. It enables you to generate random values with
predefined formatting, prefixes, and suffixes, as well as value ranges. For example regular expressions and
syntax see Using Regular Expressions topic in CHAPTER 18, Generating Test Data.

Replace with template – This option can be used only if the Regular expressions option is selected for the
search. It enables you to specify capture groups and replacement patterns.

A capture group delineates a sub-expression of a regular expression and captures a substring of an input
string. You can use captured groups within the regular expression itself (for example, to look for a repeated
word), or in a replacement pattern. For detailed information see http://perldoc.perl.org/perlre.html.

The following simple example demonstrates how to search for text containing straight bracket symbols "[" and
"]" surrounded by one or more spaces or tabs and remove all white spaces around the brackets.

Text to find: [\x20\t]*([\[\]]+)[\x20\t]*

Replace with: \1

In the above example, a substring like " [TableA] " after the search and replace operations get replaced
with "[TableA]"

Where: Search all open files – searches only in files currently opened in the SQL Editor.

Where: Search in folders – searches in files in one of more folders and their subfolders as specified in the
additional search options below

File mask – the file mask for the files to search. To search for all files, specify *.*. Using a file type specific
mask helps to avoid searching in large binary files and that helps to improves performance of search operations
when scanning folders with many files.

 Tip: You can enter semicolon-separated list of file masks to search in multiple file types
simultaneously, for example, *.sql;*.ddl.

Folders – use the drop-down menu to select folders you selected in previous searches. Use the yellow Folder
button to the right of the Folders field to open a graphical Browse for Folder dialog and use to select a folder.
Use the Plus button to the right of the Folders field to add additional folders to the folder search list. You can
also enter semicolon-separated list of folders directly into the Folders field.

Include subfolders – check this option to enable recursive file search within selected folders and subfolders.

Open results in new pane – this option is selected by default. The results of each search operation are output
to a new Search Results pane attached to the bottom of the SQL Editor main frame window. This enables you
to run multiple searches with different search criteria and compare their results. If unchecked, a single Search
Results pane is reused for all results, the results of the current search will replace the content of the previous
search results.

Do not close dialog after starting search – This option keeps the Find in Files dialog window open after the
search started. Use this option if you are going to run multiple searches.

Save search results – if selected, this will automatically save search results to XML or text file of your choice.
You will be prompted for the file name after the search operation completes.

 Tip: If you don't select this option, you can still use right-click menu in the Search Results pane to save
the results

http://perldoc.perl.org/perlre.html�
http://perldoc.perl.org/perlre.html�

 CHAPTER 29, Code Search & Replace in Files

 -466-

Working With Search Results

The search results by default are shown a tree like structure indicating in which file and folder the results are

found. The Show Folders toolbar button and the matching right-click menu can be used to display the
results in a flattened format.

To save results to an XML or text file, click the Save toolbar button . You will be prompted to select the
output file. If nothing is specifically selected in the results, all lines from the Search Results pane will be saved
to the output file. If one or more lines are selected in the results, only their text will be saved to the output file.

To copy results to the Clipboard use the copy button . If nothing is specifically selected in the results, all
lines the Search Results pane will be copied to Clipboard. If one or more lines are selected in the results, only
their text will be copied to the Clipboard.

 Tip: Hold down the Ctrl key to select multiple items in the Search Results pane. To select a range of
items, use hold down the Shift key.

The display of the results is very similar for both Search and Search and Replace operations. In the Replace
mode, a checkbox is shown in front of every folder, file and text match. You can use them to select and
unselect which occurrences of the matching text you want to modify. In the Replace mode, the matches show
both the text before the change using strikethrough font and also how it will appear after the change, as
demonstrated on the above screenshot.

The match and selection counters at the right of each folder and file name show how many matches have been
found and how many of them you have selected for the Replace operation.

To preview the found match in context, double-click its occurrence shown in the result. The file containing that
match will open in the SQL Editor, and the matching text occurrence will be automatically found and highlighted
for you in the text of the file.

 Important Note: If you modify text directly in the editor, it's strongly recommended that you rerun the
search to avoid conflicting file changes that may result in incorrect summary results.

Using the

Backing up files before performing batch updates

Use the Backup files before changing option available at the top of the Search Results pane to have SQL
Assistant automatically save copies of all files you selected for text replacements. The copied files will have
date time suffix added to their file name and their files extensions modified too. For example, a copy of file
named proc_rename.sql, will be saved as proc_rename_backup_20200130_105015.~sql.

 CHAPTER 29, Code Search & Replace in Files

 -467-

 Note: The changes to the extensions help with preventing the saved copied from showing in recurring
Search and Replace operations.

 CHAPTER 30, Code Search & Replace in Databases

 -468-

CHAPTER 30, Code Search & Replace in
Databases

Overview

In the course of any database development, searching for data and code referring to certain objects is a daily
routine. Searching is typically required across multiple database schemas, across multiple databases, and
sometimes across multiple database servers. SQL Assistant provides the advanced search facility that enables
you to search for both source code and table data across multiple domains. You can use full power of regular
expressions to find exactly what you want as well as to use regular expressions to search for multiple variations
of search terms, running so-called fuzzy searches. For example, you can use that to search for a column name
referenced in dynamic SQL string within stored procedures, which otherwise cannot be found via regular
database object dependencies and find all the stored procedures where that column is used. There are many
other applications for the search functions.

SQL Assistant utilizes concept of Connection Groups for running multi-server code and data searches. You can
define as many groups as you want and associate same or different connections with different groups.
Database server connections and groups can be defined directly in the SQL Assistant – Multi-server Code
Search and Replace dialog. See Managing Connection Groups and Connection Settings topic in CHAPTER
15, Executing SQL Scripts on Multiple Servers for more information.

 Important Notes:

 In databases with case insensitive settings, code and data searches are case insensitive too.
Searching for "TEST" and "test" will produce identical results. On contrary, in databases with case
sensitive settings, searching for "TEST" and "test" will produce different results.

 Code Search and Replace function is designed for quick text replacing within the database code
objects such as changing expressions and formulas coded within views and stored procedures,
changing column references, and so on. Do not use it for renaming objects and columns in the
database. Instead use SQL Assistant's Code Refactoring methods which allow you to quickly and
safely reorganize and restructure your database code. Read CHAPTER 8, Smart Database
Refactoring for more information on using code refactoring methods.

Running Fast Single-Server Code Search

For a quick on-the-sport source code search in the current database server you can use the light version of the
code search function that is accessible via SQL Assistant's menu, look for SQL Assistant Search &
Replace Quick Code Search… menu command. This command will open up Search Code dialog.

 Note: In addition to source code of various procedural objects SQL Assistant queries attributes of tables
and other objects searching for matching substrings in their names and also for matching column names.

1. In the Search Code dialog enter the substring you want to find within text of stored procedures,
functions, views, triggers, and other types of source code objects.

2. This step is required if you are working with a multi-database server, such as SQL Server or Sybase
ASE. Select one or more databases to search.

 CHAPTER 30, Code Search & Replace in Databases

 -469-

3. Choose how to search the source code. Two options are available in the Code search method drop-
down:

 Query system views – This is a server side search based on querying system catalog views
using regular SELECT statements containing the search criteria in their WHERE clause. This
method is very fast, but it may fail in certain cases if the object source code is stored in
chunks. For example, if a text of stored procedure is stored in the system catalog in 2 chunks
and the search substring is split, in other words it begins in one chunk and ends in another, a
simple SQL query will not be able to locate that substring occurrence.

 Perform SQL code scanning – This is a client side in memory search. SQL Assistant
retrieves source code object definitions from the database server and performs in memory
search for the specified substring.

4. Click the Next button to start the search.

5. After the search operation is complete, review search results. If another search is needed, click the
Back button, change search criteria and run it again, otherwise click the Close button to close the
Search Code dialog.

 Note: The display of code search results and the navigation is virtually the same as code display
and navigation in Smart Database Refactoring dialogs. See the Layout section in Refactoring Wizard
Dialog topic in CHAPTER 8, Smart Database Refactoring.

Searching Code Across Multiple Servers

The multi-server code search method can be used to search code across multiple servers, databases, and
database schemas.

1. In SQL Assistant's menu, select Search & Replace Code Search & Replace (Multi-server)…
menu command. This command will open up Multi-server Code Search and Replace dialog.

2. Enter substring or regular expression that you want to search for. If you want to use regular
expression, tick Regular Expression checkbox below the search field. For example, to find all

 CHAPTER 30, Code Search & Replace in Databases

 -470-

objects and attribute names containing "TextToFind" as a separate word, you can enter
"\bTextToFind\b" into the search box without double quotes.

3. Choose how to search the source code. If you check the Query system views checkbox, SQL
Assistant will run server side code search querying system catalog views using regular SELECT
statements containing the search criteria in their WHERE clause. If you leave the Query system
views checkbox unchecked, SQL Assistant will perform client side in memory search retrieving each
object code and reverse engineering its DDL.

 Note: The Query system views search method is much faster than reverse engineering DDL of
each object, but it does not allow using regular expressions.

4. On the right side of the dialog select servers, optionally select specific databases and specific
schemas if you want to narrow the search scope.

 Note: Use the right-click menu to add more connections to the list of severs or to modify existing
connections. See Managing Connection Groups and Connection Settings topic in CHAPTER 15,
Executing SQL Scripts on Multiple Servers for more information on managing database server
connections.

5. Click the Next button

6. After the search operation is complete, review search results. If another search is needed, click the
Back button, change search criteria and run it again, otherwise click the Close button to close the
Multi-server Code Search dialog.

 Note: The display of code search results and the navigation is virtually the same as code display
and navigation in Smart Database Refactoring dialogs. See the Layout section in Refactoring Wizard
Dialog topic in CHAPTER 8 for more information.

Replacing Code Across Multiple Servers

The multi-server database code search & replace method is an extension of the multi-server database code
search method. It does require that you run the search operation first and allows you to review the search
results before running mass replacing. It also allows you to pick and choose objects and specific code
occurrences for replacing and skip what does not need to change.

The Multi-server Code Search and Replace dialog guides you through a 3-step code replacement process:

 Step 1: Enter required search and replace parameters and options.

 Step 2: Preview and edit the proposed changes.

 Step 3: Execute the replace operations and review the output results and logs.

 Tip: If the replacement operation fails for some reason, you can click the Back button to go back to step 2
where you can review and edit the code for any failed items. After making necessary corrections, click the Next
button again to rerun the process.

 CHAPTER 30, Code Search & Replace in Databases

 -471-

 Warnings: The multi-server database code search & replace method is not source control aware. If you
are using SQL Assistant's source code control interface, it is recommended that after running the database
code replace operations you refresh source code control workspace files from the database. For more
information see Getting Source Code from Database Server topic in CHAPTER 23, Database Source Code
Control Interface.

To run the database code search and replace operation:

1. Follow steps 1 to 4 described in the previous Running Code Search Across Multiple Servers topic for
instructions on running the search and the supported search options.

2. Select Search and Replace Mode checkbox.

3. Enter replacement string into Replace With field.

4. Select Protect Object Names field to improve the safety of code search and replace operations. This
option instructs SQL Assistant to ignore changes in the first line of CREATE OR REPLACE and
ALTER commands to prevent the original object name. For example, if this option is selected and you
are replacing TestString with TestString2, and a procedure named ProcedureTestStringHere is found,
containing TestString in the code, SQL Assistant will not replace TestString in the procedure name in
the ALTER PROCEDURE ProcedureTestStringHere AS … command.

5. Enter optional error handling and process logging options.

On error – this option instructs SQL Assistant what to do in case a database error occurs during
replace operations, whether to abort the processing or continue with the next table in the table list. The
default is not to abort the work and continue after errors.

Save Log File -– If this option is checked, SQL Assistant writes processing status messages to the
log file specified in the Log option.

Log – The name of the output log file. This name must be specified if Save Log Option is checked.

6. Click the Next button to start the search.

7. Review search results. The code search results will appear similar to the example results on the
following screenshot of the Multi-server Code Search and Replace dialog. Choose what to replace and
what not to replace. The display of search results and the navigation is described in detail in the
following topic "Multi-server Code Search and Replace dialog."

8. Click the Next button to run the replace operation for the selected objects and code occurrences.

 CHAPTER 30, Code Search & Replace in Databases

 -472-

9. Review replace operation logs. If satisfied with the results, click the Close button to close the dialog,
or click the Back button to run another search and replace.

Multi-server Code Search and Replace dialog

Layout

Step 2 of the Multi-server Code Search and Replace dialog is where you will spend most of your time reviewing
proposed changes and, if necessary, providing additional input. In Step 2, the dialog is split into three parts:
the code replacement operation description in the top section of the dialog, the object tree navigator on the left
side, and the SQL editor on the right side. Items in the object tree are represented by icons indicating their
object type and text labels as illustrated in the screenshot below. See the Object Tree Legend table following
the screenshot for a key to icon meanings. Checkboxes in front of item icons can be used to select and
unselect objects you want to change.

Object Tree Legend

The following types of checkboxes with optional overlay icons could be displayed in the object tree.

 Item is not selected for code replacement, no action will be taken for this item.

 Item is selected and ready for code replacement.

 Item may need code replacement, but SQL Assistant is unsure how to replace it correctly. Your
input in the SQL editor is required before the object code can be altered in the database. You
should select this item and manually correct the code in the SQL editor box before advancing to
Step 3.

 For an expandable schema or database item, this type of checkbox indicates that only a subset of
"child" items has been selected in the object tree branch for this item. For a simple item, this type
of checkbox indicates that changes in the database completed successfully. This type of checkbox
displays only if you click the Back button to return to Step 2 to review and edit an initial code
replacement operation.

 Item changes in the database failed. This type of checkbox displays only if you click the Back
button to return to Step 2 to review and edit an initial code replacement operation.

 CHAPTER 30, Code Search & Replace in Databases

 -473-

Navigation Status Bar Legend

The navigation bar is available on the right side of the Multi-server Code Search and Replace dialog in step 2.
The status bar provides color coded interactive location indicators enabling you to quickly jump to a line of code
where a change is pending. Click on a location indicator to jump to the associated line of code.

Embedded SQL Editor

The Multi-server Code Search and Replace dialog features an embedded SQL Editor you can use to modify
code before it is altered in the database. For more information on the supported features, see CHAPTER 3,
Code Assistants and SQL Intellisense.

Note that the editor supports a dual-mode interface:

 Read-only mode with change highlighting of proposed changes for the current refactoring
operation and selected item. In this mode, the right side status bar is used for quick change
navigation. Color-coded marks are used to indicate ending changes and other sensitive elements in
the code.

 Edit mode, a full featured SQL editor with SQL Intellisense and other editor features. This mode is
activated automatically as soon as you start typing anything. In this mode the right-hand side status
bar is used to show syntax check results. To switch back to Read-only mode with change
highlighting, select a different object in the object tree on the left.

 Important Notes:

 If you start modifying code of an object that is not selected in the object tree, SQL Assistant will
automatically select it.

 You should review all selected objects and their pending changes before you click the Next button on
the Multi-server Code Search and Replace dialog.

 Tip: The Multi-server Code Search and Replace dialog window is resizable. A border of the window can be
dragged to change the size of the window. You can also use the dialog window Maximize button to open it full
screen and allow more room for the dialog controls, including the SQL Editor

Process Log Legend

The process log is displayed in step 3 of the Multi-server Code Search and Replace dialog. The following icons
indicate operation status conditions in the refactoring log.

 The operation or step completed successfully

 The operation or step failed

 Indicates code lines that generated specific error messages returned by the database server during
object alteration.

 CHAPTER 30, Code Search & Replace in Databases

 -474-

Using Context SQL Search

Please see CHAPTER 37, Improving Code Reusability for the description and instructions on using advanced
context based code search methods.

 CHAPTER 31, Data Search & Replace

 -475-

CHAPTER 31, Data Search & Replace

Overview

In the course of any database development, searching for data and code referring certain objects is a daily
routine. Searching is typically required across database schemas, across databases, and in many instances
across database servers. SQL Assistant provides the advanced search facility that enables you to search for
both source code and table data across multiple domains. You can use full power of regular expressions to find
exactly what you want as well as to use regular expressions to search for multiple variations of search terms,
running so-called fuzzy searches.

SQL Assistant utilizes concept of Connection Groups for running multi-server code and data searches. You can
define as many groups as you want and associate same or different connections with different groups.
Database server connections and groups can be defined directly in the SQL Assistant – Multi-Server Data
Search & Replace dialog. See Managing Connection Groups and Connection Settings topic in CHAPTER 15,
Executing SQL Scripts on Multiple Servers for more information.

 Important Notes:

 In databases with case insensitive settings, code and data searches are case insensitive too.
Searching for "TEST" and "test" will produce identical results. On contrary, in databases with case
sensitive settings, searching for "TEST" and "test" will produce different results.

 The search and replace operations can be applied to database tables and views. This includes full
range of tables and views, including "proxy" tables referencing external files and data sources,
materialized views, and so on... However only updatable tables and views allow data replacements.
An attempt to replace data in a read-only table or view will lead to a database side error. It is your
responsibility to select only updateable objects for data replace operations.

Searching Data Across Multiple Servers

The multi-server data search method can be used to search for occurrences of specific values across multiple
servers, databases, database schemas, and tables. Before you use this search method, be sure to check all
required database server connections have been already entered and saved in SQL Assistant settings. See
Managing Connection Groups and Connection Settings topic in CHAPTER 15, Executing SQL Scripts on
Multiple Servers for more information.

1. In SQL Assistant's menu, select Search Search Data (Multi-server)… menu command. This
command will open up Multi-server Data Search dialog.

 CHAPTER 31, Data Search & Replace

 -476-

2. Enter substring or regular expression that you want to search for. If you want to use regular
expression, tick Regular Expression checkbox in Options box below. For example, to find all objects
and attribute names containing "TextToFind" as a separate word, you can enter regular expression
"\bTextToFind\b" into the search box without double quotes.

3. In the Search Type drop-down choose data-type of the value to search for. The default is String, but
you can also search for dates, times, and numbers.

 Notes:

 Do not confuse Search Type and column data types. If Search Type is set to String, SQL
Assistant will automatically convert values in all searchable columns to their string
representations. This for example can be used for partial date, time, and numeric value searches.
This will also allow you to use regular expressions against all column types

 Partial matches and regular expressions are supported in String type searches. For all other data
types the search is always performed for the whole value.

4. Specify Fetch Limit or leave the default value. The fetch limit is the maximum number of matching
records per table SQL Assistant will retrieve from that table in search results. For example, if the limit
is set to 100 and 1 million records have been found satisfying the search parameters ina particular
table, only the first 100 records from that table will be returned and displayed in search results. This is
to prevent run-away data retrieval.

5. Complete additional search options and date-time formats.

Regular expression – check this checkbox if the search string is a regular expression.

Whole Value – check this checkbox to disable partial and substring matches.

Direct scan – this option is reserved for later user and cannot be changed.

Date-format – the format to use for converting date values and date portion in date-time values to
their string representations

Time format – the format to use for converting time values and time portion in date-time values to
their string representations

 Note: See Handling Date and Time Values topic in CHAPTER 13, Scripting, Exporting, and
Importing Data, for details on supported date and time value format masks.

 CHAPTER 31, Data Search & Replace

 -477-

6. On the right side of the dialog select servers, optionally select specific databases and specific
schemas if you want to narrow the search scope.

 Note: Use the right-click menu to add more connections to the list of severs or to modify existing
connections. See Managing Connection Groups and Connection Settings topic in CHAPTER 15,
Executing SQL Scripts on Multiple Servers for more information on managing database server
connections.

7. Click the Next button to start the search process.

8. After the search operation is complete, review search results. The tables with found matches are
displayed on the left side of the dialog in the Object Tree.

Click tables in the tree to display matching records from these tables.

 Notes: Note that the red-colored text within table cells with gray background indicates found text
occurrences. In certain cases you may need to scroll the view to locate colored cells. In case the cell
value contains multi-line value and the match is not in the first visible line, no red text will be visible.
Double-click the cell to see complete multi-line value ina separate popup window..

9. If another search is needed, click the Back button, change search criteria and run it again, otherwise
click the Close button to close the Multi-server Data Search dialog.

Replacing Data Across Multiple Servers

The multi-server data search & replace method is an extension of the multi-server data search method. It does
require that you run the search operation first and enables you to bulk replace all found values or pick and
choose what to replace and what not. Refer to the previous Running Data Search Across Multiple Servers topic
for instructions on running the search and search options.

 CHAPTER 31, Data Search & Replace

 -478-

In order to activate the Search and Replace mode, the Replace option must be enabled. The follow example
screenshot shows the location of that option on the Multi-server Data Search & Replace dialog.

Make sure you tick the Replace checkbox before you start the search. This option instructs SQL Assistant to
prepare the found data for updates.

The data search results will appear similar to the example results on the following screenshot of the Multi-
server Data Search & Replace dialog.

The Multi-server Data Search & Replace dialog hosts 3 important controls:

The Table tree contains references to the tables with data matching your search criteria. Click each table in the

 CHAPTER 31, Data Search & Replace

 -479-

table tree to review the found data matches. Clear checkboxes appearing to left of tables whose values you do
not want to touch.

The Replace box provides options for mass replace operations across multiple servers and multiple tables.

 Important Note: The Replace operation is applied to the selected tables, columns and cells only.

The Replace box provides the following options:

 Replace Whole Value – tick this checkbox if you want to replace the entire data value in the cells with
the matching data. Do not confuse this with the Search Whole values option. For example, you can
search for text columns containing substring "John" and find 3 values: "King John", "John", "John
Who" and specify "Alex" as the new value to replace with. If Replace Whole Value checkbox is ticked,
all 3 found matching values will be completely replaced with "Alex" and result will be "Alex", "Alex",
"Alex". If the checkbox is not ticked, substring replacement will be performed and the result will be
"King Alex", "Alex", "Alex Who"

 Replace with – this is the replacement value.

 On error – this option instructs SQL Assistant what to do in case a database error occurs during
replace operations, whether to abort the processing or continue with the next table in the table list. The
default is not to abort the work and continue after errors.

 Save Log File -– If this option is checked, SQL Assistant writes processing status messages to the
log file specified in the Log option.

 Log – The name of the output log file. This name must be specified if Save Log Option is checked.

Data Preview and Column and Cell Controls – The right side of the Multi-server Data Search & Replace
dialog is occupied by a special control is used for both previewing the search results and controlling the scope
of replace operations. It is very important to understand well how to use this control for correctly performing the
replace operations. The following controls can be used:

 Checkboxes in individual cells can be used to select which cells to replace to touch and which not.
Note that if a cell has no matching value, ticking or clearing the checkbox in that cell has no impact on
the replace operations.

 Checkboxes in the column headers can be used as shortcuts to quickly tick or clear all checkboxes in
all cells belonging to that column. Note that if a column has no cells with matching values, ticking or
clearing the checkbox in that column has no impact on the replace operations.

Working with Data Search Results Interface

NULL Values

SQL Assistant renders cells containing NULL values as empty cells. A little green mark is displayed in the top-
left corner of a NULL cell to differentiate it from cells containing empty string and spaces only.

 CHAPTER 31, Data Search & Replace

 -480-

If you mouse-over a cell with a green mark, you will see a popup hint with word "NULL."

Long and Multi-line Text Values

Long values exceeding column width are rendered partially, as much as fits the width. 3 dots (also called
ellipses) are rendered in each cell with non-fitting data to indicate the data overflow effect. You can resize the
column, to see the entire value.

For multi-line text values containing end-of-line and carriage return characters, only the first line is displayed. A
little red mark is displayed in the top-left corner of a cell containing multi-line text to differentiate it from cells
containing single-line values. You can see the entire text value if you double-click the cell. The text will be
displayed in a separate Cell Value window described in the next topic.

If you mouse-over a cell with a red mark, you will see a popup hint with instructions for displaying the entire
value.

 Tip: To quickly resize a column so it fits the entire content in all cells, double-click the right-edge of the
column header. SQL Assistant will calculate the required width and resize this column as needed.

Expanded Cell View

The fetched query results do not always display well in the Data Preview grid. Some fetched values can be long
or have multiple lines. For a better view of the results of such queries, double-click the cell whose value you
want to see. This will open the Cell Value popup window. To see a value in some other cell, double-click that
cell. There is no need to close the Cell Value popup window, it will refresh automatically.

 CHAPTER 31, Data Search & Replace

 -481-

 Tips:

 The title bar of the Cell Value popup window indicates row and column of the cell containing the value.

 The popup window can be moved and resized as needed. It will remember its size and position and
stay on top of other windows until it is closed.

 If the value displayed in the Cell Value popup window contains long lines, tick the Line Wrap check
box to make text wrap at the right edge of the display area.

Scrolling Content

Use standard scroll bars available in the Data Preview control to scroll the content. In addition, you can use
regular keyboard navigation keys and the mouse wheel control if such is available.

Resizing Content

To resize the Data Search & Replace window, drag the right-bottom edge of the window.

To resize individual columns in the data grid, drag the right-edge of the column header left or right. Note that
when you place mouse pointer over the right edge of a column header the cursor shape changes to resize
shape as on the following screenshot.

Make sure the cursor takes the right shape before dragging the column edge.

 Tip: When column width is too narrow to fit the content, 3 dots (also called ellipses) are rendered in each
cell with non-fitting data to indicate the data overflow effect. To quickly resize a column so it fits the entire
content in all cells, double-click the right-edge of the column header. SQL Assistant will calculate the required
width and resize this column as needed.

 CHAPTER 32, Visual Bookmarks

 -482-

CHAPTER 32, Visual Bookmarks

Overview

The visual bookmarks feature offers innovative methods of quickly navigating code. Visual bookmarks capture
small screenshots of the area of the target editor where bookmarks are made which provide instant access to
that area with a single click on the bookmark icon. They also provide a quick way of previewing code using
simple mouse-over events. Visual bookmarks make it unnecessary to memorize nameless bookmark numbers
or to scroll many pages of code to find a small bookmark marker displayed at the right edge of the editor
window.

Visual Bookmarks complement other quick code visualization and navigation options provided by SQL
Assistant. For more information see the Overview of Code Structure View and Overview of Bird's Eye View
topics in CHAPTER 4.

Visual bookmarks are represented by small numeric icons typically displayed on the right hand side of the
editor. When the bookmarked code line appears within the visible area of the editor, it is highlighted using the
distinct color associated with the bookmark. If the bookmarked line is above the visible area of the editor, its
docked icon appears in the top right corner of the screen. Likewise, when it is below the visible area, its docked
icon appears in right bottom corner of the screen. As you scroll the code, bookmark icons automatically move
with their lines and can change their position depending on the direction of the scrolling.

Each bookmark has a distinct number and color. The same color is used for highlighting the bookmarked line
and the background color of the bookmark icon.

When the mouse pointer is placed above the docked bookmark icon, a small Help window containing a
screenshot of the bookmarked area appears near the pointer. When the bookmark icon is clicked, SQL
Assistant scrolls the content of the editor window and places cursor at the beginning of the bookmarked line.

The following example screenshots demonstrate the appearance of visual bookmarks. If you are reading this
manual in electronic format, enlarge the view to see more details.

 CHAPTER 32, Visual Bookmarks

 -483-

Bookmark icons and lines

Bookmark mouse-over Help windows

Note that the Help window border is the same color as the bookmark icon.

 CHAPTER 32, Visual Bookmarks

 -484-

Bookmarks Enumeration

The first nine bookmarks in a single script are enumerated using single digits ranging from 1 to 9 and are
marked with different colors. If there are more than nine bookmarks in a script, the additional bookmarks are
displayed using unnumbered gray colored circles.

To-Do Tasks, and Other Special Tags

SQL Assistant automatically scans scripts loaded into SQL editor and recognizes comments containing the
following substrings.

 TO DO

 TODO

 BUG

 HACK

The substring match is case-insensitive and can be located anywhere within comment lines, as in the following
example:

/* to do: implement check for NULL values later */

SELECT SalesPersonID, SalesOrderID, YEAR(OrderDate) AS SalesYear
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL

-- Here we search for zero amount in the Balance column
-- Ask Mark what to do in case of NULL values

Blue marks on the Syntax Bar indicate the location of tags within the script, as shown in the following
screenshot.

If you rest the mouse over a blue mark on the syntax bar, a balloon window appears near the blue mark
displaying a portion of the comment text.

If you click a blue mark, SQL Assistant scrolls the content of the editor window To-Do line in the code and
positions cursor at that line.

 CHAPTER 32, Visual Bookmarks

 -485-

Working with Visual Bookmarks

Creating Bookmarks

The following instructions describe the default Visual Bookmarks behavior. For details on customizing
bookmark behavior and shortcuts, see the Customizing Bookmark Handling Options topic in CHAPTER 48,
Customizing SQL Assistant's Behavior.

To add a new bookmark with a single mouse click:

1. Make sure the code line where you want to add new bookmark is visible.

2. In that line move mouse pointer horizontally to the right edge of the editor window. An Add
Bookmark icon will appear along the edge and the line under the mouse pointer will be
highlighted. Note that the add bookmark icon looks similar to other bookmark icons except that it
has a plus sign symbol painted over the icon.

3. Click the Add Bookmark icon.

Note: The bookmark numbers are assigned automatically as sequential numbers.

To add a new bookmark using hot keys:

1. Make sure the line where you want to add new bookmark is visible.

2. Place the edit caret on the line to be bookmarked.

3. Make sure the Num Lock is keyboard state is set. Press the Alt key along with one of the numeric
keys on the extended keyboard., for example Alt+Num1. Note that the selected numeric key
defines the numeric bookmark id. You can use key combinations ranging from Alt+Num0 to
Alt+Num9.

 CHAPTER 32, Visual Bookmarks

 -486-

To add a new bookmark using menus:

1. Make sure the line where you want to add new bookmark is visible.

2. Place the edit caret on the line to be bookmarked.

3. Right-click on the selected line and select the SQL Assistant Bookmarks Add Bookmark
menu command. If top-level menus integration is enabled, the same result can be achieved using
the top-level menus in the editor. See the Using Context and Top-level Menus topic in CHAPTER
3 for more details about SQL Assistant menu integration options.

Removing Bookmarks

The following instructions are valid with default settings for Visual Bookmark behavior. For details on
customizing bookmark behavior and shortcuts, see the Customizing Bookmark Handling Options topic in
CHAPTER 48, Customizing SQL Assistant's Behavior.

To remove a bookmark with a single mouse click:

1. Make sure the bookmarked line is visible and highlighted. The bookmark icon should be visible at
the right edge of the editor screen

2. Rest the mouse over the bookmark icon. Note that the bookmark icon changes to the Remove
Bookmark icon, which looks similar to the bookmark icon except that it has a minus sign symbol
painted over the icon.

3. Click the Remove Bookmark icon to remove the bookmark.

To remove all bookmarks:

Right-click anywhere in the target editor workspace, then choose the SQL Assistant Bookmarks
Remove Bookmarks menu command. If top-level menus integration is enabled, the same result can be
achieved using the top-level menus in the editor. See the Using Context and Top-level Menus topic in
CHAPTER 3 for more details about SQL Assistant menu integration options.

Jumping to Bookmarked Line

To jump to a bookmarked line with a single mouse click:

Click the associated bookmark icon. SQL Assistant will automatically scroll the editor and place the
edit caret in the beginning of the bookmarked line.

To jump to a bookmarked line using hot keys:

Simultaneously click the Alt key and the numeric that matches the bookmark number. For example,
use Alt+1 to jump to the first bookmark, use Alt+2 to jump to the second bookmark, and so on.

 CHAPTER 32, Visual Bookmarks

 -487-

Loading Saved Bookmarks from Comments

SQL Assistant supports specially formatted code comments that it recognizes as "portable" bookmark markers.
You can move or rename a file, or updated procedural code in the database, and its portable bookmarks will
remain intact, while the regular bookmarks get lost as soon as you close the script in the target editor.

Bookmark comments are recognized by the presence of the word “bookmark” enclosed in square brackets (see
the example code below). When a file is opened in the editor or a unit of procedural code is loaded into editor
from a database, SQL Assistant scans comments in the loaded code for the presence of the [bookmark]
pattern. It automatically creates visual bookmarks in code areas containing the these markers. Following are
examples of valid bookmark markers.

/* a multi-line comment here [bookmark] more text
here */
-- a single line comment here [bookmark] more text here
-- any comment here [bookmark:3] any comment here
-- [bookmark:1]

The markers can be in either of two formats:

[bookmark] – this marker causes SQL Assistant to assign the next available number to the bookmark identifier.

[bookmark:n] – this marker causes SQL Assistant to create a bookmark identifier with a numeric value of "n,"
where n is a digit from 0 to 9. The user specified number is assigned to the bookmark unless that number is
already assigned to another bookmark, in which case, the user-specified value is ignored and the next available
number is used. Note that only numeric values from 0 to 9 can be used. All additional bookmarks are displayed
without numeric identifiers.

 CHAPTER 33, To-Do Tasks and Reminders

 -488-

CHAPTER 33, To-Do Tasks and Reminders

Overview

The Tasks and Reminders graphical interface provides a central place for accessing all saved bookmarks and
To-Do tasks. For details on how to save bookmarks in specially formatted comments and To-Do tasks, read the
Overview and Loading Saved Bookmarks from Comments topics in CHAPTER 32, Visual Bookmarks. The
interface allows you to see items across multiple projects and database systems and to quickly access them
with a simple double-click action.

SQL Assistant uses several techniques for locating bookmarks and to-do tasks within the code comments
saved in files and in databases. It uses non-interrupting background processing to scan files in the user
selected file system folders and databases. This process monitors selected locations for file and database
changes, and updates the Tasks and Reminders view automatically if it finds that changes have been made in
these places.

The Tasks and Reminders pane can be opened from SQL Assistant's menu in the target or by using the right-
click menu in the SQL Assistant system tray application. In either case, select the SQL Assistant Tasks
and Reminders Show command from menu. To use the target editor's menus, the menu integration option
must be enabled. For details, see the Manually Invoking SQL Assistant Popups topic in CHAPTER 3.

Before you can use the Tasks and Reminders feature, you must let SQL Assistant know where to search for
bookmarks and To-Do items. Use the SQL Assistant Tasks and Reminders Options menu command,
or right click menu in the Tasks and Reminders pane, and choose the Options command. The Tasks and
Reminders Options dialog opens (see the “Options” topic below).

By default, the monitoring process checks for file changes in near real time and wakes up every 30 seconds to
rescan modified database objects for new changes. To refresh the Tasks and Reminders pane manually,
select the SQL Assistant Tasks and Reminders Update menu command. Alternatively, you can right-
click in the Tasks and Reminders pane and choose the Update menu command from the popup menu.

 CHAPTER 33, To-Do Tasks and Reminders

 -489-

Options

The Tasks and Reminders Options dialog allows you to specify in which locations SQL Assistant should search
for saved bookmarks and To-Do items.

The following options can be configured using the Options dialog:

Files section

Source Folders – Specifies one or more folders that SQL Assistant will search for source code files. This
list is used in conjunction with the File Filter and Scan Subfolder options.
Use the icons above the top right corner of the Source Folders list box to add new folders to the list
or delete previously added folders.

Scan Subfolders – Specifies that SQL Assistant will recursively scan files in subfolders of the selected
Source Folders.

File Filter – Specifies a comma-separated list of file masks for the files to be scanned in Source folders
and subfolders. You can use standard * and ? wildcard characters. By default, SQL Assistant only checks
files with the .SQL and .TXT extensions.

Minimal time between scanning (seconds) – The time interval in seconds for the monitoring process to
rescan files in the Source folders. By default this value is set to 0, meaning that SQL Assistant will check
modified files only using near real-time file monitoring methods. If this value is set to non-zero value, it will
rescan all relevant files at the specified time interval. The actual rescan interval may vary if scanning of
folders and files takes a long time.

Database Objects sections

Database Objects – Specifies the list of databases, schemas, and individual objects that SQL Assistant
will scan. You can add entire databases or individual schemas or objects to the list.
Use the icons above the top right corner of the Database Objects list box to add new objects to the
list or delete previously added objects.

 Note: Only database objects accessible using database connections registered in SQL Assistant

 CHAPTER 33, To-Do Tasks and Reminders

 -490-

settings can be added to the list. If a required database connection is not listed, cancel the dialog and add
that connection to SQL Assistant options. See the Managing Database Connections topic for specific
instructions on registering new database connections

Minimal time between scanning (seconds) – The time interval in seconds for the monitoring thread to
rescan databases. By default this value is set to 30, meaning that SQL Assistant will check modified
database objects every 30 seconds. If this value is set to zero value, it will not scan databases
automatically; only a manual refresh will trigger new scan.

Working with Tasks and Reminders Interface

Navigation

The Tasks and Reminders view contains combination tree-view controls that allow you to see all details at a
glance and yet quickly collapse folders, files, databases, and objects you do not want to see. Use standard tree
view navigation methods to collapse and expand individual branches

Opening Source Files and Navigating to Bookmarked Lines

Simply double-click the specific item you want to jump to. SQL Assistant will open the source file or database
object in the current target editor and scroll the content to the selected line with a bookmark or To-Do comment.

Filtering the Tasks and Reminders List

Click the yellow bar at the top of the Tasks and Reminders window and start typing the substring you want to
find in the comments of bookmarked lines. The Tasks and Reminders list will be filtered and only items
containing the matching text will be displayed.

To clear an existing filter, erase the text from the filter box.

Scrolling Content

Use the standard scroll bars in the Tasks and Reminders window to scroll the content. You can also use
regular keyboard navigation keys and the mouse wheel.

Resizing Content

To resize the Tasks and Reminders window, drag the top edge of the window up or down. Note that when you
place mouse pointer over the top edge of the Tasks and Reminders window the cursor shape changes to
resize shape as on the following screenshot.

 CHAPTER 33, To-Do Tasks and Reminders

 -491-

Make sure the cursor takes the right shape before dragging the window edge.

To resize individual columns in the treeview, drag the right-edge of the column header left or right. Note that
when you place mouse pointer over the right edge of a column header the cursor shape changes to resize
shape as on the following screenshot.

Make sure the cursor takes the right shape before dragging the column edge.

 Tip: When column width is too narrow to fit the content, 3 dots (also called ellipses) are rendered in each
cell with non-fitting data to indicate the data overflow effect. To quickly resize a column so it fits the entire
content in all cells, double-click the right-edge of the column header. SQL Assistant will calculate the required
width and resize this column as needed.

Refreshing and Clearing the Tasks and Reminders List

The Tasks and Reminders pane can be refreshed from SQL Assistant's menu in the target or by using the
right-click menu in the SQL Assistant system tray application. In either case, select the SQL Assistant
Tasks and Reminders Update command from menu. To use the target editor's menus, the menu
integration option must be enabled. For details, see the Manually Invoking SQL Assistant Popups topic in
CHAPTER 3.

The refresh operation runs in the background as a separate process. Depending on how many databases and
folders are configured for the Tasks and Reminders feature, the update may take anywhere from several
milliseconds to several minutes to run. If for whatever reasons you need to stop the already running update,
select the SQL Assistant Tasks and Reminders Stop Update command from menu.

To clear the Tasks and Reminders List, select the SQL Assistant Tasks and Reminders Clear
command from menu. The command will purge the disk cache and clear the list. However, the next Update
operation will populate it again with the freshly located items.

 CHAPTER 35, Integrated Development Environments

 -492-

CHAPTER 34, Integrated Development
Environments

Overview

SQL Assistant provides two integrated database development environments:

 Standard SQL Editor - SQL Assistant Standard Edition provides simple version of SQL editor (pictured
below) supporting Notepad-like single document interface with all standard code edit and code execution
functions typically expected from a SQL editor, including SQL syntax highlighting, SQL Intellisense, code
execution, data retrieval and output and a fully integrated SQL Assistant add-on with all its functions
accessible directly from the editor. The database connections are handled by SQL Assistant. The editor can
connect to any database type supported by SQL Assistant.

 Professional SQL Editor IDE - SQL Assistant Professional Edition provides an advanced version of SQL
editor (pictured below) supporting tabbed and multiple-document interface with concurrent connections to
multiple database servers, advanced code refactoring, code folding, macros for code entry automation, and
many other unique features not available in the Standard Edition.

Both code editors support all standard edit methods, SQL syntax highlighting, as well as the complete set of
tools and functions provided by embedded SQL Assistant add-on.

 CHAPTER 35, Integrated Development Environments

 -493-

Both code editors can be started as standalone applications invoked via menus and toolbars of SQL Assistant
add-ons and plug-ins loaded within the target development environments. The version invoked depends on the
edition of SQL Assistant licensed by the user.

 Tip: If your development environment doesn't support Windows-enabled editor components for database
development, you can add a custom shortcut using target's supported customization features to launch the
SQL Assistant's code editor. The editor can be accessed via the sqleditor.exe program (or
sqleditor_standard.exe for Standard license type users) located within the bin subfolder of the SQL Assistant
installation folder.

Following is an example of how to do that for the Sublime Text 2 general code editor:

1. Launch Sublime Text and select the Preferences Key Bindings - User menu command. This
will open "user keymap" file in Sublime editor.

2. Insert the following text in the file replacing the [,] placeholder

[{
 "keys": ["f10"], "command": "exec", "args":
 { "cmd": ["C:\\Program Files\\SQL Assistant 6\\data\\sqleditor.exe"] }
}]

Click the File / Save menu to save changes in the keymap file.

After you save the keymap file, pressing F10 within Sublime Text will launch the SQL Editor with integrated
SQL Assistant. You will then be able to connect to a database server and work effortlessly with SQL files,
objects and data stored in the database.

Standard SQL Editor

It is assumed that users of SQL Assistant software are computer sophisticated and do not require specific
instructions for using basic text editing functions for text changes, content scrolling and navigation, and for
clipboard based operations. The editor supports most common Windows hotkeys such as these used in
Windows Notepad and many other programs so that the users should find the editor's interface familiar.

Connecting to Databases

The editor connects to a database server automatically as soon as you perform any database related
operation or enter a SQL keyword. The database connectivity is described in detail in CHAPTER 2, Connecting
to Your Database.

Working with Databases

All database operations including code execution, data preview, SQL Intellisense, etc… are handled by the
integrated SQL .Assistant add-on. Please refer to other chapters in this User's Guide for details on specific
operations and SQL Assistant functions..

 CHAPTER 35, Integrated Development Environments

 -494-

Professional SQL Editor IDE

The professional version of SQL Editor provides fully featured advanced development environment for multi-
database development. The integrated development environment (IDE) provides all the features that database
develop or administrator may need in their day to day work.

PDB and Edition Views of Your Oracle Database Server

With Oracle database server connections SQL Editor supports session specific views of your database servers.
The selection of the current pluggable database (PDB) and the current editor drive the content of the DB
Explorer, the content of SQL Intellisense suggestions, and many other session context specific functions. The
Edition and Database drop-downs available on the right of the main toolbar can be used to change the current
session view and connection settings, as demonstrated on the following example:

Note that if you connect to an Oracle server instance not configured for multi-tenancy, the Database drop-down
is not shown on the toolbar.

Tabbed and MDI Layouts

The SQL Editor supports the modern tabbed document layout as in Visual Studio and in other advanced editors
allowing working with multiple documents in a limited screen space, as well as, the classical multiple-
documents interface (MDI) when screen space is not an issue and so multiple documents can be displayed
side by side or overlapping.

The settings that change between the tabbed and MDI layouts are controlled from the Window menu. In case
of using MDI layout, the Window menu also provides additional commands for managing and rearranging
opened documents within the editor's main window.

 Tip: You can use keyboard shortcuts to navigate between open tabs and MDI windows. Ctrl+Tab switches
focus to the next tab / window. Ctrl+Shift+Tab switches focus to the previous tab / window.

Tab Management Functions

Reordering tabs - drag tabs horizontally to reorder them in the tab strip

Tab positioning – use Position commands in tab-strip right-click menu to display tabs at the top or at the
bottom of SQL Editor MDI window.

Multi-row tabs – this mode is enabled by default. Tabs for the opened editors that do not fit in a single row in
the tab-strip appear in the second row, those that do not fit in the second row, appear in the third row, and so
on.

In a single row mode all tabs are show in the same row, as many as fit in a single row tab-strip. The remaining
tabs can be scrolled one by one or accessed directly using the Tab Manager.

You can use Position -> Multiple Rows menu to switch between multi-row and single-row modes.

 CHAPTER 35, Integrated Development Environments

 -495-

Closing tabs – use File –> Close command in the top menu, or Ctrl+F4 keyboard hotkey to close the current
tab. To close all tabs, use File –> Close All in the top menu or Close All Pages command in the tab-strip right-
click menu. To close all but the current tab, use Close All Other Pages command in the tab-strip right-click
menu. For your convenience the right-click menu in the tab-strip provides several types of additional commands
for closing multiple tabs, for example, for closing all unmodified editors only, or closing only tabs to the left of
right.

Sticky tabs – sticky tabs persist between SQL Editor IDE sessions and also ignore mass tab closing operations.
To make a tab sticky, right click it in the tab-strip and select Sticky Tab menu. To undo tab stickiness, use the
same menu again. Note that the background color of sticky tabs is slightly different from regular tabs.

Running tabs – the background of tabs actively executing SQL code is rendered with a yellow shade to help
identify running operations.

Cloning tabs – to instantly clone editors including their content and database connections, right click the editor's
tab in the tab-strip and select Clone Tab menu.

Text Change Map

Marks along left border of the editor indicate states of editor lines:

 New line (green)

 Modified line (yellow)

 Saved line (dark blue)

Search and Replace Functions

The search and replace functions can be invoked from the top level Search menu and by using Ctrl+F and
Ctrl+H hot keys.

Search and Replace Options

Case sensitive - Makes search case-sensitive, i.e. words "Some" and "some" will be different.

Whole words - Finds only whole words, i.e. word "some" cannot be found inside "somewhat".

Regular expressions - Activates regular expressions syntax for input text fields ("Search for" and "Replace
with"). See the following topic for more details on using regular expressions.

Prompt on replace - Enables confirmation message on doing "Replace all" operation, for each found
occurrence.

Global - Search within entire text in the editor.

Selected text - Searches only within selected block of text. Note that search in selection makes new smaller

 CHAPTER 35, Integrated Development Environments

 -496-

selection, so you can't find all matches in selection by pressing "Find next" button.

Search from cursor - Starts search forward from the current edit caret position. Note: that option is ignored for
"Replace all" operation.

Search entire scope – Warps the search operation, e.g continue searching from the opposite text edge (i.e.
continue from text beginning when ending is reached, or continue from text ending when beginning is reached
with backward search).

Forward - Starts search forward from the current edit caret position. If "Search entire scope" is selected, wraps
the search and continues searching from the start of text, otherwise stops at the end of text

Backward - Starts search forward from the current edit caret position. If "Search entire scope" is selected,
wraps the search and continues searching from the end of text, otherwise stops at the start of text

Using Regular Expressions

The Find/Replace dialog supports PCRE like regex engine, which provides similar syntax and functions as Perl
regular expressions engine.: Please see http://perldoc.perl.org/perlre.html for the complete syntax description.

There are few minor differences between the syntax supported by the SQL Assistant SQL Editor and the Perl
regular expressions syntax:

 Regex engine allows changing the case on replacements. See the following help paragraphs for
details.

 Regex engine doesn't support non-capturing groups.

 "r" modifier is not supported.

 "g" modifier is the same as "U".

 \g and \G are not used.

 \h and \H have another meaning

 Regex engine recognizes only \x0D\x0A or \x0A or \x0D (depending on the file format) as newline
characters when using "^", "$" and ".". Unicode line endings are not supported with ^ $ in the current
implementation, but could be matched using \x meta-character.

 Regex engine uses \z to match any newline character.

Simple matches

Any single character matches itself, unless it is a metacharacter with a special meaning described below.

A series of characters matches that series of characters in the target string, so the pattern "bluh" would match
"bluh'' in the target string. Quite simple, right?

You can cause characters that normally function as metacharacters or escape sequences to be interpreted
literally by 'escaping' them by preceding them with a backslash "\", for instance: metacharacter "^" match
beginning of string, but "\^" match character "^", "\\" match "\" and so on.

Examples:

foobar matches string 'foobar'

\^FooBarPtr matchs '^FooBarPtr'

http://perldoc.perl.org/perlre.html�

 CHAPTER 35, Integrated Development Environments

 -497-

Escape sequences

Characters may be specified using an escape sequences syntax much like that used in C and Perl: "\n''
matches a newline, "\t'' a tab, etc. More generally, \xnn, where nn is a string of hexadecimal digits, matches the
character whose ASCII value is nn. If You need wide (Unicode) character code, You can use '\x{nnnn}', where
'nnnn' - one or more hexadecimal digits.

\xnn char with hex code nn

\x{nnnn} char with hex code nnnn (one byte for plain text and two bytes for Unicode)

\t tab (HT/TAB), same as \x09

\n newline (NL), same as \x0a

\r car.return (CR), same as \x0d

\f form feed (FF), same as \x0c

\a alarm (bell) (BEL), same as \x07

\e escape (ESC), same as \x1b

Examples:

foo\x20bar matchs 'foo bar' (note space in the middle)

\tfoobar matchs 'foobar' predefined by tab

Character classes

You can specify a character class, by enclosing a list of characters in [], which will match any one character
from the list.

If the first character after the "['' is "^'', the class matches any character not in the list.

Examples:

foob[aeiou]r finds strings 'foobar', 'foober' etc. but not 'foobbr', 'foobcr' etc.

foob[^aeiou]r find strings 'foobbr', 'foobcr' etc. but not 'foobar', 'foober' etc.

Within a list, the "-'' character is used to specify a range, so that a-z represents all characters between "a'' and
"z'', inclusive.

If you want "-'' itself to be a member of a class, put it at the start or end of the list, or escape it with a backslash.
If you want ']' you may place it at the start of list or escape it with a backslash.

Examples

[-az] matches 'a', 'z' and '-'

[az-] matches 'a', 'z' and '-'

 CHAPTER 35, Integrated Development Environments

 -498-

[a\-z] matches 'a', 'z' and '-'

[a-z] matches all twenty six small characters from 'a' to 'z'

[\n-\x0D] matches any of #10,#11,#12,#13

[\d-t] matches any digit, '-' or 't'

[]-a] matches any char from ']'..'a'

Metacharacters

Metacharacters are special characters which are the essence of Regular Expressions. There are different types
of metacharacters, described below.

Metacharacters - line separators

^ Start of line

$ End of line

\A Start of text

\Z End of text

. Any character in line

\z Single line break. Instead of $ metacharacter it matches line break characters, not
only line break position. Possible sequences:
$0D0A ; $0D ; $0A

Examples:

^foobar matches string 'foobar' only if it's at the beginning of line

foobar$ matches string 'foobar' only if it's at the end of line

^foobar$ matches string 'foobar' only if it's the only string in line

foob.r matches strings like 'foobar', 'foobbr', 'foob1r' and so on

The "^" metacharacter by default is only guaranteed to match at the beginning of the input string/text, the "$"
metacharacter only at the end. Embedded line separators will not be matched by "^'' or "$''.

You may, however, wish to treat a string as a multi-line buffer, such that the "^'' will match after any line
separator within the string, and "$'' will match before any line separator. You can do this by switching on the
modifier /m.

The \A and \Z are just like "^'' and "$'', except that they won't match multiple times when the modifier /m is
used, while "^'' and "$'' will match at every internal line separator.

The ".'' metacharacter by default matches any character, but if you switch off the modifier /s, then '.' won't
match embedded line separators.

 CHAPTER 35, Integrated Development Environments

 -499-

Regex engine works with line separators as recommended at www.unicode.org (
http://www.unicode.org/unicode/reports/tr18/):

"^" is at the beginning of an input string, and, if modifier /m is On, also immediately following any occurrence of
\x0D\x0A or \x0A or \x0D (if You are using Unicode version of regex engine, then also \x2028 or \x2029 or \x0B
or \x0C or \x85). Note that there is no empty line within the sequence \x0D\x0A.

"$" is at the end of a input string, and, if modifier /m is On, also immediately preceding any occurrence of
\x0D\x0A or \x0A or \x0D (if You are using Unicode version of regex engine, then also \x2028 or \x2029 or \x0B
or \x0C or \x85). Note that there is no empty line within the sequence \x0D\x0A.

"." matches any character, but if you switch off the modifier /s then "." doesn't match \x0D\x0A and \x0A and
\x0D (in case of using Unicode version of regex engine, then also \x2028 and \x2029 and \x0B and \x0C and
\x85).

Note that "^.*$" (an empty line pattern) does not match the empty string within the sequence \x0D\x0A, but
matches the empty string within the sequence \x0A\x0D.

Metacharacters - predefined classes

\w an alphanumeric character (including "_")

\W a non-alphanumeric

\d a numeric character

\D a non-numeric

\s any space (same as [\t\n\r\f])

\S a non space

\h hexadecimal digit

\H non-hexadecimal digit

\l letter character (any language)

\L non-letter character (any language)

\c identifier character (a-z, A-Z, 0-9, _)

\C non-identifier character

\g Latin letter (a-z, A-Z, _)

\G non-Latin letter

\k European digit

\K non-European digit

Predefined classes \w, \W, \d, \D - for any language.

You may use \w, \d, \s, \h, \l, \c, \g, \k within custom character classes.

http://www.unicode.org/unicode/reports/tr18/�

 CHAPTER 35, Integrated Development Environments

 -500-

Examples:

foob\dr matches strings like 'foob1r', ''foob6r' and so on but not 'foobar', 'foobbr' and so on

foob[\w\s]r matches strings like 'foobar', 'foob r', 'foobbr' and so on but not 'foob1r', 'foob=r' and so
on

Metacharacters - word boundaries

\b Match a word boundary

\B Match a non-(word boundary)

A word boundary (\b) is a spot between two characters that has a \w on one side of it and a \W on the other
side of it (in either order), counting the imaginary characters off the beginning and end of the string as matching
a \W.

Metacharacters - iterators

Any item in a regular expression may be followed by metacharacters - iterators. Using this metacharacters you
can specify number of occurrences of previous character, metacharacter or sub-expression.

* zero or more ("greedy"), similar to {0,}

+ one or more ("greedy"), similar to {1,}

? zero or one ("greedy"), similar to {0,1}

{n} exactly n times ("greedy")

{n,} at least n times ("greedy")

{n,m} at least n but not more than m times ("greedy")

*? zero or more ("non-greedy"), similar to {0,}?

+? one or more ("non-greedy"), similar to {1,}?

?? zero or one ("non-greedy"), similar to {0,1}?

{n}? exactly n times ("non-greedy")

{n,}? at least n times ("non-greedy")

{n,m}? at least n but not more than m times ("non-greedy")

So, digits in curly brackets of the form {n,m}, specify the minimum number of times to match the item n and the
maximum m. The form {n} is equivalent to {n,n} and matches exactly n times. The form {n,} matches n or more
times. There is no limit to the size of n or m, but large numbers will chew up more memory and slow down r.e.
execution.

If a curly bracket occurs in any other context, it is treated as a regular character.

Examples:

foob.*r matches strings like 'foobar', 'foobalkjdflkj9r' and 'foobr'

foob.+r matches strings like 'foobar', 'foobalkjdflkj9r' but not 'foobr'

 CHAPTER 35, Integrated Development Environments

 -501-

foob.?r matches strings like 'foobar', 'foobbr' and 'foobr' but not 'foobalkj9r'

fooba{2}r matches the string 'foobaar'

fooba{2,}r matches strings like 'foobaar', 'foobaaar', 'foobaaaar' etc.

fooba{2,3}r matches strings like 'foobaar', or 'foobaaar' but not 'foobaaaar'

A little explanation about "greediness".

"Greedy" takes as many as possible; "non-greedy" takes as few as possible. For example, 'b+' and 'b*' applied
to string 'abbbbc' return 'bbbb', 'b+?' returns 'b', 'b*?' returns empty string, 'b{2,3}?' returns 'bb', 'b{2,3}' returns
'bbb'.

You can switch all iterators into "non-greedy" mode (see the modifier /g).

Metacharacters - alternatives

You can specify a series of alternatives for a pattern using "|'' to separate them, so that fee|fie|foe will match
any of "fee'', "fie'', or "foe'' in the target string (as would f(e|i|o)e). The first alternative includes everything from
the last pattern delimiter ("('', "['', or the beginning of the pattern) up to the first "|'', and the last alternative
contains everything from the last "|'' to the next pattern delimiter. For this reason, it's common practice to
include alternatives in parentheses, to minimize confusion about where they start and end.

Alternatives are tried from left to right, so the first alternative found for which the entire expression matches, is
the one that is chosen. This means that alternatives are not necessarily greedy. For example: when matching
foo|foot against "barefoot'', only the "foo'' part will match, as that is the first alternative tried, and it successfully
matches the target string. (This might not seem important, but it is important when you are capturing matched
text using parentheses.)

Also remember that "|'' is interpreted as a literal within square brackets, so an expression [fee|fie|foe] would
matching [feio|] only.

Examples:

foo(bar|foo) matches strings 'foobar' or 'foofoo'

Metacharacters - sub-expressions

The bracketing construct (...) may also be used for define r.e. sub-expressions (after parsing You can find sub-
expression positions, lengths and actual values in MatchPos, MatchLen and GetMatch properties and
substitute it in template strings by Substitute).

Sub-expressions are numbered based on the left to right order of their opening parenthesis.

First sub-expression has number '1' (whole r.e. match has number '0' - You can substitute it in regex
engine.Substitute as '\0').

Examples:

(foobar){8,10} matches strings which contain 8, 9 or 10 instances of the 'foobar'

 CHAPTER 35, Integrated Development Environments

 -502-

foob([0-9]|a+)r matches 'foob0r', 'foob1r' , 'foobar', 'foobaar', 'foobaar' etc.

Metacharacters - back-references

Metacharacters \1 through \9 are interpreted as back-references. \<n> matches previously matched sub-
expression #<n>.

Examples:

(.)\1+ matches 'aaaa' and 'cc'

(.+)\1+ also match 'abab' and '123123'

(['"]?)(\d+)\1 matches '"13" (in double quotes), or '4' (in single quotes) or 77 (without quotes) etc

Modifiers

Modifiers are used for behavior changing.

There are many ways to set up modifiers.

Any of these modifiers may be embedded within the regular expression itself using the (?...) construct.

i Do case-insensitive pattern matching (using installed in you system locale settings).

m Treat string as multiple lines. That is, change "^'' and "$'' from matching at only the
very start or end of the string to the start or end of any line anywhere within the string.

s Treat string as single line. That is, change ".'' to match any character whatsoever,
even a line separators, which it normally would not match.

g Non standard modifier. Switching it Off You'll switch all following operators into non-
greedy mode (by default this modifier is On). So, if modifier /g is Off then '+' works as
'+?', '*' as '*?' and so on

x Extend your pattern's legibility by permitting whitespace and comments (see
explanation below).

r Non-standard modifier. When modifier R is switched off languages support is turned
off, i.e: \w = \c, \W = \C, \l = \g, \L = \G, \d = \k, \D = \K

The modifier /x itself needs a little more explanation. It tells the regex engine to ignore whitespace that is
neither backslashed nor within a character class. You can use this to break up your regular expression into
(slightly) more readable parts. The # character is also treated as a metacharacter introducing a comment, for
example:

(

(abc) # comment 1

| # You can use spaces to format r.e. - regex engine ignores it

(efg) # comment 2

)

 CHAPTER 35, Integrated Development Environments

 -503-

This also means that if you want real whitespace or # characters in the pattern (outside a character class,
where they are unaffected by /x), that you'll either have to escape them or encode them using octal or hex
escapes. Taken together, these features go a long way towards making regular expressions text more
readable.

Perl extensions

(?imsxr-imsxr)

You may use these extensions for changing behavior modifiers on the fly. When they are inlined into sub-
expression, they effect the sub-expression only

Examples:

(?i)Santa-Claus matches 'Santa-claus' and 'Santa-Claus'

(?i)Santa-(?-
i)Claus

matches 'Santa-Claus' but not 'Santa-claus'

(?i)(Santa-)?Claus matches 'Santa-claus' and 'santa-claus'

((?i)Santa-)?Claus matches 'santa-Claus', but not 'santa-claus'

Inline Comments

(?#text) is used as a comment. Comments are ignored by regex engine. Note that ")" symbol completes
comment and cannot be esacaped, so there is no way to put a literal ")" in the comment text.

Matching Words Navigation

When you click an item within the code such as variable name, object name, column name, and so on, all
instances of the same item are highlighted in the code. You can move between highlighted items using any of
the following methods:

 Pressing Alt + Right Arrow or Alt + Left Arrow keys.

 Using Search Find Current Word, Next menu or Search Find Current Word, Prior menu.

 Using toolbar icon or .

Advanced Text Processor

The Advanced Text Processor utility enables you to harness the power of regular expressions (regex) to
transfer the data or scripts, perform data cleanup operations, and many other things. The regular expressions
are executed in a single-step or multi-step process with conditional logic applied in between to evaluate the

 CHAPTER 35, Integrated Development Environments

 -504-

results or locate next text fragment for the following operations.

The transformation rules and settings can be saved and reused later. If you often need to apply the same set of
transformations to one of more files or simple search & replace operations, this is the utility to use.

The Advanced Text Processor allows you to assign transformation rules to categories for easy filtering and
grouping. For example, you can organize all your data cleanup rules in the a single category called Data
Cleanup. You can create as many categories as needed.

Please refer to the Using Regular Expressions topic for more information on using regular expressions and the
supported regular expressions syntax and dialect.

Running the Advanced Text Processor

1. Open the data file or script whose content you want to transform

2. Click Search Advanced Text Processor menu. The Advanced Text Processor – Select
Rules dialog appears.

3. Choose the Category containing transformation rules you want to use.

4. Select Text Processor Rule to execute.

5. Click the Execute button

 Tip: The text processing rules are also accessible in the editor's right-click menu

 CHAPTER 35, Integrated Development Environments

 -505-

Configuring Text Processing Rules

Click Options Advanced Text Processing menu to open the Advanced Text Processing Options dialog.

Use the toolbar icons at the top of the Advanced Text Processing Options dialog to open and save
configuration files and to make changes.

This icon opens Advanced Text Processing configuration files. The default configuration file is
%APPDATA%\SQL Assistant\12.4\SqlEditor.mrt. Note that %APPDATA% is a system environment
variable. If you do not know the value of this variable, you can display it by opening the DOS
command window, and executing the command echo %APPDATA%. This file is loaded
automatically on the SQL Editor startup.

This icon saves changes in the Advanced Text Processing configuration files.

This icon arranges position of the selected item in the Rules tree. It moves the selected item up.

This icon arranges position of the selected item in the Rules tree. It moves the selected item down.

This icon creates new Regex Rule Group adding it to the end of the current file.

This icon creates new Regex Rule in the selected Regex Rule Group.

 Tip: If a Rule Group item is selected in the Rules Tree, the new Rule is added to the end of the
group.

If a Rule is selected in the Rules Tree, it created a new nested Rule.

This icon deletes selected item from the Rules Tree

 CHAPTER 35, Integrated Development Environments

 -506-

Text Processing Rule Group Properties

Rule Groups are represented by icons in the Rules Tree. The following Rule Group properties are
supported:

Display Name – This is the group name. This name is displayed in dialogs and menus related to the Advanced
Text Processor.

Category – This used to organize transformation rule groups in categories. When adding a new group or
editing an existing group you can select either an already existing category from the Category drop-down list,
or type in new category name.

Group Index – Do not use this property. This property is reserved for internal use only.

Shortcut Key – You can use this property to assign a hotkey to the rule group. The hotkey enables you to
invoke the rule group for the text selected in the editor using the chosen hotkey. To enter the hotkey, press it
while the focus is in the Shortcut Key field, for example to assign Ctrl+1, hold down Ctrl key while pressing 1
key. To remove previously select hot key, set the focus the Shortcut Key field and then press the Backspace
key.

Target – This property specifies target type, whether operation is be applied to the whole text in the editor or to
the selection only. This property applies to top level rules in the group only. Sub-rules are always applied to the
text processed by their parent rules.

Text Evaluation Condition (Regex) – An optional regular expression applied to the text before executing the
rules. If the evaluation condition is specified and does not pass during rule group execution, the operation is
aborted without any changes. The value for Text Evaluation Condition (Regex) is optional.

Comments – This property is used to enter comments describing the selected Rule Group and how to use it.
The comments are optional.

Text Processing Rule Properties

Rules are represented by icons in the Rules Tree. The following Rule properties are supported:

Find text – A regular expression or plain text to find in the rule's target The top level rule target is defined by
their Rule Group's Target property. Sub-rules search only the text elements returned by their parent rules.

Replace text - A regular expression or simple text used as a replacement for the text occurrences returned by
the Find Text expression.

Pass number – The order in which the Rule is applied. The order value is zero based, in other word, the first
executed rule must have 0 in the Pass Number field.

For example, you can setup a Rule Group with three rules. The first two rules have no correlation between
them and can be applied in any order. Specify 0 for the Pass number value. The third rule depends on the
results of the first two rules and it needs to be executed after the first two are executed. Specify 1 for the third
Rule.

Regular expression in Find – If this checkbox is checked, the value of the Find text field is treated as a
regular expression. If not checked, the value is treated as a plain text.

 Tip: When using plain text searches, you can refer to special symbols using backslash as the escape
symbol. For example, to refer to a tab character, specify \t. When using regular expression, use regular
expressions compatible syntax to refer to special symbols.

 CHAPTER 35, Integrated Development Environments

 -507-

Regular expression in Replace – If this checkbox is checked, the value of the Replaced text field is treated
as a regular expression. If not checked, the value is treated as a plain text.

 Tips: When using plain text replacements, you can refer to special symbols using backslash as the escape
symbol. For example, to refer to a tab character, specify \t. When using regular expression, use regular
expressions compatible syntax to refer to special symbols.

The replacement regular expression may contain references to the found text, for example:

Find text: [\x20\t]*([\|\{\}\[\]\(\)<>,=']+)[\x20\t]*

Replace text: \1

In this example the search is performed for text surrounded by spaces and tabs and replaced with the found
text excluding spaces and tabs

Case sensitive – If this checkbox is checked, the search is case sensitive. This property is only used with plain
text searches (e.g. when the Regular expression in Find checkbox is not checked)

Keep current position - If this checkbox is checked, after applying the search and replacement rule, the next
search operation starts from the beginning of the replaced text, otherwise the next search operation starts from
the character following the replaced text.

Word breaks at bounds –If this checkbox is checked, the found text must be bound by word breaks. For
example,

Target text: abc123 something else abc 123.

Find text: abc

Replace text: xyz

In this example the search will find two occurrences of abc, but will replace only the second occurrence
because that abc is a separate word The first abc occurrence is part of abc123 word and it will be ignored.

Find, but do not replace - If this checkbox is checked, the search is performed as usual and the scanning
position is moved to the found text, but the replacement is not performed. You may use it to perform nested
search operations within the same Rule Group, e.g. find some text using one condition and then perform an
additional search within the previously found text only.

Fast Synchronous Renaming of Multiple Identifiers

The synchronous word editing feature ("sync edit" here and later) allows simultaneous renaming of multiple
repeating identifiers appearing in the selected text, such as variable names, object names, and so on… This
method is more efficient as compared to running multiple search and replace operations and enables you to
preview all changes immediately in WYSIWYG mode.

To use this feature

1. Select a block of text containing several repeating identifiers that you want to change.

2. The sync edit icon appears on gutter near the ending of the selected block of text. Click this
icon or the same icon in the top level toolbar to active the sync edit mode for the selected region.
In active sync edit mode the icon border changes to inset style.

 Note: In order to activate the sync edit mode, your selection must contain at least one
repeating identifier.

3. Click any repeating identifier and edit its new name. All instances of this identifier in the selected

 CHAPTER 35, Integrated Development Environments

 -508-

block will be renamed as well. Note that as you make the changes in the identifier with the focus,
all other matching identifiers change synchronously.

4. If required, repeat the previous step for other identifiers in the selected block.

5. Click the sync edit icon again to deactivate the sync edit mode.

 Tip: The sync edit feature supports multiple independent regions. After you activate sync edit for one
region, you can then select another block of text and then activate sync edit for that block. Up to 16
independent regions can be used.

 Tip: The following keyboard shortcuts can be used with the sync edit feature.

 Ctrl+Shift+S - Activates sync edit mode for the selected region.

 Ctrl+Shift+W – Expands sync edit mode for the entire document.

 Ctrl+Shift+C – Cancels sync edit mode for the current region.

The following series of screenshots demonstrate how the sync edit mode is working in case of a very simple
script.

 CHAPTER 35, Integrated Development Environments

 -509-

Code Views, Code Folding, and Code Navigation

The SQL Editor provides several convenience features easing the coding process.

Zoom

You can quickly zoom in and out by changing the zoom ratio in the Zoom drop-down available in the toolbar
area. You can choose one of the predefined values or type in a custom value.

Word Wrap, Ruler, Column Markers

When text extends beyond the visible code pane, it can automatically wrap to the next line. You can turn on
and code wrapping using View Word Wrap menu.

The Ruler and Column Markers help you to control line length and your code appearance. You can customize
their display and colors in the SQL Editor options using Options SQL Editor… menu. See the Customizing
SQL Editor Options and Behavior topic in this chapter for more details.

Incremental Search

An incremental search is performed letter-by-letter as you type in a search string.

To activate an incremental search, press Ctrl + E hot key or use Search Incremental Search menu. Start
typing the text you want to find. The SQL Editor highlights the first set of characters found in the current
document that match the search string entered.

If you made a mistake and need to remove a character from the entered search string, press the Backspace
key.

To stop the incremental search, press the Esc key.

Matching Identifier Navigation

See the Matching Words Navigation topic for more information.

Line Jumps

To quickly jump to a specific line in the code, press the Alt+G hotkey. The Enter Line Number dialog appears.
Enter new position or just a line number and press the OK button.

Bookmarks

The SQL Editor supports advanced Visual Bookmarks feature which is documented in the CHAPTER 32,
Visual Bookmarks

 CHAPTER 35, Integrated Development Environments

 -510-

Code Regions, Folding, and Outlining

By default, all text is displayed in the SQL Editor, but you can choose to hide some code from view. In long
code files, it is convenient to be able to collapse or hide one or more regions so that you can focus on the part
of the file that you are currently working on. The SQL Editor lets you select a region of code and make it
collapsible, so that it appears under a plus sign [+] displayed in the gutter area followed by their region type
identifier. It also enables you to perform a limited set of edit operations on collapsed regions, such as delete,
copy and move.

 Tip: In addition to region folding signs shown in the gutter area, for custom user-defined regions -- #region
their region specific navigation stripes are shown on the Syntax Bar. The position of a stripe on the Syntax Bar
marks the relative position of the corresponding region in the code. Click on a stripe to quickly jump to its
corresponding region in the code. It works similarly to working of TO-DO stripes, code syntax errors and other
similar marks shown on the Syntax Bar for speedy code navigation.

Four kinds of regions are supported:

 Standard SQL syntax based regions - Standard regions are automatically identified by SQL syntax
and are similar to what is used by the Code Structure View to display a structural collapsible map of
the document. See CHAPTER 4, Code Structure View and Bird's Eye View for more details.

 Custom regions – You can define your own regions to enclose long and related blocks of code using
specially formatted comments -- #region [region name here] and -- # endregion

 SQL Preprocessor regions – The regions of this kind are defined by SQL Preprocessor directives for
conditional code execution, for example -- #if defined [variable name here] and -- #endif. Refer to
the previous screenshot demonstrating collapsed region for – #if defined MORE_DATA code
example. For more information about SQL Preprocessor and its directives see Using SQL

 CHAPTER 35, Integrated Development Environments

 -511-

Preprocessor for Advanced Code Execution topic in CHAPTER 14.

 Selected block of text - You can also collapse the selected text and make the editor treat it as a
single region independent of the code syntax and structure. Select a block of text and then use View
 Collapse Selection menu command.

 Tip: The content of collapsed regions can be previewed without expanding them. When you hover over the
collapsed region with the mouse a popup window appears with the region preview.

You can turn on and off code folding using View Code Folding menu.

To collapse a region and then expand it by clicking the [+] and [-] symbols displayed next to the first line of the
region. To quickly collapse all available regions or expand them use View Full Collapse and View full
Expand menu commands. Similarly to collapse regions in the selected block of code only, use View
Collapse in Selection and View Expand in Selection menu commands.

Code Outlining

The code outlining feature outlines code regions with matching BEGIN…END keywords, for custom regions,
and for SQL Preprocessor regions.

Note that the BEGIN…END outlining is supported only for code regions with BEGIN and END keywords
appearing in separate lines and not mixed with other keywords.

Line Numbering

You can turn line numbering on and off in the SQL Editor options using Options SQL Editor… menu. See

 CHAPTER 35, Integrated Development Environments

 -512-

the Customizing SQL Editor Options and Behavior topic in this chapter for more details.

Hyperlinks

You can embed URLs in the document you are editing, and use them as hyperlinks.

To turn on and off this feature, click View Hyperlinks menu.

Code Structure and Code Page Views for Fast Code Navigation

Code structure and page view enable fast code navigation between different parts of the code when working
with large scripts. They are covered in detail in CHAPTER 4, Code Structure View and Bird's Eye View.

Split Screen for Synchronous Off-line Code Editing

The SQL Editor supports horizontal split view function enabling you to work with the same file in two different
windows synchronously. The top part provides an off-line editor not connected to the database not running
background syntax checks and other on-line edit mode operation, The bottom part provides regular code editor
connected to the database with all SQL Assistant functions enabled. The split view enables you

 To see and edit two different fragments of the same file simultaneously

 To effectively work with large files not dragged down by background database operations.

To split the view, use horizontal splitter control or control handler displayed in the right top part of the ruler bar.

 CHAPTER 35, Integrated Development Environments

 -513-

Mouse-over the splitter control and drag it down to split the
view.

Note, when the cursor is properly positioned over the splittter
control, the cursor shape changes to a double arrow shape as
on the following screenshot.

Make sure the cursor takes the right shape before dragging
the splitter.

File Operations, Formats, and Encoding

Text files can be saved with a variety of encoding and different code pages. If after opening a file you see its
content with broken text not displayed correctly, Unfortunately the encoding and format aren't saved in the file
so it could be anyone's guess as what encoding to use to pen the file with original settings. The SQL Editor
provides you with a number of options available in the File menu for choose different file formats, code pages,
character sets, and encoding. Use commands in the following menus to choose the required encoding for file
open and save operations.

File File Encoding - use this to choose ASCII, UTF and other encoding types

File File Format – use this to choose file format between, Windows, Unix, Mac. This affects which symbols
are used for line breaks.

File Character Set – use this to choose your national character set

File Code Page – use this to choose a code page.

Printing and Documenting Your Code

Printing

The SQL Editor provides all standard print features available from the operating system, along with a number of
features specific to the SQL Editor. For example, you can include line numbers or omit collapsed regions in
print outs, include highlighting, staples and so on, as well as customize headers and footers, colors and other
options.

 CHAPTER 35, Integrated Development Environments

 -514-

Use File Page Setup and File Print Setup menu commands to customize the printing options. The
options are self-descriptive and easy to use.

To print your code in colors, open the Page Setup Options dialog and then select RGB item in the Colors
drop-down list.

To preview how a print outs would look like with the currently selected options before it is printed, select File
Page Setup menu command.

Saving Code for Documentation Purposes

The SQL Editor provides two methods for saving code for documentation purposes

 Save to RTF files– this method can be invoked using File Export to RTF… menu command. This
enables you to save the current script in the editor to a RTF file, including all formatting, fonts, colors,
text highlighting, and so on.

 Save to HTML files– this method can be invoked using File Export to HTML… menu command.
This enables you to save the current script in the editor to a HTML file, including all formatting, fonts,
colors, text highlighting, and so on.

Connecting to Databases

The editor connects to a database server automatically as soon as you perform any database related
operation or enter a SQL keyword. The database connectivity is described in detail in CHAPTER 2, Connecting
to Your Database.

Working with Databases

All database operations including code execution, data preview, SQL Intellisense, etc… are handled by the
integrated SQL .Assistant add-on. Please refer to other chapters in this User's Guide for details on specific
operations and SQL Assistant functions.

Running SQL Queries

The SQL Editor enables you to run SQL code from editor tabs and MDI windows. The default hot key is F5. If
any text is selected in the current editor, only the selected text is run. Otherwise, the entire editor content is run.

Batch delimiters and statement terminators control code execution. For specific details see Handling of Batch
Delimiters in CHAPTER 14, Executing SQL Scripts.

You can run SQL code in multiple editor tabs and windows concurrently. Tabs with running code have yellowish
color. After code execution is completed, tab colors change back to their regular color. In addition, in running
tabs the status bar color changes to bright yellow. If the code running takes more then a few seconds then the
timer statistics are show in the yellow part of the status bar too.

 CHAPTER 35, Integrated Development Environments

 -515-

 Tip: The Task Manager area in the status bar shows number of running tasks. This number includes the
currently running tab, other tabs with running SQL queries, and all other background tasks that register with the
SQL Assistant Task Manager, such as data export/import, code generation, and so on… To see more details
about the running tasks, their current progress, and to manage them, double click the Task Manager area. The
Task Manager will appear on the screen. For more information about the Task Manager and managing tasks,
see CHAPTER 42, Task Manager and Database Session Monitor.

Using Source Code Control

Refer to CHAPTER 23, Database Source Code Control Interface for configuration instructions and usage
details.

Recording Editor Macros for Repetitive Text Operations

The SQL Editor fully supports macro recording for keyboard and mouse actions, cursor positioning and other
text editor operations. A macro consists of series of commands that you can group together as a single
command to accomplish a task automatically. Macros allow you to automate repetitive actions. Over 200 macro
commands are available to you to automate repetitive actions.

You can record macros as well as create and edit them manually. Typically you would use the recording facility
to record the commands you perform manually and them manually tweak the recorded macro code to make it
universal so that it can be reused with other files.

To record a new macro

1. Select Macro Record menu to start the recording session.

 CHAPTER 35, Integrated Development Environments

 -516-

2. Perform the required keyboard and mouse operations.

3. Select Macro Stop menu to end the recording session.

To rename or modify the recorded macro

1. Select Macro New / Edit menu. The Macro Editor dialog appears.

2. Select the macro you want to rename or modify in the Macros list.

3. Click the Rename button. enter new name and then press the Enter key.

4. To edit the macro, delete unneeded or add additional commands as required. Use the buttons to
the right of the Commands list for the macro manipulations.

 The Change button opens the Select macro command dialog that you can use to replace
the selected macro command with another command and/or change parameter values for the
selected command.

 The Add button inserts a new command below the selected command or at the end of the
command list if nothing is selected.

 The Delete button deletes the selected command from the commands list.

 The Clear button clears the command list effectively deleting all commands in the selected
macro.

Use the Add button to the right of the Macros list to add a new macro, which you can then edit manually.

Use the Delete button to the right of the Macros list to delete an existing macro, which you no longer need.

To export macros and their commands to an external configuration file, use The Export button. The exported
file can be used for backup purposes or shared with colleagues who can import your file into their system using
the Import button.

 CHAPTER 35, Integrated Development Environments

 -517-

Macro Commands

The Macro Editor supports over 200 various commands for automation of repetitive code entry operations.
Each command internally is identified by its unique numeric ID number. Command descriptions are used to
when editing macros. The Select macro command dialog is used to enter new and change already entered
commands.

The following commands are supported. For your convenience they are grouped by categories and sorted in
alphabetic order.

Category Command

Block operations Block Copy & Paste above selected block

Block operations Block Copy & Paste below top of file

Block operations Block Copy & Paste end of file

Block operations Block Copy & Paste start of file

Block operations Block Cut & Paste end of file

Block operations Block Cut & Paste start of file

Bookmarks Goto Bookmark 0

Bookmarks Goto Bookmark 1

Bookmarks Goto Bookmark 2

Bookmarks Goto Bookmark 3

Bookmarks Goto Bookmark 4

Bookmarks Goto Bookmark 5

Bookmarks Goto Bookmark 6

Bookmarks Goto Bookmark 7

Bookmarks Goto Bookmark 8

Bookmarks Goto Bookmark 9

Bookmarks Toggle Bookmark 0

Bookmarks Toggle Bookmark 1

 CHAPTER 35, Integrated Development Environments

 -518-

Bookmarks Toggle Bookmark 2

Bookmarks Toggle Bookmark 3

Bookmarks Toggle Bookmark 4

Bookmarks Toggle Bookmark 5

Bookmarks Toggle Bookmark 6

Bookmarks Toggle Bookmark 7

Bookmarks Toggle Bookmark 8

Bookmarks Toggle Bookmark 9

Change case Lower case to current or previous word

Change case Lower case to current selection or current char

Change case Title case to current or previous word

Change case Title case to current selection

Change case Toggle case to current or previous word

Change case Toggle case to current selection or current char

Change case Upper case to current or previous word

Change case Upper case to current selection or current char

Deleting text Delete char at cursor (i.e. delete key)

Deleting text Delete current line

Deleting text Delete everything

Deleting text Delete from cursor to beginning of line

Deleting text Delete from cursor to end of line

Deleting text Delete from cursor to next word

Deleting text Delete from cursor to start of word

Deleting text Delete last char (i.e. backspace key)

Indents and Tabs Indent selection

Indents and Tabs Insert Tab char

Indents and Tabs Tab key

Indents and Tabs Unindent selection

Inserting text Break line at current position, leave caret

Inserting text Break line at current position, move caret to new line

Inserting text Insert a character at current position

Inserting text Insert a whole string

Inserting text Soft break line at current position, move caret to new line

Macros Cancel macro recording

 CHAPTER 35, Integrated Development Environments

 -519-

Macros Play macro

Macros Start macro recording

Macros Stop macro recording

Markers Collect marker (jump back)

Markers Drops marker to the current position

Markers Jump to matching bracket (change range side)

Markers Swap marker (keep position, jump back)

Miscellaneous Aligns tokens in selected lines

Miscellaneous Ascending sort of selected lines

Miscellaneous Comment selected lines

Miscellaneous Descending sort of selected lines

Miscellaneous Duplicate current line

Miscellaneous Go to line number

Miscellaneous Moves selected lines one line down

Miscellaneous Moves selected lines one line up

Miscellaneous Page Setup dialog

Miscellaneous Print all text

Miscellaneous Print preview

Miscellaneous Print selected text

Miscellaneous Show/Hide line numbers

Miscellaneous Show/Hide non printed text/characters

Miscellaneous Toggle Word Wrap

Miscellaneous Uncomment selected lines

Navigation with columnar selection Move cursor and column select left one char

Navigation with columnar selection Move cursor and column select right one char

Navigation with columnar selection Move cursor and column select up one line

Navigation with columnar selection Move cursor and column select down one line

Navigation with columnar selection Move cursor and column select left one word

Navigation with columnar selection Move cursor and column select right one word

Navigation with columnar selection Move cursor and column select to beginning of line

Navigation with columnar selection Move cursor and column select to end of line

Navigation with columnar selection Move cursor and column select up one page

Navigation with columnar selection Move cursor and column select down one page

Navigation with columnar selection Move cursor and column select right one page

 CHAPTER 35, Integrated Development Environments

 -520-

Navigation with columnar selection Move cursor and column select left one page

Navigation with columnar selection Move cursor and column select to top of page

Navigation with columnar selection Move cursor and column select to bottom of page

Navigation with columnar selection Move cursor and column select to absolute beginning

Navigation with columnar selection Move cursor and column select to absolute end

Navigation with columnar selection Move cursor and column select to first char of line

Navigation with columnar selection Move cursor and column select to last char of line

Navigation with columnar selection Move cursor and column select left and up at line start

Navigation with columnar selection Move cursor to specified position and column select

Navigation Move cursor down one line

Navigation Move cursor down one page

Navigation Move cursor left and up at line start

Navigation Move cursor left one page

Navigation Move cursor left one word

Navigation Move cursor right one char

Navigation Move cursor right one page

Navigation Move cursor right one word

Navigation Move cursor to absolute beginning

Navigation Move cursor to absolute end

Navigation Move cursor to beginning of line

Navigation Move cursor to bottom of page

Navigation Move cursor to end of line

Navigation Move cursor to first char of line

Navigation Move cursor to last char of line

Navigation Move cursor to specified position

Navigation Move cursor to top of page

Navigation Move cursor up one line

Navigation Move cursor up one page

Navigation with regular selection Move cursor and select down one line

Navigation with regular selection Move cursor and select down one page

Navigation with regular selection Move cursor and select left one char

Navigation with regular selection Move cursor and select left one word

Navigation with regular selection Move cursor and select left one page

Navigation with regular selection Move cursor and select left and up at line start

 CHAPTER 35, Integrated Development Environments

 -521-

Navigation with regular selection Move cursor and select right one char

Navigation with regular selection Move cursor and select right one word

Navigation with regular selection Move cursor and select right one page

Navigation with regular selection Move cursor and select to absolute beginning

Navigation with regular selection Move cursor and select to absolute end

Navigation with regular selection Move cursor and select to beginning of line

Navigation with regular selection Move cursor and select to bottom of page

Navigation with regular selection Move cursor and select to end of line

Navigation with regular selection Move cursor and select to first char of line

Navigation with regular selection Move cursor and select to last char of line

Navigation with regular selection Move cursor and select to top of page

Navigation with regular selection Move cursor and select up one line

Navigation with regular selection Move cursor and select up one page

Navigation with regular selection Move cursor to specified position and select

Scrolling Scroll down one line leaving cursor position unchanged

Scrolling Scroll down one page leaving cursor position unchanged

Scrolling Scroll left one char leaving cursor position unchanged

Scrolling Scroll left one screen leaving cursor position unchanged

Scrolling Scroll right one char leaving cursor position unchanged

Scrolling Scroll right one screen leaving cursor position unchanged

Scrolling Scroll to absolute beginning leaving cursor position unchanged

Scrolling Scroll to absolute end leaving cursor position unchanged

Scrolling Scroll to absolute left leaving cursor position unchanged

Scrolling Scroll to absolute right leaving cursor position unchanged

Scrolling Scroll up one line leaving cursor position unchanged

Scrolling Scroll up one page leaving cursor position unchanged

Search & Replace Find All

Search & Replace Find Current Word Next

Search & Replace Find Current Word Prior

Search & Replace Find Dialog

Search & Replace Find First

Search & Replace Find Last

Search & Replace Find Next

Search & Replace Find Previous

 CHAPTER 35, Integrated Development Environments

 -522-

Search & Replace Go to next search mark

Search & Replace Go to previous search mark

Search & Replace Incremental Search

Search & Replace Replace Again

Search & Replace Replace All

Search & Replace Replace Dialog

Search & Replace Replace First

Search & Replace Replace Last

Search & Replace Replace Next

Search & Replace Replace Previous

Search & Replace Reset search marks

Search & Replace Search Again

Selection modes Column selection mode

Selection modes Line selection mode

Selection modes Marks the beginning of a block

Selection modes Marks the end of a block

Selection modes Normal selection mode

Selection modes Reset selection

Selection modes Set insert mode

Selection modes Set overwrite mode

Selection modes Toggle insert/overwrite mode

Standard actions Copy selection to clipboard

Standard actions Copy to clipboard in RTF format

Standard actions Cut selection to clipboard

Standard actions Delete current selection

Standard actions Paste clipboard to current position

Standard actions Perform redo if available

Standard actions Perform undo if available

Standard actions Select entire content, move cursor to the end

Text folding Collapse all blocks in the text

Text folding Collapse block at current line

Text folding Collapse ranges in selection

Text folding Collapse selected block

Text folding Collapse/expand block at current line

 CHAPTER 35, Integrated Development Environments

 -523-

Text folding Collapse/expand nearest block

Text folding Expand all collapsed blocks in the text

Text folding Expand block at current line

Text folding Expand ranges in selection

Text folding Toggle Folding

Tools Auto completion popup

Tools Auto correct all words

Tools Auto correct current word

Tools Code parameters tool tip

Tools Code templates popup

Tools Insert character popup

Customizing SQL Editor Options and Behavior

Use Options Editor… top level menu in SQL Editor to customize editor's options and behavior. The
following options can be customized:

Insert mode - Inserts text at the cursor without overwriting existing text. If Insert Mode is disabled, text at the
cursor is overwritten. Note that you can use the Ins key to toggle Insert Mode in the editor without changing this
default settings.

Auto indent mode - Positions cursor under the first nonblank character of the preceding nonblank line when
you press Enter. Note, that SQL Assistant's automatic syntax-based code auto-indenting/formatting is applied
after the editor and overrides editor's settings. SQL Assistant's automatic syntax-based code auto-
indenting/formatting can be customized in the Options dialog.

Backspace unindents - Aligns the insertion point to the previous indentation level (outdents it) when you
press Backspace, if the cursor is on the first nonblank character of a line.

Group undo - Undoes your last editing command as well as any subsequent editing commands of the same
type, if you press Alt+Backspace or choose Edit Undo menu.

Group redo - If it is set Redo will involve group of changes.

Keep caret in text - Allows moving edit caret only within text. All trailing blanks and empty lines are ignored

Double click line Highlights the line when you double-click any character in the line. If disabled, only the
selected word is highlighted.

Fixed line height - Prevents line height calculation. Line height will be calculated by means of Default Style. If
not enabled, text line height may vary depending on the fonts you selected for syntax highlighting (you can
choose different fonts for different element types).

Persistent blocks - Keeps marked blocks selected when the cursor is moved using the arrow keys, until a new
block is selected.

 CHAPTER 35, Integrated Development Environments

 -524-

Overwrite blocks - Replaces a marked block of text with whatever is typed next. If Persistent Blocks is also
selected, text you enter is appended following the currently selected block.

Show caret in read only mode - Shows edit caret in read only mode. (a file is opened in read-only mode)

Copy to clipboard as RTF - Copies selected text in RTF format, including fonts and syntax colors

Enable column selection - Enables column selection mode.

Hide selection - Hides selection when editor loses focus.

Hide dynamic - Hides dynamic highlighting when editor loses focus.

Enable text dragging - Enables drag & drop operations for text movement.

Collapse empty lines - Collapses empty lines after a text range when this range is folded.

Keep trailing blanks - Keeps any blanks you might have at the end of lines. If not checked, trailing blanks are
automatically discarded.

Float markers - If it is set, markers are linked to the text, so they will move with text during editing. Otherwise
they are linked to the edit caret position, and stay unchanged during editing. Also markers save scroll position.

Undo after save Keeps undo buffer unchanged after save, otherwise resets the undo buffer

Disable selection - Disables any text selection.

Draw current line focus - Draws rectangle around current text line 9but only when the editor has input focus).

Hide cursor on type - Hides mouse punter when you type text in the editor

Scroll to last line - When this option on, you may scroll to the last line of text, otherwise you can scroll to the
last page. When this option is off and total text height less then the editor's client are height, its vertical scroll
bar is hidden.

Greedy selection - If this option is set, the selection grabs extra column/line during column/line selection
modes.

Keep selection mode – The selection enabled for caret movement commands (like in BRIEF).

Smart caret - Optimizes the edit caret movement (up, down, line start, line end). the caret is moved to the
nearest position on the screen.

Word wrap - Wraps long text lines at the right side of editors client area.

Word break on right margin - Wraps text at the right margin instead of right side of the editor's client area.
You can setup margin positions anywhere within the client area.

Optimal fill - Begins every auto indented line with the minimum number of characters possible, using tabs and
spaces as necessary.

Fixed column move - Keeps position of the edit caret before editing text, this position is used when moving the
current up or down.

Variable horizontal scroll bar - Sets maximum range of the horizontal scroll bar to the maximal width of visible
lines only, not the entire text; hides horizontal scroll bar if all visible lines fit the client area width.

Unindent keep align - Restricts unindent operations when at least one of the selected lines can not be

 CHAPTER 35, Integrated Development Environments

 -525-

unindented.

Gutter options

Visible - Shows or hides the left side gutter.

Line numeration - Shows line numbers.

Width - Width of the gutter, default is 40 pixels.

Color - Color of the gutter, default "Button Face".

Right margin options

Visible – Shows line at the right margin of the editor.

Right margin - Sets the right margin of the editor. The default is 80 characters.

Color - Color of the right margin line.

Other options

Editor font - Default editor's font, which is used for displaying plain text without syntax highlighting.

Number font - This font is used to display line numbers.

Background color - Background color of the editor window.

Undo limit - Specify the number of keystrokes that can be undone. The default value is 32,767 (32K).

Tab stops - Sets tabs that the cursor will move to when you press Tab key. Enter one or more integer numbers
separated by spaces. When multiple tab stops are entered, the numbers indicate specific columns in which the
tab stops are placed. If each successive tab stop is not larger than its predecessor, you will receive an error.
When only one tab stop is specified, it indicates the number of spaces to jump each time you tab.

Collapse level - Specifies level of text ranges affected by the "Collapse all" command. If this value is equal -1,
all text ranges are collapsed.

Tab mode -Specifies processing of the Tab key. The following values are supported::

 Use tab character: Inserts tab character. If disabled,

 Insert spaces: Inserts space characters.

Customizing Syntax Highlighting

SQL Editor Professional Edition offers reach capabilities for customizing SQL code syntax highlighting. It
enables you to use different fonts, colors,, display styles and even borders for different syntax elements.

 CHAPTER 35, Integrated Development Environments

 -526-

Use Options Syntax Highlighting… top level menu in SQL Editor to open the syntax highlighting options.
This menu opens the Style Collection dialog box. To change display style for a particular type of syntax item,
select item type in the item types list box, then customize its rendering options using controls available on the
on the right side of the dialog.

The following options can be used:

Style type – This drop-down list provides preselected set of styles for quick customization. You can choose
one of the following

 Font style and colors – allows setting almost all available display parameters for the selected item
type including font, colors, vertical text alignment, borders. The background color cannot be changed.

 Back and fore-ground – allows setting all available display parameters including font, colors, vertical
text alignment, borders, background color, and so on

 Only background – allows setting only background colors and borders. This style is typically used for
customizing display of selected text selection

 Custom font – allows setting all available display parameters including font, colors, vertical text
alignment, borders, background color, and so on

Names and all other options appearing in the Syntax Highlighting Options dialog are self descriptive and do not
require additional usage instructions.

 CHAPTER 35, Document Manager and Code History Add-on

 -527-

CHAPTER 35, Document Manager and Code
History Add-on

Overview

SQL Assistant includes Document Manager and Code History add-on for a number of supported target
environments. This is a dual-purpose add-on, which provides you with the following functions:

1. Automatically restores editor tabs when you reopen target editor environment.

2. Provides access to named file and unnamed script change history and creates periodic snapshots of
code changes cataloging them as file revisions. It also enables comparing different revisions with each
other, as well as with the head revision, and the script in the current editor tab.

3. Visualizes file context when closing target editor environment. the standard Save Files dialog is
replaced with Document Manager's Save documents dialog enabling you to see content of the opened
files and their specific changes and choose what to save, instead of the default "dumb" prompt to save
or not to save all changes at once.

 Important Note: The Code History function is not a substitute for a Source Code Control System, The
Code History function stores script revisions for a limited time only in a local file system. It does not support
team development, release labeling, and other common functions typically supported by Source Code Control
Systems. If you need a full featured Source Code Control System, refer to CHAPTER 23, Database Source
Code Control Interface.

Enabling and Customizing Document Management Interface

You can enable or disable the document management interface and to customize its behavior in SQL
Assistant's Options dialog. For all target environments supporting the Document Manager and Code History
add-on, the Document Manager section appears in the target options on the Targets tab as shown on the
following screenshot.

 CHAPTER 35, Document Manager and Code History Add-on

 -528-

Note that for target environments not supporting the Document Manager and Code History add-on, the
Document Manager section is hidden in the options and cannot be customized.

Restoring Tabs, Connections, Bookmarks, Edit Positions

The Restore Tabs function enables you to reopen editor tabs that were opened in previous target editor
sessions along with the associated SQL Assistant's bookmarks, scroll and edit positions, and other tools
opened in that document's previous session, so that you can conveniently continue working with your scripts as
you left them at the time of target editor closing. Note, that the database connection context is restored too.

By default the Restore Tabs dialog is displayed on startup. To open the Restore Tabs dialog at a later time,
use Recent Documents command in SQL Assistant's menu. In the Restore Tabs dialog you can choose
specific scripts and their versions that you want to reopen. For more information about script and versions, see
Saving Code Change History topic in this chapter.

The following icons are used in the dialog to indicate types of documents that can be restored

Icon Description

 A named file with unsaved changes. A previous instance of the target editor was closed or crashed
before changes in this file changes were saved

 A named file with saved changes.

 A unnamed script with unsaved changes. This script was opened in previous target editor instance
with unsaved changes.

 A file deleted from the disk with a revisions still available in the code history. .

Icons with a little lock overlay in the left-top corner indicate locked files and scripts. Locked
documents are not updated in the code history log and no new revisions are saved until they are
unlocked.

 Tip: Mouse-over a file in the list and rest the mouse pointer for a second. File type description, and file's
original connection information will be displayed in the mouse-over balloon.

 CHAPTER 35, Document Manager and Code History Add-on

 -529-

In the dialog tick checkboxes in front of the document names and then click the Restore button to reopen them
in the target editor. Note that by default the last saved versions are restored. To restore a particular version,
expand the document branch and tick the checkbox in front of the required version as demonstrated on the
previous screenshot. To quickly select or deselect all documents, use the right-click context menu and select
Select All or Deselect All command.

For your convenience a preview of the selected document is displayed in the Preview box on the right side of
the Restore Tabs dialog. If you select a particular revision, the preview highlights code changes.

By default The highlighting shows changes as compared to the head revision. The highlighting method and the
change-map are the same as in the Code Compare dialog. For more information on the code compare styles
and controls, see Using Code Compare Dialog in CHAPTER 25. To see changes relative to the prior revision
instead of the head revision, right-click the revision name and then in the content menu choose Compare –>
Prior Revision. To hide the changes, right-click the revision name and then in the content menu choose
Compare –> None.

In SQL Assistant's options you can configure to display a simply Restore Tabs prompt with Yes/No buttons
instead of instead of the Restore Tabs dialog or to automatically restore all tabs without prompting the feature
by selecting the None option. See Customizing Add-on Behavior topic later in this chapter for more details.

 Tips:

 Only non-empty editor tabs are restored. Tabs having unsupported content types are ignored by the
add-on.

 Tabs are restored in a single target editor instance only. If you open two or more target editor
instances, no prompt to reopen tabs will appear in the second instance and consequently no tabs will
be restored there. If your editor crashes, before you open a new one, use the Windows Task Manager
to verify the crashed process is closed completely. For example for SQL Server Management Studio
verify ssms.exe or sqlwb.exe are not listed in the processes list. Terminate them If they are still in the
task list, otherwise you will not be able to restore tabs and recover unsaved changes.

 The original database context is restored in the restored tabs, but that only works if the connection
parameters were saved for the connection. See Ad-hoc and Remembered Connections topic in
CHAPTER 2, Connecting to Your Database for more details. Connections cannot be restored for tabs
with ad-hoc connections. In the latest case, the current editor's connection is reused for the restored
tabs. To quickly see which connection will be used, mouse-over a file in the list and rest the mouse
pointer for a second. The original connection information will be displayed in the mouse-over balloon.

Code Change History

While you work with your script, the add-on monitors text changes in the editor. If it finds recent changes, it
automatically caches all changes and saves them as script revisions in the special History subfolder located in
%APPDATA%\SQL Assistant folder. Please note that the default location of this subfolder varies in different
Windows versions. If you do not know the value of %APPDATA%\ environment variable, open DOS command
prompt, and execute echo %APPDATA% command.

Saved file revisions are renamed according to NNNNNNNNV_FILENAME_YYYYMMDD_HHMMSS.sql naming
convention: The following parts are used in the file name:

 NNNNNNNN - this is the hash value of the full file path, which is used to distinguish similarly named
files opened from different locations.

 CHAPTER 35, Document Manager and Code History Add-on

 -530-

 V – file source type: value 1 – represents auto-generated file created from an unnamed script tab;
value 0 represents existing file opened from the file system.

 FILENAME - source file name without extension.

 Note: File name may repeat for unrelated files stored in different source folders and for unsaved
scripts whose names are auto generated by the target editor.

 YYYYMMDD_HHMMSS – file version timestamp.

 Tip: By default cached versions are stored for up to 180 days. You can customize the cache expiration
time for your target editor in SQL Assistant's Options. on the Targets tab, select your editor, and then
expand the Document Manager options group, and change File History Length (days) value.

Reopening Recently Opened Files and Unnamed Scripts

The Recent Documents function enables you to reopen named files and unnamed scripts that you had opened
and edited in the target editor in the last 180 days or as specified in SQL Assistant options, as well as reviewing
revisions of the currently opened script in a vertical pane docked to the left side of the editor window.

Use SQL Assistant Recent Documents… menu command to open the Recent Documents dialog.

The Recent Documents dialog is similar to and provides the same interface and functions as the Restore
Tabs dialog. In addition it provides flexible search and filtering by file names, and by content, as well as, it
allows you to manage documents and their revisions using simple right-click menus. The following functions are
supported via the right-click menu.

Open – Opens the selected document or revision as a new tab. If the selected document is already open,
actives its tab.

Open as New – Opens a copy of the selected document or revision as a new tab and as a new script.

Hide Document – Hides selected document or revision in the document list, but does not delete the associated
files or revision history.

Delete Revision – Deletes the selected revision from the list and also deletes the associated file from the file
system

 CHAPTER 35, Document Manager and Code History Add-on

 -531-

Delete All Revision – Deletes the selected document with all its revisions from the list and also deletes the
associated revision files from the file system.

Lock– Locks the selected document. Locked documents are not updated in the code change history log and no
new revisions are saved until they are unlocked.

Unlock – Unlocks the selected document.

Refresh – Forces refresh of the Recent Documents table of contents.

Docked – Opens the Document Revisions pane. An example of the Document Revisions pane is displayed
on the next screenshot.

The Document Revisions pane enables 1-click access to the revisions of the script in the current editor tab.
To see revisions in other documents, change the filter in drop-down list box displayed in the left-top corned from
the Current Document to the All Documents item.

The Filter drop-down list and the Filter box provide the filtering functions you can use to quickly locate the
required documents.

To filter by file name:

1. Select Filter by Name item in the drop-down list available in the top-right corner of the Recent
Documents dialog

2. In the Filter box, enter partial or full file name to use as a filter. Note that the entered text can appear
anywhere within file name. The entered filter is applied automatically as you type the filter text.

To filter by file content:

1. Select Filter by Content item in the drop-down list available in the top-right corner of the Recent
Documents dialog

 CHAPTER 35, Document Manager and Code History Add-on

 -532-

2. In the Filter box, enter text to use as a filter. Note that the entered text can appear anywhere within file
content.

3. Press the Enter key to apply the entered filter.

Comparing Script Versions

Method 1

1. Use SQL Assistant Recent Documents… menu command to open the Recent Documents
dialog.

2. Locate the document whose historical versions you want to compare and expand that document's
branch.

3. Locate and select the required version. A preview of that version script will appear on the right side of
the dialog in the Preview box. All changes in that version will be automatically compared to the head
version and highlighted in the Preview. To compare to the previous version instead, right-click the
selected version, and from the context menu choose Compare –> Previous Revision

Method 2

1. Use SQL Assistant Compare Code and Data Compare Script Versions… menu command to
compare current and historical code versions. This command will open SQL Assistant – Script
Versions Compare dialog preloaded with the current script.

2. Use the available controls to pick one of the previous versions to compare against the current script.
Note that this Compare dialog is a variation of the Code Compare utility. It provides the same type of
user interface and code comparison functions. For more information on the usage of the Code
Compare function, read CHAPTER 25, Code Compare Utility.

Saving Tabs, Bookmarks, Edit Positions

The Save Documents dialog replaces default Save Changes message box displayed by target environment
when you close with unsaved changes in one or more tabs. The Save Documents dialog shows changes in all
tabs enabling you to choose what to save and what not, review revisions, choose destination file names all in
one place.

Tabs with unsaved changes are listed on the left side of the dialog. To see content of a particular tab and its
revision highlights, click that tab in the tab list. The content of the selected tab appears on the right side of the
dialog. The content is color coded to indicate new, modified, and deleted lines. Pink and light green highlights
along with and marks indicate changes in the text. To document change map is displayed to the right of
the text and can be used for quick text navigation. For more information on how to use the map, read
CHAPTER 25, Code Compare Utility

 CHAPTER 35, Document Manager and Code History Add-on

 -533-

The Save Documents dialog recognizes changes in existing files and in unnamed scripts. It automatically pre-
selects existing files so that their changes are flushed to the disk when you click the Save button.

The dialog also saves copies of your changes to the file change cache in the History folder as described in the
Overview topic in this chapter. In addition to file changes, it saves current cursor positions and bookmarks so
that your documents can be restored on the editor startup as they were at the time of the editor closing.

 Note: The Document Manager automatically saves code changes to cache in the History folder. Even if
you choose to not to save changes in files, you can still restore and access unsaved scripts and changes from
the History cache, until the cache expired. By default old cached versions of unsaved files are purged from the
cache after 180 days.

The following icons can appear in the list of unsaved tabs and files.

 This icon represents an existing file with unsaved changes.

 This icon represents an existing file with changes already save or with no changes. This file icon
can appear for non-modified files opened in the target editor and also after you use the Save File
icon to save changes in a particular file.

 This icon represents an unnamed script never saved before.

Use checkboxes to the left of document icons to select which files you want to save to the disk, and then click
the Yes button to save selected changes and to close the Save Documents dialog.

To quit the target editor environment without saving any changes, click the No button.

To cancel closing the target editor environment and to return back to the editor, click the Cancel button.

 CHAPTER 36, Testing Database Performance

 -534-

CHAPTER 36, Testing Database Performance

Overview

You can use the Database Benchmark utility to conduct database workload and scalability testing, to test your
database code under stress and to eliminate slow SQL database performance. You can also use it to identity
areas in your database that might be sensitive to user concurrency issues and deadlocking. It enables you to
deploy changes to your database schemas and code with a confidence, as well as dramatically improve your
database performance and application scalability.

The testing can be performed interactively in a real time or scheduled to run during off pick hours or
simultaneously using multiple computers in a computer farm or an array of virtual machines..

The Database Benchmark supports 2 load generation methods:

 Using database calls to test your database the same way your applications would use them.

 Using external applications reproducing production like application workload, real user behavior and
real data I/O patterns.

To launch the Database Benchmark, use right-click menu in the SQL Editor. Alternatively, you can right-click
the SQL Assistant icon in the Window system tray and, in the right-click menu, navigate to the SQL Assistant
submenu. Choose Code and Data Generators � Database Benchmark menu command.

 CHAPTER 36, Testing Database Performance

 -535-

Common Concepts

The Database Benchmark can be used to generate database workloads. To simplify workload generation
management, the Database Benchmark supports load generation projects. Load generation projects are useful
for:

 Testing different database usage scenarios.

 Testing your database performance under stress test.

 Establishing performance benchmarks; testing application and database performance after code
changes, software and hardware upgrades and comparing them to the previously set benchmarks.

 Testing scalability of your database dependent applications with more users and/or more data.

 Persistent storage of project configuration parameters and load generation rules within a set of project
configuration files.

Worker Processes and Threads

The Database Benchmark uses Worker Processes to simulate database applications. Each Worker Process
represents one application. To test multiple applications running concurrently, add a separate Worker Process
for each application to the Database Benchmark project.

To simulate multiple users running the same application concurrently configure number of Concurrent
Instances (e.g. Threads) to run the Worker Process. One concurrent instance represents one user running an
instance of an application. If you add 10 Worker Processes to the project and configure each Process to be run
by 10 concurrent instance, in total the Database Benchmark will create and run 100 threads simulating 100
concurrent database users.

Each Thread runs the associated unit of work continuously in loop for as long as specified in the Total Load
Duration project scope parameter. See Project Scope Options topic for more details

Worker Processes can be of two types:

 SQL Script – used for executing database SQL scripts simulating typical application use conditions.

 External Process – used for running user applications, which are expected to connect to the
database being tested and to run the real-life database operations.

Benchmark and Workload Templates

Ready to run templates are available for the following database types:

 Amazon Redshift

 SQL Server

 Azure SQL Database

 DB2 UDB

 MySQL

 CHAPTER 36, Testing Database Performance

 -536-

 MariaDB

 Oracle

 PostgreSQL

 SQLite (limited support)

Three kinds of templates are preinstalled for all listed above database types excluding SQLite:

Sakila template – the objective of this template is creating database workload mimicking behavior of a real
world application and its impact on the database operations. The template is modeled after well known Sakila
database originally developed by Mike Hillyer of the MySQL AB documentation team

Scale template - the objective of this template is creating intense load and scalability benchmarking
environment. This is a modification of the Sakila template configured for high concurrency and gradual load
generation.

Pgbench template - the objective of this template is creating intense load and performance benchmarking
environment. This template is modeled using commonly used pgbench performance benchmarking application
originally developped for PostgreSQL, which was modeled after TPC-C benchmark

Using Database Benchmark in Conjunction with Test Data Generator

It is a good idea to use the Database Benchmark against a well populated database in order to obtain good
quality test results. The performance impact could change dramatically with more data stored in database
tables and with larger IO workloads. You can use the Test Data Generator tool to pre-populate your database
with large amounts of data before running database load tests.

 Tip: It is also possible to invoke Test Data Generator projects during load testing to simulate batch
processing and bulk loading of large amounts of data. For that purpose, configure one or more Worker
Processes in the Database Benchmark Project to run as external process. In the external process properties
use Test Data Generator's command line interface to run the required Test Data Generator project. For more
information see CHAPTER 18, Test Data Generator Command Line Interface topic.

Scalability

The performance of the load test and it is impact on the database server being tested might be constrained by
the computing power of the system (computer or virtual machine) on which you are running the Database
Benchmark database. Using bigger hardware (vertical scalability) for the Load Test Generator system is not
always faster—but it can usually handle more load and run more Worker Processes generating the load, but
non necessarily generating bigger throughout. All network cards have a limitation on the maximum throughput
they can handle, which is typically 100MB/s. That is the reason that more hardware does not automatically
improve the quality of load testing.

Scaling horizontally, adding more systems running the Database Benchmark concurrently, eliminates the
computing power constraints and the network card throughput on the Database Benchmark side. To support
this horizontal scalability, SQL Assistant allows you to schedule running of the Database Benchmark projects,
so that you can have multiple systems running the same load tests at the same time against the same
database server. It also allows you to save test results from multiple systems to a common database table in a
shared repository database providing you with a complete result set for further analysis of the database server

 CHAPTER 36, Testing Database Performance

 -537-

and application performance during heavy workloads.

Working with Database Benchmark

Opening and Saving Projects

To open an existing load generation project to modify project details or to execute a load generation run:

1. Use right-click menu in the SQL Editor to launch the Database Benchmark,. Alternatively, you
can right-click the SQL Assistant icon in the Window system tray and, in the right-click menu,
navigate to the SQL Assistant submenu. Choose Code and Data Generators � Database
Benchmark menu command.

2. Click the button displayed in the top left corner of the Database Benchmark dialog. The Open
Database Benchmark Project dialog opens.

3. Select the project file you want to open, then click the Open button. The Database Benchmark
dialog will be populated with Worker Processes and their individual settings.

To save all settings in a project file.

1. Click the button in the top left corner of the Database Benchmark dialog. The Save Database
Benchmark Project dialog opens.

2. Select the project file to which you want to save project settings and click the Save button. To
distinguish project files from other XML files, it is a good idea to use "project" or a similar prefix or
suffix when naming project files .

Adding Worker Processes to a Project

To add new processes to a Database Benchmark project:

1. Click the button in the top left corner of the Database Benchmark dialog. A new Worker
Process is added to the list with the default name New Worker Process and with an input focus.

2. Type new name for the added process. It is recommended to use self descriptive names so that
later you could easily figure out what the process is used for.

3. On the right side of the Database Benchmark dialog fill in process properties. See Worker
Process Scope Options topic later in this chapter for more information on the supported Worker
Process properties.

 CHAPTER 36, Testing Database Performance

 -538-

Removing Worker Processes from a Project

To remove processes from a Database Benchmark project:

1. On the Database Benchmark window select the Worker Process you want to delete.

2. Click the button in the top left corner of the Database Benchmark dialog.

3. Save your project changes as described in the "Opening and Saving Projects" topic.

 Tip: To disable a Worker Process without deleting its definition, deselect the checkbox in front of the
Worker Process.

Disabling and Enabling Worker Processes

To disable or enable a specific process:

1. In the project tree, select the case you want to modify.

2. Deselect the check-box in front of the case name to disable a case. Select the check-box to
enable a selected case.

Modifying Database Workload Generation Options

Each Worker Process in the project has its own separate set of properties for the workload generation. To
modify the properties.

1. In the worker processes list, click name of the Worker Process whose properties your want to
modify. Make sure the Worker Process name is selected and the checkbox in front of the
process name renames selected too. The Worker Process properties pane will be displayed at
the right side of the Database Benchmark window.

2. Choose the appropriate generation method and options. For specific details on available data
methods and options, see the topic Worker Process Scope Options in this chapter.

3. Repeat steps 2 and 3 for other Worker Process in the active project

 CHAPTER 36, Testing Database Performance

 -539-

Saving and Analyzing Load Test Results

At the end of the project run, the Database Benchmarks opens a new Results tab with the results of the
processing

 Note: The Results tab displays aggregate results for all worker processes. If you setup multiple Worker
Processes in your project, to see their detailed results, click on each enabled worker process. To see all results
at once, click white space in the Worker Process List so that no workers appear selected.

If you haven't selected in the project scope options to automatically save results to a file or database table, it is
still not too late to save them. click the Save Results hyperlink displayed in the right-top corner to save results
to a file. You can choose to save results to an XML file, CSV or tab-separated file. See the Project Scope
Options topic in this chapter for details on the output file format and its sample content.

If you saved results to a file, you can use common analytical tools such as Microsoft Excel or specialized tools
to slice and dice the load test data and to chart various statistics.

If you configured the project to save results to a database table, you can use SQL queries with various
aggregate and analytical functions available in your database to analyze the results. In the simplest case the
following sample query can be used to retrieve results from the log table for a particular test run and schenario

SELECT start_time,
 duration
FROM dbo.SA_LOADGEN_LOG
WHERE process_name = 'Data feed processing'
 AND id = '20140524 011527'
ORDER BY start_time

 Tip: If you setup several different projects for different load scenarios or database configurations, you can
compare their results side by side to find out scenario with best performance and to find out scenarios leading
to performance anomalies.

 CHAPTER 36, Testing Database Performance

 -540-

Scrolling Content

Use the scroll bars in the Database Benchmark window to scroll the panes. Alternatively, you can use the
keyboard navigation keys or mouse wheel.

Note that the table data generation properties pane scrolling is a bit different from other panes. This pane has
two parts: fixed columns, which are not scrollable, and data generation properties columns, which are
scrollable.

Resizing Content

To resize the Database Benchmark window, drag the top edge of the window up or down, left or right.

To adjust sizes of left and right panes of the Database Benchmark window, place mouse pointer over the right
edge of the Worker Processes list box. The cursor shape changes to resize shape as on the following
screenshot.

Drag the edge to adjust pane size. Make sure the cursor takes the right shape before dragging the pane edge.

To resize individual columns in the Worker Processes list, drag the right-edge of the column header left or right.
Note that when you place mouse pointer over the right edge of a column header the cursor shape changes to
resize shape as on the following screenshot.

Make sure the cursor takes the right shape before dragging the column edge.

 Tip: When column width is too narrow to fit the content, 3 dots (also called ellipses) are drawn in each cell
with non-fitting data to indicate the data overflow effect. To quickly resize a column so it fits the entire content in
all cells, double-click click on the right-edge of the column header. SQL Assistant will calculate the required
width and resize this column as needed.

Running Database Load Test

To generate database workload:

1. Start the Database Benchmark. See the Overview topic for more details.

 CHAPTER 36, Testing Database Performance

 -541-

2. Create new or open an existing project. See the Opening and Saving Projects topic for more
details.

3. If required, add or remove Worker Processes to the project. Choose required Project Scope
Options, and Worker Process Scope Options. as described in the following topics.

4. Click the Generate button to start the load test or click Schedule… button to schedule it to run at
a later time.

You can also use the command line interface to run Database Benchmark projects either from command
window or from other applications. See the Command Line Interface topic for more details.

Scheduling Database Benchmark Project Runs

To schedule a Database Benchmark project run in unattended mode:

1. Open the project you want to schedule for unattended execution. See the Opening and Saving
Projects topic for details.

2. Click the Schedule... button in the right bottom corner of the Database Benchmark window. The
SQL Assistant – Task Schedule dialog will appear.

3. Enter the task schedule properties.

Task Schedule

To schedule a one-time run, in the Schedule Task drop-down
select Once. Enter a date and time to start the task.

If you select the Daily option, you can enter the recurrence interval
for the task and the date and time to start the task. An interval of 1
produces a daily schedule, and an interval of 2 produces an every
other day schedule. The task will start at the specified time each
day.

If you select the Weekly option, you can enter the recurrence
interval for the task, the date and time to start the task, and the
days of the week in which to start the task. An interval of 1
produces a weekly schedule, and an interval of 2 produces an
every other week schedule. The task will start at the specified time
on each of the specified days.

If you select the Monthly option, you can enter the months in
which you want to start the task and the weeks and days of the
month in which you want to start the task. You can also specify
that you want to start a task on the last day of each selected
month.

Task Properties

Task Name – the name of the scheduled task. This is a required property. By default, the
Database Benchmark project name is used for the task name. The name cannot contain
special characters not allowed for use in file names.

User Name – the name of the Windows user account that will run the task. To specify a local
user name, enter the name in .\user format or machine\user format. To specify

 CHAPTER 36, Testing Database Performance

 -542-

domain user name, enter the user name in domain\user format.

 Important Notes: Do not confuse the Windows user account that will run the task
with the database connection user account. The Windows user account is used to
schedule and start the process. The database connection user account is used to
connect to the database server. The database connection user is specified in the
connection properties of the connection associated with the task. It may be different
from the Windows user account. However, if the connection properties are set to use
"Windows Authentication" method, the database connection will be attempted within
the security context of the Windows user account specified for the task.

See CHAPTER 2, Connecting to Your Database for more information on supported
connection methods and their properties.

Password – the password of the Windows user account that will run the task.

Connection – the database connection the task will use for the project run.

See the CHAPTER 15, topic Managing Connection Groups and Connection Settings for
more information on how to add, modify, and delete connections.

4. Click the OK button to create the scheduled task and to close the SQL Assistant – Task
Schedule dialog

 CHAPTER 36, Testing Database Performance

 -543-

Database Benchmark Options

Project Scope Options

To configure project scope options, active the Project tab page.

The following options are supported:

Total Load Duration

The total duration for project run. At the end of the total run SQL Assistant forcibly terminates all all
threads of all Worker Processes participating in the project run.

Log

Save Log File – this option specifies whether a log file is written for the project run. The log file is used for
troubleshooting problems that might occur during the project run. The log file is written in plain text format
and contains progress of work and other diagnostic messages.

Log File – specifies the log file name. A log file is only created only if the Save Log File option is enabled.

Output Results

Save Results in File – this option specifies whether an output file is written for the project run. The output
file records the results of the load test in the selected output format. The output data can be used for
analyzing load test results.

 CHAPTER 36, Testing Database Performance

 -544-

The output file is written at the end of the project run. The output file format depends on the selected output
file extension. The following formats are supported:

 XML – output results are recorded in XML format. Each node in the output file contains 7 named
properties:

name Name of the worker process

status Execution status, SUCCESS or FAILURE

threaded Unique tread id within the named Worker Process which was used for running
the associated SQL script or external process.

runid Run Id for the specified Tread ID. Each run performed by a Thread generates
unique Run ID

start Start time for the specified Run ID

duration Run duration in milliseconds as decimal number with up to 2 digits after decimal
point.

error Error messages if any returned during worker process run

Here is a small sample demonstrating of XML file content.
<lgres>
 <item name="Data feed processing" status="SUCCESS" runid="1" threadid="7576"
start="5/24/2014 1:14:26 PM" duration="13.79" error=""/>
 <item name="Data feed processing" status="SUCCESS" runid="2" threadid="7576"
start="5/24/2014 1:14:26 PM" duration="52.62" error=""/>
 <item name="Data feed processing" status="SUCCESS" runid="3" threadid="7576"
start="5/24/2014 1:14:26 PM" duration="10.57" error=""/>
 <item name="Data feed processing" status="SUCCESS" runid="4" threadid="7576"
start="5/24/2014 1:14:26 PM" duration="11.43" error=""/>
 <item name="Data feed processing" status="SUCCESS" runid="5" threadid="7576"
start="5/24/2014 1:14:26 PM" duration="13.66" error=""/>
 <item name="Data feed processing" status="FAILURE" runid="61" threadid="6416"
start="5/24/2014 1:15:22 PM" duration="5267.32" error="Execution error: Primary
key violation"/>
</lgres>

 CSV – output results are saved in a comma-separated value file. The values are the same as in
the XML output format. See XML format description above for more details.

 TXT – output results are saved in a tab-separated value file. The values are the same as in the
XML output format. See XML format description above for more details.

Add Time to File Name – this option, if enabled, causes SQL Assistant to add a date and time suffix to the
output file name. This ensures that every project run generates unique output file name and does not
override previous files.

Save Results in Database Table

This is similar to Save Results in File except that results are loaded into a database table at the end of the
project run. By default the results are saved into SA_LOADGEN_LOG table which is created automatically
in the current database if it does not exists. If you want to save in a specific database, specify fully qualified
table name in database.schema.table format or schema.table format if your database server does not
support 3 part object names. The results table has the following structure

 CHAPTER 36, Testing Database Performance

 -545-

CREATE TABLE dbo.SA_LOADGEN_LOG
(
 ID VARCHAR(15) NULL,
 PROCESS_NAME VARCHAR(255) NULL,
 THREAD_ID INT NULL,
 RUN_ID INT NULL,
 STATUS INT NULL,
 START_TIME DATETIME NULL,
 DURATION DECIMAL(8, 2) NULL,
 ERROR_MESSAGE VARCHAR(1000) NULL

)

The columns are the same as in the XML output format. See XML format description above for more
details, with an addition of ID column which stores session id of the Database Benchmark .run based on
the load test run startup time.

 Important Notes:. For long running load tests generating a lot of results, saving results to a table may
take a while.

Send Results

This group of options is used in conjunction with the Output Results group of project scope options. It
allows you to automatically email project execution output results. The results can be optionally emailed
after each project run. It is intended for use in automated unit tests invoking SQL Assistant's command line
interface for running database workloads. See the Command Line Interface topic in this chapter for more
details.

The following options are supported:

To – semicolon-separated email addresses of the mail recipients

From – the email address of the message sender

SMTP Host – server name or IP address of your SMTP email server

SMTP Port – SMTP server port used by your server. The default SMTP port is 25.

Requires Authentication – specifies whether your email server requires user authentication

User – specifies a valid user name for your email server logon. This option must be specified if your server
requires user authentication and the Requires Authentication option is selected.

Password – specifies a valid password for the user name specified on the User option. This option must
be specified if your server requires user authentication and the Requires Authentication option is
selected.

Email Database Benchmark Results– specifies whether SQL Assistant should attach the project output
file to the email message. This option is ignored if the Save Unit Test Results option is not enabled or if
an output file name is not specified on the Output Results tab page.

Send Results – specifies when SQL Assistant sends project output email. The following values are
supported:

 Always – project results are automatically emailed after each project run

 On Failure – project results are emailed if at least one Worker Process run fails.

 CHAPTER 36, Testing Database Performance

 -546-

Worker Process Scope Options

The following Worker Process scope options are supported:

Concurrent Instances

The number of threads allocated to run the selected Worker Process. Each thread executes tasks specified
for the worker process concurrently with other thread of the same Worker Process.

Start Delay

The time in milliseconds to wait before launching next processing thread of the selected Worker Process.

Use this option to increase the load gradually. For example, if you configure a Worker Process with 10
threads and enter 10000 for the delay, the Database Benchmark will create a thread which will begin
running the task, then 10 seconds it will later create a second thread, 10 seconds later it will create a third
thread, and so on. After 90 seconds all 10 threads of the Worker Process will be up and running

Process Type

Specifies Worker Process type. Two types are supported:

 SQL Script – executes SQL batch script containing 1 or more SQL commands

In the SQL box enter SQL commands you want the Worker Process to execute continuously
during project run. After the script completes, a new script run is performed.

 External Process – executes external process such as a batch file or executable program.

 CHAPTER 36, Testing Database Performance

 -547-

In the Process Command field specify full path to the executable file you want the worker to run
continuously during project run.

 Note: Do not add command line parameters to this field.

In the Process Command Line Parameters field specify optional parameters for the executable
file. If no parameters are required, leave this field blank.

Maximum Allowed Run Time in milliseconds – if the specified executable quits automatically
after completing its work, leave this value as zero. Zero value means that the Database
Benchmark does not need to do anything to terminate the process. Otherwise enter some value to
have the Database Benchmark automatically terminate the launched process after the specified
time if it does not quit by that time. After the process is terminated a new instance of the process
is launched.

 Tip: You can use External Process worker type to run other SQL Assistant utilities supporting command
line interfaces, such as for example, the Bulk Test Data Generator, which can be used to generate large
number of database IO (input/output) operations. Or to run the unit tests specified in a Unit Testing Framework
project and measure how they perform under stress.

Command Line Interface

To run a database load generation project from a DOS command line window, use the following command:

sacmd lg:"path-to-project-file " sas:"path-to-sa-settings-file" conn:"myserver (userid)"

Substitute values into the command as follows:

path-to-project-file The full file name of the Database Benchmark project file

path-to-sa-settings-file The full file name of the SQL Assistant settings file containing the required
database connection parameters. This is an optional parameter. If not
specified, the default path for the current user account is used.

myserver (userid) The database connection name

Example:

cd "C:\Program Files (x86)\SQL Assistant 12"

sacmd lg:"C:\Projects\Performance\dev_pos.loadgen" sas:"%APPDATA%\SQL
Assistant\12.4\sqlassist.sas" conn:"DEV001 (sa)"

 Important Notes:

 Database Benchmark project files are XML files you save using the Database Benchmark graphical
interface.

 The SQL Assistant settings file location is version and user profile specific. See the Notes in the
Overview topic in CHAPTER 51 for details on how to find out the location of that file.

 You can find out the connection name in the DB Connections group of settings on the DB Options tab
page in SQL Assistant Options. If a connection requires a user id and password, make sure that both

 CHAPTER 36, Testing Database Performance

 -548-

are saved in the settings. The command line interface does not display interactive prompts and is
unable to prompt for credentials during command processing. For more information about storing and
managing database connections, see the Managing Database Connections topic in CHAPTER 48.

 CHAPTER 37, Improving Code Reusability

 -549-

CHAPTER 37, Improving Code Reusability

Overview

As opposite to traditional object oriented programming (OOP) languages code reuse is difficult to achieve in
traditional database-side applications. There are multiple obstacles, but among them the lack of support for
grouping of similar or related procedures and functions in classes, packages, encapsulating object/class
specific methods, luck of inheritance and so on. Unless you are working with an Oracle database or some
recent DB2 UDB version that support somewhat limited OOP implementation and code packaging, you are out
of luck. On the other hand, a typical modern relational database system contains many user created stored
procedures, functions, views, types, triggers, and other procedural objects spread across multiple databases
and schemas, which are often hidden from a plain view. On top of that, it is very difficult to identify in that code
repeating code fragments, with repeating or similar business logic contained in them Compare that to
traditional OOP languages storing most of their project code in flat text files typically located in a single folder
with subfolders, and which are easy to search. Modern development tools for OOP languages index the code
and compile code class hierarchies for fast code navigation and analysis enabling you to quickly locate objects
and their methods including inherited and overloaded methods and properties.

The SQL Assistant 's Code Context feature attempts to improve the situation with database code reusability
and enable you to deal with the virtues of DRY (don’t repeat yourself).

The Code Context implements the following:

 Stores copies of database code from multiple servers, databases, and schemas in a single location in
a local "full text search" (FTS) code repository file.

 Compiles full text indexes for super fast code search by context with results ranking
 As you enter new code or make code changes, it provides real time suggestions for similar and related

code already available in your databases so that you can have a look and decide for yourself whether
you can reuse that code or you need to code anew.

 Enhances development team collaboration, automatically finding related code written by other
developers.

FTS Code Repository

SQL Assistant maintains a local "full text search" (FTS) code repository that it uses internally for code indexing,
super fast context search, and for search results ranking. The repository is located in saCodeRepo.db file in the
%APPDATA%\SQL Assistant\CodeRepo folder. Note that %APPDATA% is a system environment variable. If
you do not know the value of this variable, you can display it by opening the DOS command window, and
executing the command echo %APPDATA%.

The FTS code repository must be populated with the database code before you can use the Context Search
features. To load code repository with the code from a specific database server:

1. Open your SQL editor and connect it to the required database server.

2. Right click in the editor and from SQL Assistant's menu select Search and Replace Update
FTS Code Repository command.

3. Allow SQL Assistant to process the repository update. Depending on the amount of code it may
take anywhere from several seconds to several hours. A progress bar will appear in the Code
Context page at the bottom of the target editor window. You can continue coding while the

 CHAPTER 37, Improving Code Reusability

 -550-

update is running..

4. If you want to load repository with codes from another database server, reconnect your editor to
the other database server and repeat steps 2 and 3. For more servers repeat the same steps
again. Alternatively, you can schedule automated FTS repository updates that SQL Assistant can
run in the background or overnight. For specific instructions on how to do that, see the " To
schedule code repository updates" section at the end of this chapter.

Managing FTS Code Repository

To update FTS code repository for the current database server:

1. Open your SQL editor and connect it to the required database server.

2. Right click in the editor and from SQL Assistant's menu select Search and Replace Update
FTS Code Repository command.

3. Allow SQL Assistant to process the repository update. Depending on the amount of code it may
take anywhere from several seconds to several hours. A progress bar will appear and the Code
context page at the bottom of the target editor window. You can continue coding while the update
is running..

4. If you want to update repository for another database server, reconnect your editor to the other
database server and repeat steps 2 and 3. For more servers repeat the same steps again.

To completely rebuild the code repository database

1. Open your SQL editor and connect it to a database server.

2. Right click in the editor and from SQL Assistant's menu select Search and Replace Context
SQL Search command.

 CHAPTER 37, Improving Code Reusability

 -551-

3. In the Context SQL Search window, right click the list box and from the popup menu select the
Rebuild FTS Code Repository command.

Allow SQL Assistant to process the repository update. Depending on the amount of code it may
take anywhere from several seconds to several hours. A progress bar will appear and the Code
context page at the bottom of the target editor window. You can continue coding while the update
is running..

 Important Note: The Rebuild command truncates code repository database and then populates it with
the code of the current database server. If the repository contained code from other database servers, change
your database connection and then use the Update command to populate repository with the other database
server's code. Repeat it for as many servers as required.

To truncate the code repository database:

1. Open your SQL editor

2. Right click in the editor and from SQL Assistant's menu select Search and Replace Context
SQL Search command.

3. In the Context SQL Search window, right click the list box and from the popup menu select the
Reset FTS Code Repository command.

To schedule code repository updates:

1. Open your SQL editor and connect it to a database server.

2. Right click in the editor and from SQL Assistant's menu select Search and Replace Context
SQL Search command.

3. In the Context SQL Search window, right click the list box and from the popup menu select the
Schedule Updates command. the Schedule Updates dialog will appear.

4. Fill in the required schedule time and frequency.

5. Repeat steps 1 to 4 for other database servers if required.

 CHAPTER 37, Improving Code Reusability

 -552-

 Note: It is recommended that you update the SQL Assistant's code repository often in order to keep it up to
date with your latest database changes.

The Light Bulb

As you edit the code in the editor, SQL Assistant automatically checks in the background if it can find similar or

related codes in the code repository. It displays the light bulb icon next to the code fragment for which it
found one or more matches. Click the light bulb icon to see what it found. The Code Context popup will appear
on the screen as in the example pictured below.

In this example, the user worked with "Summary of Sales by Quarter" view. SQL Assistant found similar code in
2 stored procedures "Sales by Year" and "Employee Sales by Country" and shown the light bulb icon line 15.
When the user clicked that icon, SQL Assistant brought up the Code Context popup listing the items and
matching fragments of their code. The matching tokens are highlighted with light orange background color.

 Important Note: For the Light Bulb feature to be functional, the SQL Assistant's code repository must be
populated with your database SQL code. See the Code Repository topic for details on how to populate and
manage SQL Assistant's code repository.

 CHAPTER 37, Improving Code Reusability

 -553-

Advanced Context-based SQL Search

The context search provides you with advanced methods for very fast searches of your database SQL code
across multiple databases and database servers provided that you have populated SQL Assistant's code
repository with their stored SQL code.

To open the context search results window, click Search and Replace Context SQL Search command.
The Context SQL Search window appears at the bottom of the target editor.

The context search can be used in two different ways. The state of the Auto checkbox controls if the searches
are performed with search results displayed automatically or a manual input is required to initiate the search.

Automatic search

In this mode, as you type the text in the editor, SQL Assistant picks words before or under cursor and
automatically searches for matching text in the code repository. The search terms are copied to the Search
for input box automatically. If you select several word in the text, the context search is performed for the
entire selection. If the selection contains multiple words, the context search uses so called NEAR search to
find SQL code containing all specified words within a certain proximity of each other. The behavior of the
NEAR search can be customized in SQL Assistants options. See the Tuning Code Context Behavior topic
in this chapter for more details.

 Note: Automatic searches are performed in the background so you can continue working with the
editor. The search results are ranked by relevancy and displayed automatically.

 CHAPTER 37, Improving Code Reusability

 -554-

Manual search

In this mode you need to enter search terms into the Search for input box and press the Enter key to
initiate the search.

Searching for multiple loosely connected words

If you enter multiple words to search for, the context search uses so called NEAR search to find SQL code
containing all specified words within a certain proximity of each other. The behavior of the NEAR search
can be customized in SQL Assistants options. See the Tuning Code Context Behavior topic in this chapter
for more details.

Wildcard searches

In the manual mode you can also do wildcard searching with the "*" character. If you do a wildcard search
for cat*, it will search for all text that starts with cat, so it will find category, catalog, etc.

Phrase searches

To search for SQL code containing a specific phrase with a set of entered words in a specified order with
no other intervening words, enclosing the search phrase in double quotes ("). For example "Sales Order"

Using AND, OR, NOT operators

There are currently three supported operations that can be used with the search criteria:

The AND operator determines the intersection of two sets of search terms. Try using a combination of a
phrase search with an additional loosely connected word joined by AND operation, for example, "Sales
Order"AND Cancel. This search finds all procedural objects in your code repository containing "Sales
Order" phrase and also containing word Cancel or its variations like Cancelation.

The OR operator calculates the union of two sets of search terms. For example, search for Shipper OR
Sender, finds all objects in your code repository containing either the word Shipper or the word Sender or
both.

The NOT operator (using the unary "-" operator) may be used to compute the relative complement of one
set of search terms with respect to another. For example, search for Shipping -Order finds all objects in
your code repository containing the word Shipping and not containing the word Order.

 Important Note: For Context-based SQL Search feature to be functional, the SQL Assistant's code
repository must be populated with your database code. See the FTS Code Repository topic for details on how

 CHAPTER 37, Improving Code Reusability

 -555-

to populate and manage SQL Assistant's code repository.

Tuning Code Context Behavior

Code Context working and behavior can be customized in the Common section on the Targets tab in SQL
Assistant's Options dialog.

To customize the settings:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Common section on the left side of the Options dialog screen.

3. Expand the Code Context Search… group of options

4. Change the options as required. To tune the behavior try a step-by-step process changing 1 or 2
options at a time, checking results and then if needed changing same or other options again until
you obtain the satisfactory results.

The following options are supported by the Code Context:

Maximum Number of Suggestions

The maximum number of suggest items that may appear in the Light Bulb popup. do not confuse this with
the number of items that can be listed in the Code Context Search window, which has its own options and
controls.

 CHAPTER 37, Improving Code Reusability

 -556-

Maximum Distance Between Tokens

The maximum number of words between search tokens, in other words, the proximity of search tokens
within the text. For example, if the value is 2, and in the Code Context Search window you enter "industry
list" search terms, the context search will only search for objects in the code repository containing text
referencing both "industry" and "list" and these two words are not separated by more than two other words
between them.

Maximum Number of Tokens

The maximum number of words the Code Context can pick up from the code in the editor for searching
similar code in the code repository.. For example, if the value is 4, up to four words are used as a criteria
for searching for similar code. This option is used in conjunction with the Minimum Number of Tokens to
improve the quality of context search results. The optimal values vary for different database systems.

Minimum Number of Tokens

The minimum number of words the Code Context can pick up from the code in the editor for searching
similar code in the code repository.. For example, if the value is 2, at least two words are used as a criteria
for searching for similar code. This option is used in conjunction with the Maximum Number of Tokens to
improve the quality of context search results. The optimal values vary for different database systems.

Split Compound Tokens

If set to Yes, the Code Context automatically breaks words like IndustryList, Product_Code into separate
words Industry List and Product Code when searching for similar code in the code repository.

Number of Tokens for Smart Search

The number of words before the edit caret that the Code Context can evaluate for their usability in context
searches and from which it can pick words for searching similar code in the code repository. If any
matches are found, the Light Bulb indicator is displayed.

Minimal Token Length

Te minimal number of characters in a word for that word to be used in context searches. Note that this
option does not affect the context search behavior for non essential words like "a", "the", "or" and others
which are always ignored by the code repository text indexes.

Ignored Tokens

The words you want always ignored in code context searches. Enter the list of words in the edit box below
the Ignored Tokens line.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -557-

CHAPTER 38, Entity Relationships, Graphical
Dependencies, and Data Flows

Overview

SQL Assistant provides integrated database documentation and modeling tools with a multi-faceted view of the
data organization, data flow, and dependencies, which sets it apart from many traditional database
diagramming and modeling tools primarily focused on entity relationships. It enables you to develop new
models from scratch or reverse-engineer your existing database schemas and import them into the model. You
can start with a reverse-engineered version and then continue developing it adding new objects and making
changes in the imported objects as required. All changes are saved in a composite database model file saved
to the file system on your workstation. At any time in the modeling process you can generate a database-
change script and execute it in one or more environments to apply your changes to the database schemas.

Each database model contains three facets:

 ER diagram - An entity relationship (ER) diagram shows the relationships of entity sets stored in a
database schema. ER diagrams illustrate the logical and physical structure of database schemas:

 Code dependencies diagram – A code dependencies diagram visualizes dependencies between
various database schema objects.

 Data flow diagram – A data flow diagram documents data dependencies and visualizes data
movement in your applications. It is an open ended diagramming tool enabling you diagrams
documenting your application working.

You can open and work concurrently on multiple database models. Each model is opened in separate
Database Model dialog. The following topics describe in detail how to use the Database Model dialog and
built-in diagramming tools.

ER Diagrams

Tables are the basic elements of an ER diagram. They can be imported from an existing database schema or
be created in the Database Model project and later created in the database during execution of the Database
Change Script.

All tables in the model are shown in the Tables node of the Model Explorer, they may or may not appear in the

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -558-

diagrams.

You can use simple drag-and-drop method to bring tables from the Tables node to the ER diagram.

To remove a table or other object from ER diagram, click that object and then press the Delete key on the
keyboard.

Double-clicking on a table in the Tables node or in the ER diagram opens the Edit dialog, where you can view
and update table properties including columns, constraints, and indexes.

An identifying relationship exists when the primary key of the parent entity is included in the primary key of
the child entity. In other words, parent entity's key is part of the child entity's identification. A good example of
such relation is "Orders" and "Order Details."

A non-identifying relationship exists when the primary key of the parent entity is included in the child entity
but not as part of the child entity's primary key. In other words, parent entity's key is not used for the child
entity's identification. For example, data in "Orders" and "Shipping Address" are related, but "Shipping Address"
is not part of the "Orders" entity identification

Code Dependencies Diagrams

The Code Dependencies diagrams help with managing database schema and code dependencies. The Code
Dependencies diagrams visualize physical relations between various objects in the database.

Data Flow Diagrams

The Data Flow Diagrams are created by users for the purpose of documenting internal and external data flows
and their process dependencies. You can use UML graphical elements, connector lines, text labels, images,
and other diagramming components to document how the data moves through your database.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -559-

Consider using it together with the Data Lineage tools that can help yopu discover and visual your application
data lineage. See CHAPTER 45, Analyzing Application Data Lineage for additional information.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -560-

The Database Model Workspace

Main Components and Controls

The Database Model workspace has five main parts described below.

The top level menu and toolbars provide quick access to all main functions supported by the database
modeling.

The Bird's Eye View window displays a miniature view of the active diagram. The window appears adjacent to
the left side of the Database Model workspace. The sole purpose of the Bird's Eye View is to ease the
navigation while working with large diagrams. In Bird's Eye View, a red rectangle is used to identify the area
currently displayed in the active diagram window. Note the red rectangle is not shown if the diagram fully fits in
the workspace. . Dragging the red rectangle causes the diagram window to scroll to display the section covered
by the rectangle.

The Model Explorer window appears adjacent to the left side of the Database Model workspace. . The content
of that window references all schema objects available in the model. Double-clicking a schema object in the
Model Explorer opens object-type specific properties editor dialog. You can also use drag-and-drop to add
objects to the active diagram from the Model Explorer.

To delete an object from a model, delete it from the Model Explorer. Note that deleting an object from a diagram
is not the same as deleting it from a model. An object remains in the model until it is deleted from the Model
Explorer.

The Workspace is the area on the center hosting three tabs for the database model diagrams. See the

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -561-

following topic for detailed instructions on working with the diagrams.

When Data Access Dependencies or Data Flow tabs get activated, an additional Toolbox window with
"Diagram Controls" title is displayed to the right of the Workspace. The Toolbox window provides additional
controls and stock icons that you can use in the diagrams.

Working with Diagrams

Single Object and Multi-Object Operations

For all operations concerning schema object database properties you work with a single object at a time.
Typically you double-click it or right-click it and then select Edit from the context menu to open the Edit dialog
where you can modify objects' properties.

For operations concerning object position and appearance, you can operation on both single and multiple
objects.

Objects added to a layer can be also operated in groups. For example, you can move the entire group by
moving its layer.

Selecting Objects

To select a single object, click the object you want to select. Most objects are agnostic to where you click them,
but some like layers have a special area in the left-top corner used as a hot-spot for selection. This special area
is indicated by a different background color.

To add more objects to the selection: Hold down Shift key and click additional objects to add them to the
selection.

To select a group of objects in a specific area: Use mouse lasso effect - while holding down the left mouse
button drag a rectangle around the objects you want to select.

To select all objects in a diagram: Press Ctrl+A key to select all objects.

To select a connector line, click the line you want to select.

Grouping and Ungrouping Objects

Grouping objects is typically a temporary operation which you can use to bundle different objects together and
then manipulate them in groups while reorganizing the diagrams.

Another use of grouping is keeping related objects together as a single group. However Layers provide a richer
set of options that can be used for object grouping.

To group objects, select multiple objects using any appropriate method, then click the Group icon on the

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -562-

toolbar.

To ungroup previously grouped objects, select the group, and then click the Ungroup icon on the toolbar.

Moving, Rotating, and Resizing Objects

Moving and resizing objects is the same as moving and resizing windows. If multiple objects are selected, they
are moved as a group. If objects are grouped using the Group function, all objects in the group are moved
together. If objects are placed onto a layer, the entire layer can be moved with all the contained objects.

On contrary, the rotate and resize operations are applied always to individual objects. However if the selected
objects have been previous grouped together using the group tool, then resize operations effect all objects in
the group.

 Note: Selected objects have three dots displayed on each side of the object. Drag the dots to change
object's dimensions.

Objects of certain type, for example text notes and images can be rotated, A special handle is shown in the
object's area that you can drag sideways to rate the object. The following example demonstrates this technique

.

 Note: The rotation handles are visible only when objects are selected.

Adjusting Connector Lines

In certain cases you may want to adjust positions and shape of connector lines. Select a line that you need to
move or change shape. If selected line has two legs, two resizing controls are shown close to line end-points. If
the selected line also has a middle part, then a mid-point resizing control is also show as demonstrated on the
following image. Drag the resizing controls to adjust positions of the line parts.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -563-

 Note: The resizing controls are visible only when lines are selected.

Appearance

SQL Assistant supports themed interface for database model diagrams allowing you to not only set an
overarching theme for the schema objects controlling which elements and object attributes to show in the
diagrams , but also individual styles based on color, effects and font components. Different appearance
settings can be used for different types of schema objects. For simplicity all types of schema objects are
grouped in three categories: Tables, Views, and Procedures. Note that Procedures category includes all types
of procedural objects support by SQL Assistant, including but not limited to stored procedures, functions,
macros, and triggers.

Several predefined themes are available out of the box. You can also create your own custom themes as
described in the following topic. In case all themes are deleted or themes configuration files cannot be located a
predefined Basic theme is used. The Basic theme cannot be customized, this theme is static and is used only if
everything else fails.

Themes can be applied to the model on the fly using the Themes drop-down list.

In addition to themes you can customize visual properties of individual objects using different fonts and colors.
Object scope customizations override visual attributes of the selected theme. Use right-click context menu to
change visual properties of specific objects.

To change global diagram options including display of gridlines, object position snapping, control of rulers, and
other global properties, use the Diagram Options dialog accessible via top level Object -> Diagram Options
menu and icon on the toolbar.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -564-

Customizing and Creating Themes

The Theme Manager dialog allows you to customize diagramming themes. To open the Theme Manager click
top-level Object -> Theme Manager menu.

The Themes list shows all available themes. You can use toolbar buttons above the list to add, delete and copy
themes.

Following is a description of each toolbar button:

Moves the selected theme up one line

 Moves the selected theme down one line down.

 Renames the selected theme

 Inserts a new theme with basic settings.

 Deletes the selected theme.

The Preview box shows how objects will appear in the model if selected theme is applied to the model.

The best method to learn the many available options in the Theme Manager is to try changing them and seeing
changes applied to the Preview box. When you are satisfied with the look of the modified them, click the OK
button to close the Theme Manager dialog and save your changes.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -565-

Navigation

You can select shapes in the diagram with the mouse as described in the Selecting Objects topic , but
sometimes it is more convenient to use the keyboard. Use the Arrow Right, Arrow Left, Arrow Top and Arrow
Down keys to move current selection to the adjacent objects.

Pan Mode

Use the Hand icon on the toolbar to shift to Pan mode. Mouse down and dragging will pan the diagram

Zoom

You can quickly zoom in and out by changing the zoom ratio in the Zoom drop-down available in the toolbar
area. You can choose one of the predefined values or type in a custom value. Or you can use Ctrl + mouse
wheel to zoom in and out of the diagram.

Search

To quickly locate the required object by its name you can use the Search box available in the toolbar area.
Click the Search box, type full or partial name of what you want to find and press the Enter key.

Bird's Eye View

 In Bird's Eye View, a red rectangle is used to identify the area currently displayed in the active diagram
window. Note the red rectangle is not shown if the diagram fully fits in the workspace. . Dragging the red
rectangle causes the diagram window to scroll to display the section covered by the rectangle.

Auto-layout

SQL Assistant supports automatic layout function that can be used to rearrange entire diagrams. After the
diagram is rearranged the same function can be applied again to make small adjustments to object positions.
You would typically use the auto-layout after importing a set of new schema objects into the model.

SQL Assistant auto-layout function uses force-directed graph drawing algorithm for drawing graphs in an
aesthetically pleasing way. It attempts to position the objects (a.k.a. nodes of a graph) in two-dimensional
space so that there are as few crossing lines (a.k.a. edges) as possible, by assigning forces among the set of
edges and the set of nodes , based on their relative positions, and then using these forces either to simulate
the motion of the edges and nodes or to minimize their energy.

To apply the auto-layout to the active diagram, select Edit -> Automatic Layout menu or click the Auto-

Layout icon on the toolbar.

Working with Layers

Layers are used to help organize objects in the diagrams. Typically, related objects are added to the same
layer; for example, you may choose to add all your tables storing data for Account Receivables to one layer
while all tables related to Accounts Payables to another layer. You can then choose different colors for different
layers to make the diagram look aesthetically pleasing.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -566-

To change layer caption, double-click the grey box in the left-top box of the layer, or alternatively right-click the
layer area and select Edit command from the context menu. You can type the layer caption.

 Tips:

 The Del key cannot be used when editing layer caption. This key is reserved for other uses. If you
need to erase part of the text entered, use the Backspace key.

 Note caption text can have multiple lines. Use the Enter key while entering text to break it by lines. But
you should keep the caption short as not to make the text overflow layers' control box. You should not
enter more than 2 lines of text.

All objects placed onto the same layer are logically grouped. If you move layer to a new position in the diagram
workspace, all objects in the layer will move along with it.

To add new layer to a diagram, click the Layer icon on the toolbar then click in the workspace where you
want the new layer to appear.

To add an object to a layer, simply drag and drop it directly onto a layer. To drop multiple objects at once, select
a group of objects as described in the Selecting Objects topic and then drag and drop the entire selection onto
a layer.

Adding Schema Objects

To add logical schema objects to an active diagram

1. Click the appropriate object type on the toolbar

2. Click in the diagram workspace where you want to add the object. A box with the object type icon will
be added to the diagram.

3. Double-click the box to open Edit dialog for the newly added object. Enter required object properties
and then click the .Ok button to close the Edit dialog.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -567-

Adding Relations and Dependencies

You can add logical relations to tables on the ER diagram

1. Click the appropriate relation type on the toolbar

2. Click a child table in the diagram workspace.

3. Click a parent table in the diagram workspace. A relation line will appear between the two tables.

4. Double-click the relation line to open the Edit dialog. Choose specific Source and Reference
columns for the relation and then click the .Ok button to close the Edit dialog.

 Tip: If you click the same table twice, a self-referenced relation will be added to that table.

Using Notes

To add notes to a diagram, click Add new text block icon on the toolbar and then click in the diagram
workspace where you want to add a new note.

To edit note text and change its appearance:

You may edit the note text by double-clicking it to switch to text Edit mode, or simply right click it and choose
Edit command from the context menu. Using the context menu you can also change color and font, text block
back-to-front relative position, and remove the note.

 Tips:

 The Del key cannot be used when editing notes text. This key is reserved for other uses. If you need
to erase part of the text entered, use the Backspace key.

 Note text can have multiple lines. Use the Enter key while entering note text to break text by lines.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -568-

Using Images

Images allow you to add rich content to your diagrams. They are most useful on the workflow diagrams
enabling you to add custom shapes and objects to the diagram as well as create the entire diagram from a
single images copied from your database application documentation.

Click Add new image icon on the toolbar. A Select Image File dialog will appear. Select the image that you
need and click OK to close the file dialog. After that click in the diagram workspace where you want to add a
new image.

Using Stock Icons

A rich collection of stock icons is provided to you for use with Data Access Dependencies and Data Flow
diagrams. When a diagram of one of those types is activated, the Toolbox window appears adjacent to the
right side of the Database Model workspace.

To add a stock icon from the toolbox, click the required icon, then click in the diagram workspace where you
want the icon inserted.

Printing Diagrams

The printing functions and options used to create printouts of your diagrams can be found under the File menu.
The printing options are pretty much the same as in most other Windows programs, and do not require special
description.

Saving Diagrams to Images and PDF Files

You can save your diagrams to PDFs and various image file formats so that you can share them with
colleagues who do not have the SQL Software installed on their computers.

Saving to image files also enables you to open and edit the diagrams in other tools, as well as use advanced
printing functions provided by many graphics editors.

To save your diagram to PDF or image file, select File -> Export... menu. Choose the file name and format and
then click the Save button.

 Note: To view a PDF file, you must have a PDF reader installed on your computer such as the Acrobat
Reader, available from Adobe Systems.

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -569-

Working with Model

Creating Blank Model

To start with a blank model in the target editor select SQL Assistant menu and then select Database
Modeling... menu command. This will open new instance of the Database Model workspace connected to the
same database as the editor from where you opened it.

To continue, follow instructions in the Working with Diagrams topic for adding new objects to the diagrams,

If you already have the Database Model workspace open, you can choose File -> New Model menu. In this
case, the new model will appear in the same dialog.

Reverse-engineering Existing Database Schemas

1. In the Database Model workspace click the Import icon on the toolbar. This will open the Import
Schema Objects Wizard dialog

2. Follow instructions provided by the dialog to select schema objects to add to the model. This is a four
steps simple and quick procedure.

 Tip: If you uncheck Add all objects to the diagrams option at the bottom of the dialog, the
imported objects will be added to the model but not added to the model's diagrams.

Adding Existing Schema Objects to Model

This is essentially the same procedure as creating a new diagram by reverse-engineering existing databases
and schemas. The same Import method is used. However if you select objects that are already in the model,

 CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows

 -570-

the import process will ignore them and they will not be repeated.

Generating and Executing Database Update Scripts

Two types of scripts can be generated:

 Database Schema Change Script – this type of script contains SQL commands required to
synchronize database design with the current model state.

 Important Note: The Schema Change Script does not guarantee that the existing data in the
database will be preserved during the execution of the script. If you need to ensure the data is safe,
review the generated script before executing it, and if deemed necessary, update it as required.

 Database Schema Create Script – this type of script contains SQL commands required to recreate the
schema objects referenced in the model.

Both types of scripts can be generated using appropriate commands in the top-level File menu.

Refreshing Model from Database

If your database has recent changes not reflected yet in the mode, you can refresh the model from the
database. To start this operation, click top-level File -> Refresh Model from Database menu.

Saving and Reopening Models

Saving and opening model files is the same as saving and opening files of any other type. Use top-level File ->
Save... and File Open... menus.

 CHAPTER 39, Code Visualizer and Database Documenter

 -571-

CHAPTER 39, SQL Code Visualizer and
Database Documenter

Overview

 Important Note: The Code Visualizer and Visual Database Documenter are experimental features.
All experimental features are not fully supported. Use them at your own discretion. If you find a bug or
have an enhancement suggestion, please report it to the support team.

SQL Code Visualizer

SQL Code Visualizer is a tool for visualizing SQL code and presenting it in a form of flow diagrams and
sequence diagrams. To learn how to use this tool and what it can do, open an existing procedure in SQL
Assistant’s SQL Editor. In the editor select SQL Assistant -> Code Visualizer menu. The Code Visualizer
pane will open in the bottom part of the editor.

The flow diagram of the code is rendered on the left side of the pane. A special version of the sequence
diagram is rendered on the right.

You can use the toolbar at the top of Code Visualizer pane to zoom in and out, to move elements of the

 CHAPTER 39, Code Visualizer and Database Documenter

 -572-

diagram around if you wish to adjust their positions for better visibility. You can also save the diagrams to a
PDF or image file.

SQL Assistant provides flexible customization options for styling the diagrams and for choose the level of
details displayed. Several predefined themes are available out of the box and can be selected from the
Themes drop-down in the toolbar area. To customize the existing styles or add your own, click the Themes

button on the Code Visualizer toolbar. This will open the Visual Code Themes dialog where you can
customize many different options.

Expand the style names and then expand the Blocks and Lines groups of options to customize visual
appearance of the diagrams as desired. To customize the content of the diagrams use the top level
Transformation Options available in the right-top corner of the Visual Code Themes dialog.

Visual Database Documenter

The Visual Database Documenter is conceptually similar to the SQL Code Visualizer but it works at the schema
and database levels. It generates visual documentation for objects of a given schema or database, including
automatic generation of database entity relationship diagrams (ERD, see CHAPTER 38, Entity Relationships,
Graphical Dependencies, and Data Flows for details), code dependencies diagrams, flow and sequence
diagrams for procedural schema objects, as well as definitions of tables and views.

The Visual Database Documenter can be accessed from DB Explorer’s menu. Right-click database name or
schema in the explorer and choose Visual Database Documenter from the context menu. The Visual
Database Documenter dialog will appear

 CHAPTER 39, Code Visualizer and Database Documenter

 -573-

In the dialog you can choose appropriate output folder for
the generated documentation files, choose themes for the
database ERD diagram and for the Code Visualizer, which
you want to use in the current session. Select object types
that you want to be documented. In most cases you would
want to choose only you objects that you need to document
your database design. Too many objects of secondary type
if selected may cause the output to be very big and the
documentation difficult to navigate because of its big size.

Once you are done with the selection of options, click the
Generate button and then wait for the Visual Database
Documenter to complete. For a large database generating
documentation files and especially code flow diagrams may
take a while. Upon completion, the Visual Database
Documenter will launch your default web browser and open
the index page of the generated documentation files. The
result should look similar to what you can see on the
following screenshot.

 CHAPTER 40, Sanitizing and Obfuscating Database Data

 -574-

CHAPTER 40, Sanitizing and Obfuscating
Database Data

Overview

When the test data generated using the Test Data Generator isn't good enough, or just takes too much time to
develop and maintain the data cases required for a robust application testing, one can copy the real production
data to the test database and then sanitize it to have all customer specific accounts, names and other
personally identifying details removed or obfuscated so that it cannot be reognized anymore. The Data
Saniteser utility provides you with the tools for that task.

Working with Data Sanitizer

1. To open the Data Sanitiser utility, in SQL Assistant’s menu select Code and Data Generators menu
branch, and then select the Data Sanitizer command. This will open the Data Sanitizer dialog.

2. Choose how you want to identify tables that require data obfuscation or cleaun up. You can let the
utilituy scan your database for schema definitions and to take data samples for analysis, then suggest
the tables that appear to be good candidates for , or you can manually select which tables to sanitize.

3. Click the Next button to advance to the next step. Review the columns suggested for data sanitation.
You can change the selection.

 CHAPTER 40, Sanitizing and Obfuscating Database Data

 -575-

4. Choose the data onfuscation and/or cleaun up methods and parameters using rhe fields displayed to
the right of table column names..

You can choose from one of the following six methods for each selected column:

 Blank out random parts of the text

 Replace all, but last 4 characters with X's

 Replace all, but first 3 characters with X's

 Replace with a random name

 Replace date part with random date

 Replace numeric value with random number.

For methods that support replacing original values with random values you can choose how to
generate the random value, min and max range, or to choose a value from one of the predefined or
custom data libraries. See Data Generation Options topic in CHAPTER 18, Generating Test Data for
more information on data libraries and data ranges.

5. Click the Next button to start the data update process immediatelly, or click the Schedule button to
schedule it for a later run.

Opening and Saving Projects

To open an existing data sanitizer project for modification or rerun

1. In the Data Sanitizer dialog, click the Open button right-bottom part of the dialog. The Open Data
Sanitizer Project dialog will appear.

2. Select the project file you want to open, then click the Open button. The Data Sanitizer dialog will be
populated with previously selected database connections, tables, columns, and project settings.

To save project settings in a project file:

1. In the Data Sanitizer dialog, click the Save button in the right-bottom corner of the dialog . The Save
Data Sanitizer Project dialog will appear.

2. Select the project file you want to save project settings to, then click the Save button. It is a good idea
to use "project" or similar prefix or suffix when naming project files in order to distinguish them from
other XML files.

Scheduling Data Sanitization During Quiet Hours

The Schedule button on the Data Compare dialog enables you to schedule the process to run unattended at
night or other quiet times when the database server is not very busy. This opens the Schedule dialog providing
graphical interface to the data comparison command line interface described in the next topic. For information
on how to manage scheduled tasks in SQL Assistant, see CHAPTER 50, Managing Scheduled Tasks

The scheduled task uses data sanitizer’s command line interface to run the process at the specific date and
time.

 CHAPTER 41, Cloning Databases, Schemas, and Schema Objects

 -576-

CHAPTER 41, Cloning Databases, Schemas, and
Schema Objects

Overview

It's often required to create a clone of an existing database or database schema for troubleshooting production
issues, for testing and development of new application versions, and for other reasons. And sometimes it's the
only option when no other operational environment is available for replicating or restoring a copy of an existing
database or schema. SQL Assistant Professional Edition provides the Clone It utility supporting that function.
As of SQL Assistant version 12.4, this utility supports the following database servers

 Microsoft SQL Server 2008, and later
 Azure SQL Database 12.x
 Oracle 11.1, and later
 MySQL 5.x, and later
 MariaDB 5.x, and later
 PostgreSQL 9.x, and later
 Amazon Redshift 1.x, and later
 Pivotal Greenplum 4.3.x, and later
 SQLite 2.x, 3.x

Future versions of Clone It will support other types of database servers as well.

 Important Note: The Clone It tool is not designed for creating exact binary copies of databases, and
schema objects. It does not operate with database files. It does generate SQL scripts required for recreating
databases, their schemas, and schema objects within a different namespace. It makes best effort to preserve
the code integrity of the cloned procedural objects and views replacing within their code all source schema
name references with the destination schema name references. When cloning referential integrity constrains it
also updates their references to point to new tables in the cloned schemas.

If you need an exact binary copy of your database or schema cloned to a different database server.

1. Connect to the source database server.

2. Use the commands available in the DB Explorer's "Backup and Restore" menu to backup your
database to a file.

3. If required to clone it to a different server, copy the resulting backup file using available operating
system commands from the source server to the destination server.

4. Connect to the destination server.

5. Use the commands available in the DB Explorer's "Backup and Restore" menu to restore your
database from the backup file.

If you only need to clone your database schema without data to a different database server:

1. Connect to the destination server.

2. In the DB Explorer's right-click the destination database. In the context menu choose New…
command.

 CHAPTER 41, Cloning Databases, Schemas, and Schema Objects

 -577-

 Important Note: The right-click context is very important.
You do need to right-click the destination database, and not a
schema or schema object below the destination database
level.

The New DB Object dialog will open listing the options
available for the selected context. If you right-clicked in a
wrong place, then you will not see the Schema option listed
there.

In the New DB Object dialog choose Schema and click the Ok
button. This will open the New Schema dialog. Note that the
dialog pictured above is just an example for a specific version
of DB2 UDB. The content of the dialog varies for different
database types and their versions.

3. Follow instructions provided in the New Schema dialog to create a new empty schema.

4. Connect to the source database server.

5. In the DB Explorer locate the schema you want to clone. Right-click it and choose the Compare
Schema command in the content menu. This will open the Compare Schema dialog, which you can
use to compare your existing source schema and the new empty schema in the destination database.
Run the Schema Compare and let it replicate the source schema objects to the destination schema.

For more information about the Schema Compare tools and specific usage instructions please refer to
CHAPTER 27, Schema Compare Utility

Working with Clon It

The Clone It interface breaks the complex cloning task into several interactive steps to make it easier for you to
choose the required scope, options, and the database and schema objects to clone. You can pause or cancel
the cloning process at any time. We recommend that you first read the Overview section to learn how the Clone
It works conceptually, what it does and does not, and what other tools you can use if you cannot find what you
need in the Clone It functions.

The Clone It tool is accessible from several different places, you can invoke it from the Command Selector,
from the top level Data Tools menu in SQL Editor Professional Edition, and from the DB Explorer. The first two
methods will invoke the Clone It dialog based on the current connection context for the current database and
schema. While using the DB Explorer you can invoke it for any schema object whether it's in the current
schema or not, as well as for other schemas and databases.

Pretty much like when copying files in the same folder, depending on what you selected to clone, you will need
to chose a unique name for the new database, schema, or schema object selected.

 CHAPTER 41, Cloning Databases, Schemas, and Schema Objects

 -578-

To create a clone of a database

1. Connect to the source database server.

2. In the DB Explorer right-click the database you want to clone. If you connected to a single database
server, right-click anywhere with in an empty space of the DB Explorer. In the Context menu choose
the Clone It… command. This will open the Clone Database dialog.

3. Choose the options and types of database objects you want to clone. It's not required to select
everything. For example, you may want to ignore full text index options for tables and do not clone
them, or when cloning a database, you may choose to do not clone the same certificates and
encryption keys.

 Note: In this step you can also choose whether to copy table data along with the schema object
definitions. If you uncheck the Copy table data option, only the settings and schema object definitions
will be copied without the data. If you choose to copy the data, before you proceed further be sure to
check you have enough free disk space on the database server to store a copy of the data.. An
additional space is also required for transactional logs and rollback segments for the intermediate
transaction data the database server will generate internally while executing the data copy operations.
The amount of this additional space is typically 1.5 size of the largest table selected for cloning. If you
choose to clone temporal tables, an additional space is required for their historical data archives.

 Important Note: The historical data for the temporal tables is not copied. Only the latest data is
copied over to the cloned instance.

Click the Next button to proceed to the next step

4. In step two, you can choose which specific database and schema objects to clone. You can also
preview the SQL scripts generated for the selected objects.

 Note: Cloning of some types of objects requires additional inputs provided by you. For example, if
you choose to clone credentials for a login based on a user name and password, you would need to
enter password for to be created login. When cloning databases and their files, you may also need to
enter new file path for the database files to avoid conflicts with existing database files, and so on.

The following screenshot demonstrate the interface available for the object selection and for the
additional input parameters:

 CHAPTER 41, Cloning Databases, Schemas, and Schema Objects

 -579-

After you are done with refining the selection, click the Execute button to start the cloning process.

You can also click the Save Script button on the left side of the dialog to save the generated SQL
script for a later execution.

 Note: SQL Assistant uses different methods for different database types to clone their data.

To create a clone of database schema or schema object

Cloning a schema or schema object conceptually is very similar to cloning a database. Please refer to the
previous section for more details. However there are few differences that you need to know before you use the
Clone It utility with a schema or schema objects:

 When cloning a database, SQL Assistant requires new name for the new database instance. All
schema objects within the database are containerized and so their names remain the same and do
not changed.

 When cloning a schema, SQL Assistant requires new name for the new schema instance. That schema
name change impacts all views, user defined functions, stored procedures, triggers, and other types of
procedural objects having in their source codes references to fully qualified schema object names. The
references to the source schema are automatically replaced with the new schema name. For example,
if you choose to clone schema dvd_store to new schema named dvd_store_copy, and if within that
schema there is a user defined function get_customers_balance containing the following code
fragment

SELECT COALESCE(SUM(f.rental_rate),0) INTO v_rentfees
FROM dvd_store.film f, dvd_store.inventory i, dvd_store.rental r
WHERE f.film_id = i.film_id
 AND i.inventory_id = r.inventory_id
 AND r.rental_date <= p_effective_date
 AND r.customer_id = p_customer_id;

In the new schema the above code will be transformed to the following version

SELECT COALESCE(SUM(f.rental_rate),0) INTO v_rentfees

 CHAPTER 41, Cloning Databases, Schemas, and Schema Objects

 -580-

FROM dvd_store_copy.film f, dvd_store_copy.inventory i, dvd_store_copy.rental r
WHERE f.film_id = i.film_id
 AND i.inventory_id = r.inventory_id
 AND r.rental_date <= p_effective_date
 AND r.customer_id = p_customer_id;

 Similarly, if the tables in the source schema feature foreign key constraints referring to other tables in
the same schema, the cloned tables will be automatically modified to have their foreign key constraints
refer to the appropriate tables in the cloned schema.

 For any fully qualified schema object name in the code or referential constrain with references to
schema objects outside of the source schema, their references will not be changed. For example, if
there is a table named dvd_store.customer with geo_region_id column having its foreign key constraint
referring to a primary key table named geography.regions, the cloned table dvd_score_copy.customer
will also have its foreign key constraint referring to the same primary key table the geography schema.

 CHAPTER 43, Tab Manager, Task Manager and Database Session Monitor

 -581-

CHAPTER 42, Tab Manager, Task Manager, and
Database Session Monitor

Overview

SQL Assistant provides a set of tools for monitoring both client side and server side operations and their
progress. The Tab Manager tool enables preview or all open editor tabs, their connections and active
operations. The Task Manager tool enables monitoring of SQL Assistant background operations and their
progress of work. It can be also used to terminate unwanted operations forcedly. The Session Monitor tool
enables monitoring database activities and database users. It the database server supports progress of work
reporting for long running operations, the tool can show progress of work for active queries.

In the integrated SQL Editors by default all three tools are opened in windows docked to the bottom of the
editor’s main window so that they can be seen in any tab. You can dock them to other sides as well as float
them as standalone windows. The docking position and floating state can be changed via context menu as well
as the top most position. For details working with docked and floating windows see SQL Assistant Windows
and Appearance topic in CHAPTER 3, Code Assistants and SQL Intellisense.

In other target environments both tools have their windows by default opened in the floating state.

Tab Manager

You can use the Tab Manager to quickly switch between tabs, close them, review their context, file
associations, and database connections without activating tabs.

 Tip: The File Name is always the same as the tab name. If the File Path value is empty, the tab contents
has not been saved to a file, and the File Name represents what would be the file name when the tab is saved
with default options. If the File Path is value is not empty, then the tab is associated with the actual file on the
disk as specified by the File Path and File Name values.

The Tab Manager supports the following actions that become available when a specific file name is selected in
the tab list.

Activate tab - Activates the editor tab associated with the selected tab name.

 Save tab contents – Saves tab contents to disk. If the tab content has never been saved before,
the system Save File dialog is displayed, and you can choose the file path and name, otherwise tab
changes are saved to the associated file.

 CHAPTER 43, Tab Manager, Task Manager and Database Session Monitor

 -582-

 Show revisions – This command launches the Document Manager for the selected tab and
shows previous revisions of the tab and file contents. For more information on working with
document revisions, see CHAPTER 35, Document Manager and Code History Add-on.

 Show SQL history – Shows history of SQL commands executed in the selected tab. For more
information about this function see Using Code Execution History topic in CHAPTER 15.

 Close tab – Closes the selected tab. If there are unsaved changes in the tab, you will be prompted
to save them.

To open the Tab Manager, in the target environment select SQL Assistant -> Tab Manager menu.

 Tips:

 Double-clicking a tab name listed in the Tab Manager activates and sets focus to the editor tab
associated with that tab, However, this method does not work for all supported target environment.

 The data-grid showing open tabs supports data sorting and other data related manipulations
supported by SQL Assistant data-grids. For more details see Working with Table Data Preview
Interface CHAPTER 11, Data Display and Editing.

 The right-click menu in the data-grid showing open tabs provides an additional command for quickly
locating referenced files in the Windows Explorer. Right-click the required file name and then choose
Open Containing Folder in Explorer command. Windows Explorer will open and automatically
expand the path specified in the File Path value and then highlight the chosen file.

Task Manager

You can use the Task Manager to monitor SQL Assistant background operations such as running database
queries, data import and export operations, data transfers between servers and more. For most operation types
progress of work reporting is available within the Task Manager.

The Task Manager supports the following actions that become available when a specific operation is selected
in the task list.

Show document - Activates the editor tab associated with the running operation. Note that not all
operations have windows associated with them. For example this action is not available for data
scripting, data import/export operations, and some other operation types.

 CHAPTER 43, Tab Manager, Task Manager and Database Session Monitor

 -583-

 Cancel database operation or Cancel task– In case of a single database operation such as query
execution from an editor tab, it sends signal to the database to cancel the active database
operation. In case of multi-server operations, for example, data transfer tasks, multi-server code
execution, multi-server search and replace, and so on… it executes the Cancel function, which is
typically the same as clicking the Cancel button in the dialog window associated with that operation
type. In all cases the effect of the Cancel action is not always immediate.

 Kill connection – Kills database connection associated with the active database operation. Note
that in case of multi-server operations the effect of this action is not clear. It depends on the
operation current state and selected options.

To open the Task Manager, in the target environment select SQL Assistant -> Execute/Schedule SQL ->
Task Manager menu.

 Tips:

 Double-clicking an operation listed in the Task Manager activates and sets focus to the editor tab
associated with that operation, However, this method does not work for all supported target
environment.

 The data-grid showing running operations supports data sorting and other data related manipulations
supported by SQL Assistant data-grids. For more details see Working with Table Data Preview
Interface CHAPTER 11, Data Display and Editing.

 Important Note: The percentage of the task progress shown in the Progress column of the Task
Manager indicates SQL Assistant’s task progress. Do not confuse this with the progress of database back-end
operations. For example, if the task is “Executing queries” and it’s associated with running SQL statements in
an editor tab, the progress shown is measured as a percent of SQL statements already executed relative to the
total number of statements pending execution.

Session Monitor

You can use the Session Monitor to monitor database sessions. This enables you to determine the users who
are currently logged in to the database and the queries they are running.

Multiple Session Monitors can be opened for different servers simultaneously

By default the Session Monitor shows active database sessions and the SQL queries being executed. To
display all sessions including idle sessions, select “All sessions” in the Show drop-down list in the toolbar
area,

 CHAPTER 43, Tab Manager, Task Manager and Database Session Monitor

 -584-

 Tip: Blocked sessions are shown with pink background.

By default the Session Monitor window content refreshes every 5 minutes. To change the frequency use the

Auto-refresh drop-down list in the toolbar area. To force a manual refresh, click the Refresh icon in the
toolbar.

You can use the Kill icon to kill the selected session and to cause it to be disconnected from the database
server and all its activities stopped as soon as possible.

 Tip: The data-grid showing running operations supports data sorting and other data related manipulations
supported by SQL Assistant data-grids. For more details see Working with Table Data Preview Interface
CHAPTER 11, Data Display and Editing.

 Important Note: The progress of work percentage, time remaining, and other progress related details are
database type and version specific. Not all database servers support such statistics. For more details see the
following topic describing Session Monitor capabilities and supported customizations

Session Monitor Capabilities and Customizations

The driving SQL queries for the Session Monitor tool are stored in SQL Assistant settings and they can be
customized just like all other queries in SQL Assistant configuration. You can find them in the Options dialog,
DB Options tab, DB Queries section.

The queries are database type and version specific.

 CHAPTER 43, Tab Manager, Task Manager and Database Session Monitor

 -585-

 Important Note: The query text for the Session Monitor must begin with a commented line having
CAPABILITIES: prefix, as in the following example

-- CAPABILITIES: XSUHAQDO%TZECBW

The control characters following the CAPABILITIES prefix describe the monitoring query capabilities, in other
words, which columns are populated in the query with actionable values and should be displayed in the
Session Monitor window. Here are the supported control characters:

X session id
S session status
U user name
H host name
A program name
Q SQL statement text
D database name
O object name targeted by the current operation
% percent complete
T start time
Z elapsed time and elapsed time in seconds
E ETA for the current operation
C CPU time
B blocking session
W wait type

Custom columns

In addition to predefined columns, you can specify any number of custom columns that you want to appear in
the Session Monitor. For the additional columns, you do not need to reference them in the CAPABILITIES
section.

 CHAPTER 43, Command Selector

 -586-

CHAPTER 43, Command Selector

Overview

The Command Selector (also known as Command Palette) provides quick access to most SQL Assistant
commands and functions in a single searchable popup window. It relieves the need to remember where to
locate many of SQL Assistant menus and shortcuts that are sometimes buried several levels deep in the
regular menus The Command Selector window can be opened using Ctrl+Shift+Space hotkey. This default
hot key can be customized in SQL Assistant’s options in Targets -> Common -> Default Hot Keys section. See
Customizing Functional Hot Keys topic in CHAPTER 48, Customizing SQL Assistant behavior for more details.’

Immediately after opening the Command Selector window, start typing the filer criteria to locate the function you
look for. The text in the filter can be located anywhere within the command/function name. For example to
locate all commands that can be used to create new objects in the database, type “new”, to locate all
commands that can be used to export data to Excel or from Excel, type “excel.

 Important Note: Many commands are editor’s context specific. For example, if you want to see all
cascading object references to a particular database view, or all dependencies for a table column, please make
sure the cursor in the editor is within the name of the view or column name when you open the Command
Selector window. Another technique is double-clicking the subject name to highlight it in order to ensure that
the right name reference is picked up by the command selector as shown on the following screenshot

 CHAPTER 43, Command Selector

 -587-

 Tip: The Command Selector window is resizable. Drag the edges of the window to change its size to your
liking. The new size will be remembered for the current target development environment. If you use several
different development environments, repeat it as need in each environment.

Configuration

To reduce the clutter you can use the right-top menu in the Command Selector to choose groups of commands
that you want to show or hide in the Command Selector as demonstrated on the screenshot below. Your
selection will be applied immediately and also remembered for future use.

 CHAPTER 44, Visual Database Management

 -588-

CHAPTER 44, Visual Database Management

Overview

SQL Assistant provides a comprehensive set of management dialogs for visual database schema design and
administration tasks including database and schema objects, user and security management, backup and
restore tasks, and much more. The management dialogs are available for a number of supported database
systems and their versions. They can be accessed via context menus in the Database Explorer, using plugins,
and the Command Selector.

The following screenshots for the Table Properties dialog demonstrate different methods of accessing the
management dialogs. The Table Properties dialog is picked only as an example. Similar dialogs are available
for most other object and management functions.

Using the context menus

 CHAPTER 44, Visual Database Management

 -589-

Using the Command Selector

Using hot-track and mouse over hints

Usage

Version aware - The management dialogs are database version aware. Only the features supported by the

 CHAPTER 44, Visual Database Management

 -590-

version of the database server you are connected to are accessible in the dialogs. The management dialogs
have been designed specifically to generate database version specific SQL syntax.

Instant help - Mouse-over hints for all controls and input fields provide complete in-line help system. If you are
not sure about usage of a specific field and what to know what you enter or if a value is required or can be
omitted, rest the mouse pointer over the field for a couple of a seconds and a popup window will appear wit the
relevant details. Additional tips and instructions are provided within the dialog's user interface as well.

Change now or later, you choose - The database changes can be applied immediately, saved to a script, or
clipboard, or scheduled to be applied at a later time.

Comprehensive management interface – Each management dialog provides complete coverage of all the
features of the selected objects so that you can design and manage them in a single place and apply as a
single logical unit of work. For example, if you design a new table, you can visually define its attributes,
columns, constraints, indexes, partitions, triggers, security and permissions, and so on… all in the same dialog.
SQL Assistant will generate the required SQL script, which you can execute immediately or save for later.

Concurrent changes and multiple monitors – you can create new or modify multiple existing objects
concurrently whether you are working with a single database or multiple databases of different types. If you
have multiple monitors, for better efficiency and convenience you can move different dialogs to different monitor
and SQL Assistant will remember their positions.

Creating New Objects

You can use the Command Selector in the editor, or the right-click menu in the Database Explorer and then the
New… command to launch the management dialog for new objects. But there is an important difference
between the two. In the Command Sector you can find many of the New [objects type] commands supported by
the SQL Assistant, but not all of them. Some management dialogs are operational context dependent and
require that the "parent" object /container is selected before the dialog can be used. For example, to create a
new table index, you first need to choose a table for which a new index is to be created. With the Database
Explorer, the situation is quite different, the New… menu features two different forms. In case the current
operational context is non ambiguous and supports only objects of specific type, the New menu caption is
object type specific as shown on the following screenshot for the Sequences folder. The command caption in
this case is New Sequence. Selecting that command immediately opens the New Sequence dialog.

 CHAPTER 44, Visual Database Management

 -591-

In case the selected context supports objects of different types, the menu caption is generic text New… as
shown on the following screenshot. Clicking that menu opens the New DB Object dialog. Using that dialog you
can choose the type of object whose management dialog you want to launch.

Updating Existing Objects

In most situations you would select the required object in the Database Explorer, right-click it, and then choose
the Properties… command.

In certain cases you can also open the dialog directly from the editor. In case the type of object in the current
context supports mouse over hints, rest the mouse over the object name, wait for the hint to appear, in the hint
click the object name appearing in the header line to open up the graphical management dialog as
demonstrated on the following screenshot.

 CHAPTER 44, Visual Database Management

 -592-

Database Management Operations

Most database and server scope management commands are available in both the Command Selector and the
right-click menu in the Database Explorer. In the Command Selector you can find them within the Database
Management folder, while in the Database Explorer they are available at the top of the right-click menu for
Database and Server scope objects as demonstrated below.

 CHAPTER 44, Visual Database Management

 -593-

Database Change Preview and Manual Corrections

All management dialogs feature special SQL tab which provides a preview of the database change script that
would be executed when you click the Save button. You can use that tab to verify that the generated script will
change exactly what you want. If for whatever reason you want to modify the script, for example, to add
additional comments or to adjust the script to execute it differently, you can edit the script directly in place
before clicking the Save button. You can also click the Script button and in the context menu choose Open in
Editor command. The script will open in the SQL editor and you can continue working with the script using the
full featured editor interface.

Error Handling

The database change scripts are generated with transactions in mind so that in case of an error during the
change operations all important changes are automatically rolled back. However, that is not always possible.
Not all database types and not in all scenarios allow transactional changes. In such scenarios partial changes
can be applied. In the event of an unexpected error, and should reopen the dialog and correct or undo the
previous changes causing the error. Here is an example for partial changes. A complex table change script may
succeed in changing table columns and indexes, but then fail with insufficient permissions error when trying to
grant table access permissions to a selected group of users. The column and index changes will remain after
such error.

Smart Schema Refactoring

The management dialogs are designed to deal with complex change types. In many cases when a simple
change using ALTER command is not supported, the management dialogs may generate complex scripts for
rebuilding tables and other objects aiming to minimize or avoid any potential data loss. A good example of that
behavior would be converting a non-partitioned table to a partitioned table. The change script is generated in
such a way that it saves the data in the current table, rebuilds the table and its dependencies, and then copies
the saved data into the new table.

Scheduling Database Changes

It's not always desired or possible to apply the changes immediately during regular business hours while the
target objects are in use. In such situations you can use the Schedule It option to have the change script
executed by SQL Assistant at a later time. Or you can use Save Script option to save it to a SQL file and then
execute the script using other utility of your choice.

 CHAPTER 45, Analyzing Application Data Lineage

 -594-

CHAPTER 45, Analyzing Application Data
Lineage

Overview

The Application Data Lineage utility can perform static analysis of your files to discover and visualize data
origin, and how the data moves to and from your databases, and what happens to it in flight. It can zoom in
down to the column level lineage. It provides better intelligence about your data helping with the following tasks:

 Documenting application data dependencies, visualizing application services, modules, and routines
that read and write to database tables, including indirect table access through views, procedures, and
other forms of data access methods

 Planning application upgrades and database migrations

 Preparing for database upgrades, schema changes, and other database maintenance tasks

 Tracing data related errors back to the root cause

The Application Data Lineage utility can ingest multiple types of files, analyze their contents, and locate
references to database operations. It can analyze the following types of files

 Application log files in different formats

 Low level driver and ODBC trace files

 Application source files from many types of programming systems, including Java, C#, Python, Perl,
C/C++, SQL files, and a number of others

The Application Data Lineage utility parses all input files and locates text elements that might be relevant to
execution of various database queries.

It uses a customize set of regular expression based patterns to find the relevant text.

It also looks to application context specific details such as service names, module names, class names,
function names. It also uses a set of regular expressions to extract relevant regex groups containing the context
information.

It filters and aggregates the results

It then identifies names of database objects referenced in the queries, and traces their dependencies within the
database. For example, if an application executed SQL query refers to a database stored procedure, the utility
parses the procedure code and locates tables and their columns that are referenced in the procedure code and
how they are accessed.

From the table access patterns it extracts names of referenced columns and operation types breaking them
down to write or read classes.

It finally brings all relevant data together and prepares it for quick interactive visualization.

The results of the file parsing and analysis are saved locally. That saved data is used for interactive data
lineage diagrams rendered in the project workspace.

File processing is typically a one time operations. However new scanning might be required in case you choose
to add more application components to your projects and rerun the analysis to trace their data dependencies.

 CHAPTER 45, Analyzing Application Data Lineage

 -595-

 Important Note:

 Many modern applications use advanced frameworks providing high level APIs for CRUD database
operations and for managing data states. The APIs enable developers to avoid coding actual database
queries and avoid referencing actual database tables and columns directly, and enable them to focus on
developing application classes and their business logic. The actual database queries are generated by
such frameworks in the application runtime making it difficult to locate all data dependencies using static
code analysis.

 The second important issue with analyzing the application code is that it doesn't tell us which parts of the
application code have been deprecated, and which are still being actually used by the application and
which are not and have been deprecated.

 We highly recommend analyzing application log files for an accurate discovery of the data lineage.

Quick Start

Preparing for Data Lineage Analysis

Typical steps required for the data lineage analysis:

1. Identify all relevant application components you want to analyze. If you plan on finding all data flows and
their dependencies for a given database, consider not only the front end applications, but also various
back-end processes, such as APIs, data feeds, data pipelines, ETL / ELT jobs, and so on…

2. Copy application logs files for the components that need to be analyzed to a location accessible from your
computer. Make sure to copy logs from different applications and or services to different
subfolders. Separation of log files is important for their correct classification.

 Tip: Copy only the relevant logs files. Do not copy generic log files that cannot help with the data
lineage analysis, and which do not contain references to database operations. For example, generic logs
generated by IIS web servers and similar systems are of no use for the data lineage analysis, they log
HTTP requests and responses only. You need the application logs generated API services which are
engaged through HTTP requests sent to web servers and converted to API service calls. For more
information see the following Application Log Files topic.

3. In case you don't have good application log files, enable low level logging at the database driver level or
preferable ODBC tracing if your application is using ODBC and let them run for a while to capture and log
enough records for the data lineage analysis.

 Tip: The application log files are preferable over low level driver and ODBC trace files. The application
log files typically provide all important application context, while the low level trace files typically don't have
application specific context logged, they are application abstract and do not provide details about
application modules And function names executing the code.

4. Download the source code of the applications you want analyzed from their source code repositories to a
location accessible from your computer.

Running Data Lineage Analysis

1. Launch the Application Data Lineage wizard. The Application Data Lineage wizard can be launched from
several places including the right click menu for the SQL Assistant system tray icon, from a relevant Tools
menu.

 CHAPTER 45, Analyzing Application Data Lineage

 -596-

2. Choose the log files to analyze. If you want to skip log analysis, uncheck the Analyze application log files
option and click the Next button. If you choose to analyze application log files, be sure to associate them
with specific application context. If your database is shared by multiple applications, services, and scripts,
and they generate different log files, enter their log files on multiple lines as demonstrated on the following
screenshot.

Use toolbar buttons adjacent to the right of the grid to add, delete, and reorder lines as required.

Use Program/Service field to associate each set of log files with their component such as a program,
service, or a module. Click the field and then click […] button that is going to be visible in the active field.

 Tip: The association references are important for generating better data lineage results, and useful for
aggregating and displaying data dependencies using user friendly service and module names.

Choose file parsing rules in the Log parsing rules field. It is critical for the analysis that the parsing rules
match format of your files. In case of custom application log files, you would need to customize the rules,
choose Create New… item in the Log parsing rules drop-down.

 Important Note: For a successful data lineage tracing it's absolutely critical to choose correct file
parsing rules. Be sure to test them before you continue to the next step. See the following Creating,
Customizing, and Testing Parsing Rules topic for more information on creating, customizing, and testing
parsing rules.

If you have ODBC or driver trace files that you want analyzed too, check the Analyze ODBC or other
database driver trace files option and select the trace file you want to analyze. The parsing rules for such
files are predefined, however you can still customize them in case your database drivers generate
uncommon trace files.

Click the Next button to proceed to the next step.

3. Choose the application source code files to analyze. If you want to skip static source code analysis,
uncheck the Scan and analyze application code option and click the Next button. If you choose to
analyze the source code, for each application or component in scope enter root folder of their source code

 CHAPTER 45, Analyzing Application Data Lineage

 -597-

files rather than common project root folder. Including folders containing lots of irrelevant files like video
files, images, and similar will not alter the results, but it may greatly increase the processing time. .

Use toolbar buttons adjacent to the right of the grid to add, delete, and reorder lines as required.

Use Program/Service/Module field to associate each set of source code files with their application
component such as a service or a module. If your projects source code is structured such as each module
or service has its source files in a separate top-level sub folder, you can use Subfolders = Modules option
and avoid specific path to each service and module source files separately.

 Tip: The association references are important for generating meaningful data lineage results, and
useful for aggregating and displaying data dependencies using friendly service and module names.

 Tip Parsing rule are predefined for all supported programming languages. If you need to customize
them or you want to analyze other types of source code files, you can click the Customize rules library
for application log and source parsing link. You can also use that link to test source code parsing before
you continue to the next step. See the following Creating, Customizing, and Testing Parsing Rules topic for
more information on creating, customizing, and testing parsing rules.

Click the Next button to proceed to the next step.

4. Choose the database connections for the analysis and associate each of them with specific application
components. If the same database is used by different applications and services, enter the same
connection multiple times so that you can associate it with multiple components.

 CHAPTER 45, Analyzing Application Data Lineage

 -598-

 Tip: The association references are important for generating meaningful data lineage results, and
useful for aggregating and displaying data dependencies using friendly service and module names.

 Tip: By default the Application Data Lineage performs in depth analysis of database dependencies
expanding view definitions, tracing stored procedure calls, parsing procedural code to identify specific table
and column dependencies referenced in that code. The database code analysis could be very time
consuming when working with very large databases. If you want to skip that processing, uncheck "Analyze
schema objects…" checkbox. By default it also catalogs all schema objects referenced n the parsed logs
and code even if it cannot locate them in the databases specified in the project. To ignore such objects,
check the "Ignore schema objects…" checkbox.

Click the Next button to proceed to the next step

5. At this point the data lineage wizard has all required inputs and can start analyzing the specified files. Click
the Next button to start file parsing and analysis.

6. After the analysis is complete click OK button to complete the wizard and proceeed to the Data Lineage
workspace where you can interactively explore the data lineage diagrams, add your own anotations and
save the project. See the following topc Working with Data Lineage Diagrams

Application Log Files

Having well formatted detailed application logs is extremely important for an intelligent data lineage analysis.
Simply put good application logs containing records for database operations provide most value for data
lineage analysis.

There are many popular logging frameworks in use today supporting well defined logging methods, flexible log

 CHAPTER 45, Analyzing Application Data Lineage

 -599-

format patterns, and logging levels. Native logging facilities are available in .NET, Java, Python, and other
programming systems. Different logging level control how much information is logged. For the data lineage
analysis it's important to have all database operations logged along with their application context, such as
process name, module name, class name, function name, ideally with a reference to specific line numbers in
the source files. Logging database operations sometimes requires turning on DEBUG or similar logging level for
a period of time to capture the database specific activities. The Application Data Lineage analyzer can
consume the logged application context information and convert it to structured data which can be used for
data lineage multi-level aggregation with drill-down capabilities. Here are examples of log records containing
application and operation context details.

Log records in a well structured text based log file may look like the following

2021-02-18T16:58:30.1541866+00:00 – DEBUG: AccountUpdaterSvr – BalanceCalc –
ThreadDailyAggr – Running EXEC sp_UpdateDailyBalance

Similar records in JSON formatted log files may look like the following

{"date":"2021-02-
18T16:58:30.1541866+00:00","level":"DEBUG","appname":"AccountUpdaterSvr","logger":"Balan
ceCalc","thread":"ThreadDailyAggr","message":"Running EXEC sp_UpdateDailyBalance"}

From the above log records the Application Data Lineage analyzer can gather the name of the service
"AccountUpdaterSvr", specific class name handling daily account balances "BalanceCalc", name of the
execution thread "ThreadDailyAggr", and from parsing the message text learn name of the database stored
procedure "sp_UpdateDailyBalance". It can then locate the mentioned procedure in the associated database,
parse its code, and find out which tables are accessed and their columns, which of these columns get updated,
and which are not.

Enabling ODBC Tracing

If your application uses ODBC based connections, you can utilize ODBC tracing to generate log files. ODBC
tracing is inferior to normal application logging. It does not provide any application operations context, the
logging occurs outside of the application, and the trace files contain database operation details only. Still it is a
valuable source of data lineage intelligence when not other logs are available.

The ODBC tracing can be activated in Windows settings. To enable the trace option on Windows

1. Type ODBC in the Windows search box, you will see a link to open the ODBC Data Source
Administrator utility.

2. The Tracing tab of the ODBC Data Source Administrator dialog box lets you configure the way ODBC
function calls are traced. Choose the log file location and name, and click Start Tracing Now box.

3. Let the application run for some time so you can capture its activities. If you do not wait long enough,

 CHAPTER 45, Analyzing Application Data Lineage

 -600-

you may miss some of its database access operations.

4. Turn off the ODBC tracing when you are done.

Centralized Log Management Systems

Applications running in containers and cloud-native serverless applications often emit logs to standard output
instead of writing them to log files. Their output is usually consumed by a centralized log management system
such as Splunk, Humio, NewRelic, SolarWinds, and similar. To analyze their logs, you will need to export
historical records from the centralized logging system to log files, and copy them to a location accessible from
your computer.

Most centralized log management systems support multiple export methods. Your selection of an export
method depends on the data volumes involved. Using search and export from a web browser might be
appropriate for a low-volume export. For a higher-volume, use scheduled export, or dump or the Command
Line Interface (CLI). You can export records to a server accessible by your centralized log management
system, and if required, from that server you can copy them to a location accessible from your computer.

Creating, Customizing, and Testing Parsing Rules

About Parsing Rules

The Application Data Lineage utility uses regular expressions (regex and regexes for plural) for complex and
flexible log and source code file processing. We use rules and rule groups terminology to refer to regexes and
sets of regexes in order to avoid confusions with regex groups feature, which we use extensively too. A rule
group is typically associated with a specific file format. For example, if you need to parse three types of log files
with different log formatting patterns, you may need to create three different rule groups, one for each type of
file.

A rule group is like a named container grouping together a set of related parsing rules. Multiple rules get
executed against the same file lines in order to identify specific patterns, and to extract different details specific
to the identified pattern type. The following example fragment from an application log file demonstrates different
elements and messages that may be logged. The text highlighted in the example log needs to be matched by
different parsing rules having different instructions for what to extract from the logged messages depending on
the message pattern. It also demonstrates that different log lines may have different context details in different
log records, and may also feature multi-line messages. For example, logged SQL queries often occupy multiple
lines.

2022-08-25 09:10:36,004 [44] DEBUG Microsoft.EntityFrameworkCore.Database.Command -
Created DbCommand for 'ExecuteReader' (0ms).
2022-08-25 09:10:36,004 [44] DEBUG Microsoft.EntityFrameworkCore.Database.Connection -
Opening connection to database 'accountgodb' on server 'dev1012host'.
2022-08-25 09:10:36,126 [42] DEBUG Microsoft.EntityFrameworkCore.Database.Command -
Executing DbCommand [Parameters=[], CommandType='Text', CommandTimeout='30']
SELECT [i].[Id], [i].[CostOfGoodsSoldAccountId], [i].[Description],
[i].[InventoryAccountId], [a].[AccountName], [a].[CompanyId], [a].[Description],
[a1].[AccountClassId], [i2].[TotalCost]
FROM [Item] AS [i]
LEFT JOIN [Account] AS [a] ON [i].[CostOfGoodsSoldAccountId] = [a].[Id]
LEFT JOIN [Account] AS [a0] ON [i].[InventoryAccountId] = [a0].[Id]
LEFT JOIN [Account] AS [a1] ON [i].[InventoryAdjustmentAccountId] = [a1].[Id]
LEFT JOIN [Account] AS [a2] ON [i].[SalesAccountId] = [a2].[Id]
LEFT JOIN [ItemTaxGroup] AS [i0] ON [i].[ItemTaxGroupId] = [i0].[Id]
LEFT JOIN [ItemCategory] AS [i1] ON [i].[ItemCategoryId] = [i1].[Id]
LEFT JOIN [Measurement] AS [m] ON [i].[PurchaseMeasurementId] = [m].[Id]

 CHAPTER 45, Analyzing Application Data Lineage

 -601-

LEFT JOIN [InventoryControlJournal] AS [i2] ON [i].[Id] = [i2].[ItemId]
ORDER BY [i].[Id], [i2].[Id]
2022-08-25 09:10:36,135 [44] DEBUG Microsoft.EntityFrameworkCore.Infrastructure -
'ApiDbContext' disposed.

Creating and Customing Parsing Rules

To create new and to customize the existing parsing rules, use one of the Customize Rules hyperlinks provided
in the data lineage project wizard. That will open the Parsing Rules dialog. The dialog provides five tabs for
different kinds of files that can be ingested by Application Data Lineage utility, and which require different kind
of parsing rules and context mapping methods for their data elements.

Their specific interfaces are described below

Parsers for Text-based Application Logs

Text-based logs are plain text files containing log records in a structured or semi-structured format that allows
logs to be machine-readable and easily parsed. Log files generated by different applications may use different
log record formatting patterns. The Text-based Application Logs tab is used to define parsing rules for such
plain text log files.

Use the left-top rule navigation tree to manage rule groups and their rules. You should create separate rule
groups for log files with different record formatting patterns. In each rule group you may need to define one or
more parsing rules to parse out different. Please refer to and use as templates predefined parsing rules for logs
generated by .NET Entity Framework and Java Hibernate.

Select a rule in the rules navigation tree to see and optionally edit its definition

 CHAPTER 45, Analyzing Application Data Lineage

 -602-

For additional information about regular expressions syntax, see Using Regular Expressions topic in CHAPTER
34, Integrated SQL Editors.

Parsers for JSON-based Application Logs

The JSON (JavaScript Object Notation) is a highly readable data-interchange format that has been adopted as
the standard format for structured logging. Yet it may be sometimes challenging to parse too if their log records
contain optional elements or feature multi-level structure with flexible optional elements that vary for different
event types. The JSON-based Application Logs tab is used to define parsing rules for JSON based log files

Use the left-top rule navigation tree to manage rule groups and their rules. You should create separate rule
groups for log files with different record structure. In each rule group you may need to define one or more
parsing rules to parse out different JSON elements and their content. The parsing process involves two
operations

1. Deserialization and mapping of JSON log record fields.

2. Optionally parsing the text queries from free text elements if they are mixed together with operation
details and other text

The deserialization of JSON is done automatically for you. You still need to choose the elements providing
application context like service name, module name, class name and similar that you want show in the data
lineage results, as well as elements containing SQL queries. The following use case example demonstrates
single level JSON file featuring SQL queries and an additional text mixed together, and how such file can be
parsed.

Step 1: Select your JSON file for preview. Click the New Parsing Rule icon (above rules tree) to add new
rule. This will populate the Map data list with available element names. Now drag-and-drop the element
containing SQL queries to the Path field as demonstrated on the screenshot below

 CHAPTER 45, Analyzing Application Data Lineage

 -603-

In the Attribute Name field use the drop-down list to select SQL value.

In the Attribute Text field use the drop-down list to select text value.

Step 2: Click the Text Replacement icon (above rules tree) to add new text extraction operation. Note that
the right hand side of the dialog will change. Now you can enter a regex to match and extract only the required
part of the message. Note this rule will be applied only to log records that match rule's definition

 CHAPTER 45, Analyzing Application Data Lineage

 -604-

The following example demonstrates how you can map JSON log files with multi-level structure. In this example
the logged message contains SQL queries only and doesn't require additional text replacements.

 CHAPTER 45, Analyzing Application Data Lineage

 -605-

Parsers for ODBC and Driver-trace Logs

The parsing rules for ODBC trace are predefined. Use the ODBC and Driver-trace Files tab if you need to
customize them.

Parsers for XML-Files

A specialized parser is available for XML files which can be used if your application writers XML log files, or
stores database queries in XML configuration files,. The XML Source Files tab is used to define parsing rules
for XML files. Its interface and usage is the same as JSON-based Application Logs. Please see Parsers for
JSON-based Application Logs topic for additional information.

Parsers for Application Source Files

The Application Source Files tab is provided mostly for information purposes only, and also as a testing tool
for previewing source code parsing results. The actual code parsing is done performed by customizable
programmatic language specific functions. Certain elements including file icons, and descriptions that may
appear on the data lineage diagrams can be customized using this tab.

 CHAPTER 45, Analyzing Application Data Lineage

 -606-

Working with Data Lineage Diagrams

Main Components and Controls

The Application Data Lineage workspace has five main parts described below.

The top level menu and toolbars provide quick access to all main functions supported by the data lineage.

The Bird's Eye View window displays a miniature view of the active diagram. The window appears adjacent to
the left side of the Application Data Lineage workspace. The sole purpose of the Bird's Eye View is to ease the
navigation while working with large diagrams. In Bird's Eye View, a red rectangle is used to identify the area
currently displayed in the active diagram window. Note the red rectangle is not shown if the diagram fully fits in
the workspace. . Dragging the red rectangle causes the diagram window to scroll to display the section covered
by the rectangle.

The Application Context Explorer window appears adjacent to the left side of the Application Data Lineage
workspace. The content of that window references services, components, and source files with database
dependencies in the scope of the project definition. They are organized in a hierarchical structure. For example,
components of the same service appear as subfolders within the service folder. The actual hierarchy depends
on how the application context has been defined in the project settings. Clicking a service, a component, or a
source file the Application Context Explorer opens new diagram in a separate tab scoped to the selected
item and their data lineage.

The Workspace is the area on the center hosting tabs with the data lineage diagrams. Note that diagrams can
be opened and close much like files. See the following topic for detailed instructions on working with the
diagrams.

The Database Context Explorer window appears adjacent to the right side of the Application Data Lineage
workspace. . The content of that window references database tables and columns discovered by the data

 CHAPTER 45, Analyzing Application Data Lineage

 -607-

lineage analyzer. Clicking a table in Database Context Explorer opens new diagram in a separate tab scoped
to the selected table and its data lineage.

The colorful interactive Map at the bottom of the workspace provides at a glance view of the data
dependencies. Application services, components, and files with more dependencies occupy more space on the
map. Note the map shows hierarchy of application component nested areas. For example if there are five
modules in a service and each module is featuring 2 application classes with database dependencies, eleven
regions will appear on the map class regions nested within their modules and all modules nested within the
same service region.

Multi-tabbed Multi-document Interface

The Application Data Lineage workspace supports multi-document interface, multiple diagrams can be open in
multiple tabs. A new tab is opened for the selected components and tables.

Tabs that are no longer required can be closed using the X icon in right-top corner of the tab handle.

New tabs can be opened using the following methods:

 Clicking a service, component, or file in the Application Context Explorer

 Clicking a table in the Database Context Explorer

 Clicking a region on the Map

Single Object and Multi-Object Operations

For operations concerning object position and appearance, you can operation on both single and multiple
objects.

Objects added to a layer can be also operated in groups. For example, you can move the entire group by
moving its layer.

Selecting Objects

To select a single object, click the object you want to select. Most objects are agnostic to where you click them,
but some like layers have a special area in the left-top corner used as a hot-spot for selection. This special area
is indicated by a different background color.

To add more objects to the selection: Hold down Shift key and click additional objects to add them to the
selection.

To select a group of objects in a specific area: Use mouse lasso effect - while holding down the left mouse
button drag a rectangle around the objects you want to select.

To select all objects in a diagram: Press Ctrl+A key to select all objects.

To select a connector line, click the line you want to select.

 CHAPTER 45, Analyzing Application Data Lineage

 -608-

Grouping and Ungrouping Objects

Grouping objects is typically a temporary operation which you can use to bundle different objects together and
then manipulate them in groups while reorganizing the diagrams.

Another use of grouping is keeping related objects together as a single group. However Layers provide a richer
set of options that can be used for object grouping.

To group objects, select multiple objects using any appropriate method, then click the Group icon on the
toolbar.

To ungroup previously grouped objects, select the group, and then click the Ungroup icon on the toolbar.

Moving, Rotating, and Resizing Objects

Moving and resizing objects is the same as moving and resizing windows. If multiple objects are selected, they
are moved as a group. If objects are grouped using the Group function, all objects in the group are moved
together. If objects are placed onto a layer, the entire layer can be moved with all the contained objects.

On contrary, the rotate and resize operations are applied always to individual objects. However if the selected
objects have been previous grouped together using the group tool, then resize operations effect all objects in
the group.

 Note: Selected objects have three dots displayed on each side of the object. Drag the dots to change
object's dimensions.

Objects of certain type, for example text notes and images can be rotated, A special handle is shown in the
object's area that you can drag sideways to rate the object. The following example demonstrates this technique

.

 Note: The rotation handles are visible only when objects are selected.

Connector Lines and Mouse-over Hints

Two different colors are used for rendering lines connecting application components and database tables.
Different colors are used to different data read and data write operations. The actual color depends on the
selected theme.

You can mouse-over connector lines to see detailed information about the dependencies described by that data
connection. The mouse pointer changes depending on the pointer position. Position mouse pointer directly over
a line, makes the pointer shape change to an arrow with small question mark. As moment later balloon is
shown with the data lineage details.

 CHAPTER 45, Analyzing Application Data Lineage

 -609-

Diagram Appearance, Navigation, Pan Mode, Zoom, and Search

SQL Assistant supports shared themed interface for database model diagrams and for data lineage diagrams.
See Customizing and Creating Themes topic in CHAPTER 38 for more information on how to customize
existing and create new themes.

The Database Modeling Workspace and the Application Data Lineage Workspace share many other elements
and user interface functions. See the related Navigation topic in CHAPTER 38 and the topics that directly follow
it.

Using Notes

To add notes to a diagram, click Add new text block icon on the toolbar and then click in the diagram
workspace where you want to add a new note.

To edit note text and change its appearance:

You may edit the note text by double-clicking it to switch to text Edit mode, or simply right click it and choose
Edit command from the context menu. Using the context menu you can also change color and font, text block
back-to-front relative position, and remove the note.

 Tips:

 The Del key cannot be used when editing notes text. This key is reserved for other uses. If you need
to erase part of the text entered, use the Backspace key.

 Note text can have multiple lines. Use the Enter key while entering note text to break text by lines.

Printing Diagrams

The printing functions and options used to create printouts of your diagrams can be found under the File menu.
The printing options are pretty much the same as in most other Windows programs, and do not require special
description.

 CHAPTER 45, Analyzing Application Data Lineage

 -610-

Saving Diagrams to Images and PDF Files

You can save your diagrams to PDFs and various image file formats so that you can share them with
colleagues who do not have the SQL Software installed on their computers.

Saving to image files also enables you to open and edit the diagrams in other tools, as well as use advanced
printing functions provided by many graphics editors.

To save your diagram to PDF or image file, select File -> Export... menu. Choose the file name and format and
then click the Save button.

 Note: To view a PDF file, you must have a PDF reader installed on your computer such as the Acrobat
Reader, available from Adobe Systems.

 CHAPTER 45, Analyzing Application Data Lineage

 -611-

CHAPTER 46, Automating ETL Operations and
Other Processes

Overview

The ETL Orchestrator utility provided with SQL Assistant Professional Edition can be used to automate
complex ETL operations and other database activities, and run them on demand, or schedule them using the
Windows scheduler or other scheduling utility of your choice.

The ETL Orchestrator supports task grouping and precedence linking for advanced control flow. Tasks can be
linked to trigger other tasks upon their completion or error. The linking can be linear described by one-to-one
dependency type, or it can be more complex involving multiple tasks with many-to-one and one-to-many
dependency types. Task grouping enables linking groups of tasks rather then individual tasks. Tasks with
common dependencies start running at the same time. Tasks without dependencies start running first when the
project is launched. See Control Flow and Connecting Tasks topics in this chapter for more details. In addition
you can use multiple levels of nested subprojects that serve like containers for other automation tasks.

The ETL Orchestrator can be launched from Data Tools / ETL Orchestrator top level menu. The ETL
Orchestrator workspace has five main parts described below.

The top level menu and toolbars provide quick access to all main functions supported by the ETL Orchestrator.

The Bird's Eye View window displays a miniature view of the automation diagram. The window appears
adjacent to the left side of the ETL Orchestrator workspace. The sole purpose of the Bird's Eye View is to

 CHAPTER 45, Analyzing Application Data Lineage

 -612-

ease the navigation while working with large diagrams. In Bird's Eye View, a red rectangle is used to identify
the area currently displayed in the active diagram window. Note the red rectangle is not shown if the diagram
fully fits in the workspace. . Dragging the red rectangle causes the diagram window to scroll to display the
section covered by the rectangle.

The Task Explorer window appears adjacent to the left side of the ETL Orchestrator workspace. The content
of that window references all tasks in the project. Double-clicking a task in the Task Explorer opens task-type
specific properties editor dialog.

The Workspace is the area on the center hosting the automation diagrams. See the following topic for detailed
instructions on working with the automation ETL Orchestrator designer.

The Tasks Toolbox window appears adjacent to the right side of the ETL Orchestrator workspace. The Tasks
Toolbox contains all supported task types that can be used for automating the processes.

Designing Automation Processes

Control Flow

The ETL Orchestrator provides three different types of control flow elements: subprojects that provide
modular and reusable design, tasks that provide functionality, and precedence constraints that connect the
tasks and task groups into an ordered control flow.

Tasks without preceding dependencies start running first when the project is launched. If there are multiple
tasks without preceding dependencies, they all start running in parallel at the same time. Tasks having
common preceding dependencies also start running in parallel at the same time when their preceding
dependencies successfully complete.

Linear task dependencies

The liner tasks dependencies can be used for sequential task execution. In the following example the
pictured tasks run one by one starting from task A, then followed by task B, and finally by task C.

 CHAPTER 45, Analyzing Application Data Lineage

 -613-

One-to-many task dependencies

In this scenario task A runs first. On successful completion it triggers tasks B, C, and D, all three of them
starting at the same time and running in parallel.

Many-to-one task dependencies

In this scenario tasks A, B, and C start running first, all running in parallel. On successful completion of all
three tasks, task D is triggered and starts running too. Please note, that tasks A, B, and C may take
different time to run. Starting of task D occurs only when the status of all its them preceding tasks changes
to complete.

Adding Tasks

1. To add a new task to the automation workflow, click the required task type in the Tasks Toolbox and then
click the place in the workspace where you want to create that task. Using drag-and-drop you can move
tasks in the workspace.

2. Depending on the task type may get a prompt to choose the project or script file. A File Open dialog will be
shown. You can use that to select an existing project file and link it to your ETL workflow. For example, if
you want to execute data import tasks for which you already have an existing SQL Assistant's Data Import
project, simply select that project file. If you don't have an existing project, click the Cancel button. You will
be prompted to create a new project, or cancel it if you want to do it later.

3. If you selected an existing project or file and chosen to create a new one, follow instructions provided by
the task specific wizard dialog to complete the task properties.

Modifying Tasks

1. Double-click an existing task either in the workspace or in the Tasks List. Or right-click it and select Edit
command in the right-click menu.

2. Modify the task properties as required.

 CHAPTER 45, Analyzing Application Data Lineage

 -614-

Deleting Tasks

1. In the workspace select the task you want to delete.

2. Press the Delete button on your keyboard.

Disabling Tasks

Use the disablement feature to temporarily disable tasks you do not need to run but which you do not want to
delete from the project. You can also use disablement when troubleshooting issues and you want to skip some
tasks while debugging the project.

1. In the workspace select the task you want to disable.

2. Right-click it and select Disable command in the right-click menu.

Connecting Tasks

1. Click the icon in the Tasks Toolbox. The ETL workflow diagram will change and the tasks and
groups will display connecting points that can be connected to link the tasks.

 CHAPTER 45, Analyzing Application Data Lineage

 -615-

2. Click the red points in the two tasks or two groups if you want to connect them using On Failure
connection type. Click the blue points in two tasks or groups if you want to connect them using On
Success connection type, or click the purple points in two tasks or groups if you want to connect them
using On Completion connection type. Note that On Completion connection type makes the downstream
tasks to run regardless of completion status of their immediate upstream tasks. When adding connector
lines, click the point belonging to the predecessor task first.

3. If you want to add additional comments to the connector lines linking the tasks, right-click it and select the
Edit command in the right-click menu. Start typing the text you want displayed next to the line, for example

Changing Task Connection Types

Right-click the task connector line whose type you want to change. In the right-click menu choose one of the
following commands:

On Success
On Failure
On Completion

Tasks Execution Groups

1. Click the Task Group icon in the Tasks Toolbox and then click some free space in the
Workspace. Using drag-and-drop move tasks you want to group to the new Task Group you just added.

2. If they do not fit, resize the group box as required by dragging it's edges with the mouse.

 Tip: To select and move multiple tasks at once, use the mouse lasso method - hold down the left mouse
button and trace around the tasks you want selected. Click any selected task with the left mouse button and
without releasing drag the selection to the new group.

 Tip: In addition to Execution Groups, task can be grouped into collections to make it easier to move them
around and change together. This kind of grouping is completely independent of Execution Groups and does

not impact project execution and control of flow. Use the toolbar button to group selected tasks. Use the

 toolbar button to ungroup selected task groups.

Common Edit and File Operations

To select multiple tasks and objects in the workspace, hold down Shift key while selecting objects with mouse.

To move selected objects within the workspace using keyboard, select one or more objects, hold down Ctrl key
and them use Arrow Left, Right, Up, and Down keys to move them in the required direction.

You can use common edit operations Copy, Cut, Paste, Delete to work with objects in the Workspace. Such
operations can be performed on all types of objects and their commands are available in the Edit menu. In the
Edit menu you will also find commands for changing object positions on the screen.

To save project, select File / Save command.

 CHAPTER 45, Analyzing Application Data Lineage

 -616-

To open previously saved project, use File / Open menu.

To save project diagram to a PDF file, use File / Export menu

To print the diagram, use File / Print menu.

Changing Database Connections

The ETL Orchestrator by default assigns the same database connection to all new tasks added to the project.
You can assign different connections different tasks. The change the connection, tight-click a task, and select
Change Database Connection command in the right-click menu.

Adding Annotations and Images

You can use text blocks, images, and predefined objects available on the Decoration tab to annotate your
automation projects, to provide descriptions and other types of comments.

Running and Debugging

The ETL Orchestrator includes features that can help you with troubleshooting project execution. In run-time it
highlights executed tasks, and their status. It also provides progress reporting with detailed color coded
execution logs. In addition it supports breakpoints on tasks that enable you to control and pause task execution.

Progress Reporting

The ETL Orchestrator includes two types of progress reporting: color-coding on the tasks in the diagram based
on their execution status, along with their status icons, and also progress messages in the Run Log pane at the
bottom of the window.

Note that the Run Log pane is visible only after the project starts running, and hidden in design time.

When you run your project, the ETL Orchestrator depicts execution progress by displaying running tasks in
green, and if they fail after execution changes their status to pink. Tasks that are waiting to run have their
original colors and icons.

The following colors are used in the Run Log to depict task execution status.

Green task is running or ran successfully

Pink – task run failed

Grey task is disabled

Other colors – task is waiting to run. Its run timing depends on its predecessor tasks as defined by the task

 CHAPTER 45, Analyzing Application Data Lineage

 -617-

dependencies.

Running Single Task

1. Select the task in the workspace.

2. Select Execute / Run Step command in the top level menu.

Running Entire Project

Select Execute / Run command in the top level menu.

Pausing Project Execution

Select Execute / Pause command in the top level menu.

Aborting Project Run

Select Execute / Terminate command in the top level menu.

Project Execution with Breakpoints

To make the project run pause at certain execution steps and wait for your input

1. Select the task that you don't want the execute until you select to continue running.

2. Select Execute / Toggle Breakpoint command in the top level menu.

3. Repeat steps 1 and 2 for other tasks where you want to pause execution.

Use the same steps to remove previously set breakpoints.

During the execution the project run will pause on steps with breakpoints. To continue running use Execute /
Run Step to run the next pending task or Execute / Run command to resume normal project execution until
the next breakpoint is hit or until the logical end of the project, whichever occurs first.

 CHAPTER 45, Analyzing Application Data Lineage

 -618-

Scheduling Unattended Runs

To schedule unattended non interactive project execution use File / Schedule menu command in the top level
menu. This command opens the Schedule dialog. The options and controls are the same for all scheduled
operations. See CHAPTER 16, Scheduling SQL Script Execution chapter for more information.

See Managing Scheduled Tasks topic in CHAPTER 13 for information on how to manage previously scheduled
SQL Assistant operations.

CHAPTER 47, Querying and Manipulating Data in CSV Files

 -619-

CHAPTER 47, Querying and Manipulating CSV
Files

Overview

SQL Assistant provides advanced data query interface and schema management capabilities for CSV files without a
need to use ETL to import/export data from the files before it can be queried and manipulated. This is it. You can
query file contents directly, modify file structure, update data values, pivot rows to columns, and perform many other
common operations on CSV files. SQL Assistant transparently automates all required internal data management
and transformation operations in the background.

The Data File Query Utility

The Data File Query wizard is accessible in the Data Tools menu in SQL Assistant Integrated Development
Environment. You can use the Data File Query utility to execute SQL queries and scripts against CSV files as you
would do that against regular database tables. The utility supports both regular CSV having column names in the
first line row and headless CSV files. If a file is headless, then the columns are named "c0", "c1", "c2", and so forth.

When you choose a file to work with you have an option to open it in read-only mode. To activate that option, select
Read-only checkbox in the first step. This option enables SQL Assistant to skip certain internal operations and
open the selected file practically instantly. However, in this mode you will be unable to index the file data and modify
its content.

Click the Next button in the wizard to advance to the second step in which you can run SQL queries against the
selected CSV file using SQLite compatible syntax. SQL Assistant uses integrated SQLite engine behind the scenes
to execute your query, which is coupled with complete SQL Intellisense, syntax and coding assistance, code
snippets and other integrated features.

To utilize data pivot and other advanced data analytics functions, use a SELECT query to retrieve data from the file
into a data grid. Then use the data grid toolbar that will appear above the retrieved data. For more information on
how to use these functions see CHAPTER 24, Reporting, Data Pivot and Analytics.

For more information on how to use code assistance and SQL Intellisense see CHAPTER 3, Code Assistants and
SQL Intellisense and also Working with Data Grid Interface topic in CHAPTER 11.

 Important Note:
Any data change operations are performed on a copy of the data and not directly on the selected file. You can use
multiple UPDATE, DELETE, and other DML statements to modify the data and then review the results. If you are
satisfied with the results, click the Save icon in the top toolbar to save changes back to the file. In case you are
not satisfied with the results, simply reopen the same file without saving changes, or close the Data File Query
wizard.

CHAPTER 47, Querying and Manipulating Data in CSV Files

 -620-

The Data File Transformation Utility

The Data File Transformation wizard is accessible in the Data Tools menu in SQL Assistant Integrated
Development Environment. You can use the Data File Transformation utility to transform data in and alter
structure of CSV file, as well as split and merge multiple CSV files .The utility supports both regular CSV having
column names in the first line row and headless CSV files. If a file is headless, then the columns are named "c0",
"c1", "c2", and so forth.

The Data File Transformation wizard provides specific instructions for each type of supported file transformation.
Select the required CSV file and operation type and then click the Next button to the second step, then choose
specific transformation options available for the selected transformation operation type.

Click the Next button again to go to the third step in which you can preview the results of the transformation, and if
you are satisfied with the results, click the Finish button to save them back to the original CSV file or a new CSV file
or set of files depending on the selected transformation operation type.

CHAPTER 47, Querying and Manipulating Data in CSV Files

 -621-

CHAPTER 48, Customizing SQL Assistant's Behavior

 -622-

CHAPTER 48, Customizing SQL Assistant's
Behavior

Overview

SQL Assistant has been designed from ground up for maximum flexibility and customization. From the very first
version a particular attention has been given to enabling users to customize both the behavior and the
appearance, to add custom code automation snippets, custom code formatting rules, custom code generation
methods, custom templates, and so on. Most of the features can be customized in the main Options dialog
which provides graphical means for customizing over 3000 different options and functions for all supported
database interfaces. Filtering and searching controls have been added in SQL Assistant versions 10 and later
to help users to quickly locate the required options.

To filter all options for a specific database interface, use the "Show options for" drop-down list. To search
options by a keyword or substring, type the search text in the "Search options" box.

 Note: The following help sections contain many screenshots captured in different historical versions of
SQL Assistant. While some screenshots of the Options dialog may appear outdated, the location of the pictured
options is not. the positions of different tabs and panels with options have been preserved between the
versions.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -623-

Customizing Functional Hot Keys

To customize the default global hot keys:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Common section on the left side of the Options dialog screen.

The Common section will be displayed.

3. To change a hot key that opens a SQL Assistant popup window in a target SQL editor, click the
SQL Assistance option and then press the keyboard buttons you want to use as the new hot
key. For example, if you want to use Shift+Tab as the new hot key, press the Shift key and, while
holding it down, press the Tab key.

To change the hot key to open SQL Reference, click the SQL Reference option and then press
the keyboard buttons you want to use as the new hot key. For example, if you want to use
Ctrl+F1 as the new hot key, press the Ctrl key and, while holding it down, press the F1 key.

To change the hot key to invoke SQL editor target registration function, click the Add / Modify
Target option and then press the keyboard buttons you want to use as a new hot key. For
example, if you want to use Ctrl+F5 as the new hot key, press the Ctrl key and, while holding it
down, press the F5 key.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -624-

 Important Note: Hot keys assigned in this way must be unique and must not be used by the
SQL editor registered with SQL Assistant. Failure to pick a unique hotkey may lead to incorrect
SQL Assistance behavior. If you use several editors you can pick different hot keys for different
editors as demonstrated in the following section.

To customize target-specific hot keys:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear

2. Click the Targets tab page.

3. In the left window of the Targets page, select the target type from the list of targets.

4. To choose an editor-specific hotkey, on the right side of the Options screen select the hot key
option you want to change and then press the new hot key. The hot key can be a single key or
any combination of Ctrl, Alt, Shift key and other regular keys.

 Tip: The (default) text indicates that the default global hot key is used for the selected target
for a particular SQL Assistant feature. This is a special option value, which cannot be typed in the
hot key field. If you want to undo the custom hot key and switch back to the default, select the
feature to undo for which you want to switch back to the default, and then press the Esc key.

To customize list item selection keys used in SQL Assistance popup lists:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Targets tab page.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -625-

3. In Targets page, select the target editor and then expand the Options group.

4. in the List Item Selection Key option, choose selection key. Available options are:

Enter – allows using Enter key as item selection key, which is Windows standard item selection
method.

Tab – allows using Tab key as item selection key, a non standard method used in Visual Studio
based solutions.

Enter, Tab –allows using either Enter or Tab key as item selection key.

Customizing Code Snippet Activation Keys

Code snippet activation keys are used to expand snippet short names and insert snippet generated code into
the script. To insert a snippet, place the cursor at the location in the script where you want to insert the snippet
generated code, type the snippet name and then press the appropriate code snippet activation keys.

To customize code snippet activation keys:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Code Snippets tab page.

3. In the left window of the Code Snippets page, in the top-left list select the SQL dialect whose
code snippets you want to customize. The code snippets list appears below the SQL dialect list.

4. In the snippets list select the snippet name.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -626-

5. On the right side of the screen expand the Key Char drop-down list and then select a snippet
activation key.

Available options are:

Ctrl+Enter – the Ctrl+Enter key combination (both keys pressed simultaneously) is used as the
snippet activation key. This is the default activation key.

Space – the Space key is used as the snippet activation key

Enter – the Enter key is used as the snippet activation key

Tab – the Tab key is used as the snippet activation key

Enter, Tab – either the Enter key or the Tab key may be used as the snippet activation key

Last char – this is a special option that instructs SQL Assistant to automatically insert a code
snippet whenever its short name is typed (without the need to enter a snippet activation key).
Beware of snippets with similar names. If you define two snippets with a similar name like snip
and snip2 and set both to activate automatically using Last char option, you will not be able to
use snip2 because the snippet snip will always be activated first.

Managing SQL Assistant Load Methods

SQL Assistant supports two different methods for loading SQL Assistant code into the target editor:

 Target Editor Monitoring and Hooking

 Native add-ons.

Target Editor Monitoring and Integration

Target Editor Monitoring is a generic method can be used with many editors. The SQL Assistant system tray
application monitors all windows opened within the running applications. it then checks their properties against
the list of the registered targets. If the properties do match, it attaches the SQL Assistant client to the new

CHAPTER 48, Customizing SQL Assistant's Behavior

 -627-

editor instance. The attached client uses standard Windows Hooks interface to hook the editor's keyboard and
mouse event queues so that it can enhance the editor with SQL Intellisense capabilities and provide access to
SQL Assistant functions.

 Important Notes: The target editor must be a Windows application. The editor must support standard
Windows edit control messages including but not limited to EM_GETLINE, EM_GETSEL,
EM_GETLINECOUNT, EM_GETFIRSTVISIBLELINE and others. For details on standard edit control messages
see MSDN http://msdn.microsoft.com/en-us/library/windows/desktop/ff485923(v=vs.85).aspx

To be able to watch for new editor instances and attach to them, SQL Assistant must be running as a system
tray application (see the Starting and Stopping SQL Assistant topic for details).

Native Add-ons

Native Add-ons are currently available for the following several applications.

 Eclipse Integrated Development Environment v3.x and Eclipse-based derivative products, including
Eclipse Data Platform, and others utilizing the platform's user interface to the full extent.

 Eclipse Integrated Development Environment v4.x

 DBeaver 20.x

 IBM Data Studio

 Visual Studio 2003, 2005, and 2008

 Visual Studio Professional and Community Editions 2010, 2012, 2013, 2015, 2017, 2019, 2022

 Visual Studio NET

 Visual Studio 2005 and 2008 for Team Database Professionals (formerly Data Dude)

 Microsoft SQL Server Management Studio 2005 and 2008

 Microsoft SQL Server Management Studio 2012, 2014, 2016, 17.x, 18.x, 19.x

 Microsoft SQL Server Management Studio Express

 MySQL Workbench 5.2 and later

 Oracle SQL Developer versions 3.x only. Never versions not supported.

 Delphi versions from 2005 to 2010

 Delphi XE versions from 1 to 10

Add-on Installations

The add-on for Eclipse 3.x must be copied to the plugins directory of your Eclipse installation. The plugins
directory location differs for different Eclipse versions and for derivative Eclipse products. Consult your Eclipse
documentation for details on where to find this directory. If copied to the correct directory, the host application
automatically loads the add-on on the startup.

To install the add-on for Eclipse 4.x, use Help -> Install New Software… menu in your Eclipse IDE. Click the
Add... button to add new local software repository, and then the Local… button. Select C:\Program Files
(x86)\SQL Assistant 12\jar\eclipse-install\eclipse folder. Select SQL Assistant Eclipse Plugin in the list of
items. In case Show by Category option is checked, the above item may be appear hidden. Uncheck that
option. Click the Next button twice to complete the installation. Restart your Eclipse IDE.

http://msdn.microsoft.com/en-us/library/windows/desktop/ff485923(v=vs.85).aspx�

CHAPTER 48, Customizing SQL Assistant's Behavior

 -628-

To install the add-on for DBeaver, use Help -> Install New Software… menu in your DBeaver IDE. Click the
Add... button to add new local software repository, and then the Local… button. Select C:\Program Files
(x86)\SQL Assistant 12\jar\eclipse-install\dbeaver folder. Select SQL Assistant Eclipse Plugin in the list of
items. In case Show by Category option is checked, the above item may be appear hidden. Uncheck that
option. Click the Next button twice to complete the installation. Restart your DBeaver IDE.

The add-on for IBM Data Studio must be copied to the plugins directory of your IBM Data Studio installation.
Consult your IBM Data Studio documentation for details on where to find this directory. If copied to the correct
directory, the host application automatically loads the add-on on the startup.

The add-on for Oracle SQL Developer must be copied to the ide\extensions directory of your Oracle SQL
Developer installation. Consult your SQL Developer documentation for details on where to find this directory. If
copied to the correct directory, the host application automatically loads the add-on on the startup.

The add-on for Oracle JDeveloper must be copied to the ide\extensions directory of your Oracle JDeveloper
installation. Consult your JDeveloper documentation for details on where to find this directory. If copied to the
correct directory, the host application automatically loads the add-on on the startup.

The add-on for all Visual Studio and SQL Server Management Studio based products is registered in the
system registry in the add-ons registration area. The host application automatically loads registered add-ons
into each new instance of the Query Window.

SQL Assistant's system tray application may be used concurrently with these add-ons but theoretically is not
required.

See CHAPTER 32, Registering and Unregistering Targets for SQL Assistance for details on how to register
targets and modify SQL Assistant add-on loading methods.

Customizing SQL Assistant Menus

You have nearly complete control over composition and appearance of SQL Assistance menus. You can also
add your own commands for executing the most frequently used macros, code snippets, unit tests, and external
commands.

To change the composition and appearance of SQL Assistance menus:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Common section on the left side of the Options dialog screen. he Common section will
be displayed.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -629-

3. Click [+] sign in front of the Menu options to expand that section.

4. Select the menu items whose appearance you want to modify. Select the checkbox to the left of a
menu item to include that item in the menu. Deselect the checkbox to remove an item from the
menu.

Use the toolbar buttons on the right side of the dialog to manage menu items in the list. Following
is a description of each button:

Moves the selected item up one line

 Moves the selected item down one line down.

 Moves the selected item to the next lower level

 Moves the selected item to the next higher level

 Renames the selected item

 Inserts a horizontal item separator line above the selected item

 Inserts a new custom menu item. Clicking this button displays a list of options
for the action type to be performed by the new item. The list of available
options is described below following step 5.

 Deletes the selected custom menu item. The delete operation is available for
custom menu items only. SQL Assistant native menu items cannot be deleted
but can be hidden using check-boxes to the left of the item name.

 Resets the entire menu to its factory-default state.

5. Click the OK button on the bottom of the dialog to save Changes.

Custom Menu Items in the Main Menu

Seven action types are supported for custom menu items added using the Add toolbar button:

None – creates expandable menu items that group other items in a subordinate list

CHAPTER 48, Customizing SQL Assistant's Behavior

 -630-

Execute External Command –creates menu items for executing an external program. With this action type
you can select the program name and to enter optional command line parameters.

Execute Test Data Generator Project –creates menu items for executing SQL Assistant's Test-Data-
Generator projects. With this action type you can select specific project file that you want to be added to the
menu.

Execute Unit Test Project –creates menu items for executing SQL Assistant's Unit Test projects. With this
action type you can select specific project file that you want to be added to the menu.

Execute Code Snippet – creates menu items for executing code snippets. With this action type you can select
specific code snippet that you want to be added to the menu.

Execute Copy SQL Code – creates menu items for executing SQL Assistant's built-in and user-defined "Copy
SQL As…" functions. With this action type you can select specific copy function that you want to be added to
the menu.

Execute Script - creates menu items for executing script files using FastScript scripting engine. With this action
type you can select specific script file that you want to be added to the menu. For more information about
plugins, scripting interfaces, and extensibility see SQL Assistant’s Plugins Developer Guide.

Custom Menu Items in Right-click Context Menus

In addition to custom commands that you can add to the SQL Assistant main menu you can also add custom
commands to context specific menus that are used in different SQL Assistant windows.

Follow the graphical instructions above to setup new custom menu commands.

To simplify the configuration we separate SQL Assistant windows into four categories:

 Data-grid panes –windows with tabular data-grid controls.

 Execution plan panes – windows containing SQL execution plan results.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -631-

 Text panes –windows containing only textual results, for example, DDL View panes.

 Messages panes – windows returning information messages after code execution. They are kind of
similar to text panes, but have each line starting with a graphical icon and independent.

When you add new custom menu, you have to choose the window type to attach it to.

You can choose four types of actions for your custom commands:

 Launch an external program.

 Save output data from the window to a disk file.

 Copy all data from the window to the system Clipboard and then optionally launch an external
program.

 Execute custom plugin. . For more information about plugins, scripting interfaces, and extensibility see
SQL Assistant’s Plugins Developer Guide.

If you want to pass data from SQL Assistant to a different application, you should choose the last action type.
An example is demonstrated on the following screenshot:

To test your custom command is working.

1. Open SQL Assistant SQL Editor and connect to the database.

2. If your command is supposed to be attached to a data-grid, enter and execute some SQL query
returning result set.

3. Right-click the data-grid with the result. In the right-click menu select Custom Commands menu
branch. Your custom menu command should be shown there. Click it to test it’s working as specified.

 Tips:

 Data from data-grid windows can be saved to files or clipboard in any of the following formats: TXT,
CSV, XML, JSON.

 Data from Execution Plan windows are saved in XML format. This is the only format supported.

 Data from Text and Message windows are saved in TXT format. This is the only format supported.

 When choose Command Type for saving data to a file or clipboard, an external program is started only
it is specified in the Program to Run value. If that value is empty and processing ends at that point
without any errors.

 The Output File value is optional. If the output file name is not specified, and the Command Type is
Save output data to a file, the system Save dialog is shown when the command is used so that you
can dynamically choose the output file.

 If an external program is specified, but specified without any command line parameters, the output file
name is passed on the command line as the only parameter. If you need to pass any additional
parameters, you should chose static file name for the output (will be overwritten on each use) and
specify other parameters as required by the program.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -632-

 You can also pass the database connection string used by SQL Assistant to the external program.
Use %1 and %2 as predefined command line parameter placeholders for the file name and connection
string. %1 placeholder is used to pass the file name without quotes and %2 placeholder is used for the
connection string.

 Important Notes: The custom menu commands work only in SQL Assistant created windows and SQL
Assistant’s SQL Editor windows. They will not appear, and will not work in windows created by other target
editors. For example, they will not work in SQL Server Management Studio data-grid windows.

Customizing Target Editor Menu Integration

SQL Assistant provides several methods for integrating its menus with target editor menus. By default, SQL
Assistant inserts additional menu items into target editor context menus only.

The following steps describe how to choose menus in which to add SQL Assistant commands:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Targets tab page.

3. In the targets list, select the target whose menus you want to modify.

4. Click the Advanced… option on the right side of the screen. The button appears on right side
of the field. Click this button to show advanced options.

5. Open the drop-down menu for the Environment Integration option and choose a menu
integration option. Note that the Full option means that both the top-level and context editor
menus can be modified. The None option means that neither menu can be modified.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -633-

 Tip: Menu integration is not required. It is only provided for your convenience so you won't
need to remember all supported hot keys. You can also use SQL Assistant's system tray menu
as described in the Using System Tray Icon Menu topic in CHAPTER 3.

 Important Note: For target editors such as Eclipse, SQL Server Management Studio, and Visual Studio,
when changing the Environment Integration options verify SQL Assistant Add-in is registered. The menu
integration only works if the Register SQL Assistant Add-in option is set to Yes.

Additional Menus in SQL Server Management Studio Grid Controls

Enabling the Full menu Integration option activates an additional feature available for SQL Server
Management Studio targets only. The context menu for the result set data grids contains additional commands
provided by SQL Assistant enhancing user productivity and experience as shown on the following screenshot.

The additional commands expose a subset of the functions available in SQL Assistant data grid controls. To
access the complete functionality, use either Copy Contents to New Grid of Copy Selection to New Grid
commands, which will convert the data in the grid to SQL Assistant grid.

Refer to CHAPTER 11, Data Display and Editing for the description of the supported commands and how to
use them.

Managing Plugins for SQL Assistant

SQL Assistant supports extensibility via 3rd party and custom plugins. Such plugins extend SQL Assistant’s
functionality, they are not to be confused with addons and plugins that are part of SQL Assistant software and
which are used to integrate SQL Assistant with other development environments. For the later see Native Add-
ons topic in this chapter.

Plugins need to be registered in SQL Assistant’s options before they can be referenced in custom menus and
other places.

To register a new plugin:

1. Make sure the plugin files are copied to C:\Program Files (x86)\SQL Assistant 12\Plugin folder.

2. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

3. Click the Targets tab page.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -634-

4. Click the Plugins section.

All correctly installed plugins should be listed in this section.

5. Tick the checkbox to the left of plugin name to enable it or uptick to disable and ignore that plugin.

6. Click the OK button on the bottom of the dialog to save Changes.

 Tip: The procedure described above does not install or uninstall plugins. It simply makes them enabled or
disabled for loading and use. For more information on plugin development and installation refer to Plugins
Developer Guide, which is a separate manual.

Customizing Settings for Eclipse-based Target Editors

Several Eclipse-specific settings can be customized directly in the Eclipse IDE:

1. In Eclipse, click the Windows Preferences menu command. The Preferences dialog will
appear.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -635-

2. Click the SQL Assistant Plug-in item in the Preferences tree.

3. On the right side of the dialog, customize the SQL Assistant settings as required.

 Important Note: Make sure the value of "SQLAssist.dll path" option is correct.

4. Click the OK button to save Changes.

 Tip: If you use specialized SQL editors within the Eclipse environment, it is also recommended that you
disable their Code Assistant auto-activation feature in the Eclipse Preferences. See the Configuring Eclipse-
based Target Editors topic for more information.

Customizing SQL Assistance Types

"SQL Assistant Type" is a collection of various settings and functions defining SQL Assistant behavior. The
SQL Assistant comes with several pre-configured SQL assistance types called for clarity "Oracle", "DB2 UDB",
"DB2 for iSeries", "SQL Server", "MySQL", "MS Access", "Sybase ASA", "Sybase ASE", "PostgreSQL",
"Amazon Redshift" and "SQLite." All pre-configured types are wired to the complete set of pre-defined database
catalog queries. code formatting rules, snippets, refactoring methods and a other settings and functions.

SQL Assistance interface allows you to customize the default assistance types as well as create your custom
types. The following example demonstrates how to create custom type for SQL Server using a limited subset of
catalog queries:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -636-

2. Click the DB Options tab page.

3. Click the Plus Sign icon in the top left corner of the DB Options tab page to add a new SQL
Assistance type. Type a name for the new row type, for example My Custom Type.

4. In the DB Type drop-down, select of the database type for which the new SQL Assistance type
will be used.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -637-

5. Expand the DB Queries option to show DB Query associations and their properties.

6. Choose query associations as needed.

For example, in the DB Type option select "SQL Server", for "Objects", "Columns" and "Joins"
select items as on the following sample screenshot. Note that if you leave "Databases" option
associated with the "None" value, SQL Assistant will not look for database names in the database
catalog so no database names will appear in SQL Assistant popups.

 Tip: You can define your own database catalog queries in the DB Queries page and then
associate them with SQL Assistance types. See the Customizing Database Catalog Queries topic
for more information.

7. The new SQL Assistance Type can be then associated with a specific development environment
or a standalone editor. Use the following steps to accomplish this:

CHAPTER 48, Customizing SQL Assistant's Behavior

 -638-

8. Click the Targets tab page on the SQL Assistant - Options dialog.

9. On the left side of the screen, select the target editor for which you want to use the new custom
configuration. Then for the SQL Assistance option on the right side of the screen, select a
custom type (such as the one you created earlier in this procedure) from the SQL Assistance
option drop-down list.

10. Choose the type and version of SQL Reference you want to associate with this target and also
the associated type of SQL Snippets. Choose "None" as a value for items you do not want to
use.

11. Click the OK button to save all changes and close the Options dialog.

Customizing Database Catalog Queries

SQL Assistant uses several types of pre-defined database queries that are tuned for working with different
versions of Oracle and SQL Server databases. If necessary, you can modify these queries and tune them for
the specific version of the database you are working with. You can also enter new queries and assign them to
your own custom SQL Assistance configuration.

To modify existing queries for reading database catalog information:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -639-

2. Click the DB Options tab page.

3. Select the DB Queries section on the left-side of the Options screen.

4. Select the catalog query you want to modify. The query text will appear on the right side of the
screen.

5. Change the query type an database target type as needed, and make any desired edits to the
query text.

6. If you want to modify other queries, repeat steps 4 and 5 for each query you want to change.
When done, click the OK button to save your changes and close the Options dialog.

To create a new query for reading database catalog information:

Use steps 1 to 6 as described above. In step 4 instead of selecting an existing query, click the Plus Sign

icon in the top left corner of the DB Options tab page to add a new query.

To quickly create a new query from an existing query:

Use steps 1 to 6 as described above. In step 4, select the existing query you want to copy and modify.

Click the Copy Sign icon in the top left corner of the DB Options tab page to create a copy of the
query. Enter a name for the new query and edit as necessary.

To delete an existing query:

Use steps 1 to 6 as described above. In step 4, instead of editing query text, click the Delete icon in
the top left corner of the DB Options tab page to delete the selected query.

 Tip: You can associate your custom catalog queries with both predefined and custom SQL Assistance
types. This feature provides you with nearly complete control over SQL Assistant behavior and appearance.
See the Customizing SQL Assistance Types topic for more information.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -640-

Two Queries for Retrieving Table Column Information

The default SQL Assistant configuration includes two versions of database catalog queries for each database
type that are used for describing database table and view columns: The returned information is displayed in
various SQL Assistant popups and is also used by the Performance Analyzer. For example, for SQL Server
systems the queries are

 Columns (MSSQL) – this query returns basic column information

 Columns (MSSQL) + Keys - this query returns extended column information including column
indexes and constraints but it is more performance expensive and may make SQL Assistant slow
when working with very rage database systems.

Two versions of the "Columns" queries are provided for all other database systems. You can choose which
query to use with your database system. To customize the selection:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the DB Options tab page.

3. Select the SQL Assistance type for your database system and editor.

4. Expand the DB Queries section on the right side.

5. In the Query "Columns" option select the version of the 'Columns" query to use for your
environment. Alternatively, to switch the query version, you can change the Show Keys and
Indexed Columns option with simple Yes/No value.

Before change After change

See the Enabling Display of Key Columns and Indexed Columns topic in CHAPTER 3 for more information.
This topic also explains why the simple version of the "Columns" query has been chosen as a default pre-
configured option.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -641-

Special Macro Variables Allowed in Database Catalog Queries

A set of special macro variables can be used the catalog queries to chain their results. This set of special
macro-variables cannot be used anywhere else. The available macro variables are database type specific and
described in the following table.

Variable Meaning

DB_NAME The database name for the query context.

SCHEMA_NAME The schema name for the query context.

SCHEMA_ID The unique schema id if such is supported by the database type.

OBJECT_NAME The schema object name for the query context

OBJECT_ID The unique schema object id if such is supported by the database
type.

OBJECT_TYPE The type of the object for the query context.

PACKAGE_NAME The Oracle package name for the query context

 Tip: The special macro variables can be used in two different formats

 As text substitution variables using $macro$ notation, for example,
SELECT ... FROM [DB_NAME].sys.objects WHERE ...

 As query bind variables using colon notation :macro, for example,
SELECT ... FROM syscat.tables WHERE tabschema = :SCHEMA_NAME AND ...

Using Advanced Filtering for Fast Database Catalog Data
Access

The previous topic describes how you can manage and customize database catalog queries. You can use the
same technique for tuning database catalog query performance and filtering the returned results. This is a very
handy feature when you work with very large databases running various ERP applications with tens of
thousands of objects, columns, procedures and so on. To improve the performance and limit query results only
to specific object types or schemas, you can use the following techniques:

 Edit a slow catalog query and add the required performance hints. For example, if your Oracle
database server is tuned for cost-based optimization and you want to use rule-based optimization for
catalog queries, you can add the /*+ RULE */ hint after each SELECT keyword in text of each catalog
query.

 Filter out unused databases and schemas. For example, if you never use databases msdb and model
in SQL Server, you can filter them out and add a WHERE clause to the "Databases" catalog query

CHAPTER 48, Customizing SQL Assistant's Behavior

 -642-

with text like WHERE name NOT IN ('msdb', 'model')

 Filter in used schemas only. For example, if you only work with schemas SHIPPING and RECEIVING
in your Oracle database, you can add a WHERE clause to the "Schemas" catalog query with text like
WHERE username IN (' SHIPPING', 'RECEIVING')

Using the techniques described above, you can tune SQL Assistant to fit your requirements and maintain top
performance.

Using Object Type Filtering

There are several tools for controlling which objects are displayed in SQL Assistant popups. For example, you
can use the List Items filter to display only certain types of objects.

To use this filter type:

1. Activate the DB Options tab.

2. Select the SQL Assistant type whose behavior you want to modify.

3. Expand the List Items option group as shown on the example image.

4. Select the required list item types and press the Ok button to apply changes and close the Options
dialog.

 Note: Different types of items can be configured for different types of supported database systems. If you
are working with multiple database system types, you may need to customize each type individually.

 Note: Some types of items support 3 states:

 Enabled (checkbox is checked) – items of this type are always shown in the popups.

 Disabled (checkbox is unchecked) – items of this type are hidden in the popups.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -643-

 Enabled after first letter match (checkbox is in a third state with the box shaded) – items of this
type are initially hidden in the popups but appear when you type first letter matching their names

This special state allows you to hide items that would cause the popup list to be too cluttered. For
example, Oracle aliases by default are marked with the third state. If they were set to always
appear, thousands of alias names would appear at the beginning of most popup lists.

Changing the Order of Objects in Common Object Names
Popup

Certain object types can appear in different positions within the Object Names Popup list. To modify the default
order:

1. Activate the object type filter as described in the previous topic.

2. in the List Items list click the item type whose display position you want to change. Be careful not to
remove the checkmark when selecting the item type.

3. Click the Up Arrow or Down Arrow icon next to the item type list to move the selected item type up
or down.

 Tip: Note that not every type can be repositioned. This dependency is a result of internal constraints that
cannot be modified. The Up Arrow and Down Arrow icons become enabled only for types whose order in the
popup list can be modified.

Changing the Order of Tables in Context Popups

You can customize order in which tables and views are listed in context-based popups appearing within SQL
DML statements. Do not confuse this type of popup with the common list of objects and their order. Context

CHAPTER 48, Customizing SQL Assistant's Behavior

 -644-

popups are displayed after certain keywords such as WHERE, ORDER BY, GROUP BY, AND, OR, etc. as well
as after certain syntax elements such as commas, equal signs, etc. Context popups list only the objects
referenced in the same SQL query. The default SQL Assistant behavior for context based popups is to list
object names either in the order they are referenced in the code or alphabetically depending on the context. To
choose a different order:

1. Open the SQL Assistant Options dialog.

2. Activate the DB Options tab.

3. Select your database type in the SQL Assistance group of options on the left.

4. On the right, expand the Auto Complete… option group.

5. Change the Context Tables Order option to the desired value and press the Ok button to apply
changes and close the Options dialog.

The following ordering options are supported:

Default – SQL Assistant decides the best order of objects in the list based on the list context. For example, in
the ORDER BY clause, SQL Assistant lists object names in alphabetical order (database and schema names
are ignored), while in the JOIN… ON clause, it uses Last to First order.

First to Last – The first object referenced in the current SQL statement appears first in the list, the second
object appears second, and so on.

Last to First – The last object referenced in the current SQL statement appears first in the list, the one before
the last object appears second, and so on.

Alphabetically – Objects are always listed alphabetically by their names (database names and schema names
are ignored).

Alphabetically, Ignore Prefixes – Objects are always listed alphabetically by their names, ignoring name
prefixes listed in the "Ignore Name Prefixes" list of recognizable prefixes. Database names and schema names
are ignored. See the Customizing Code Auto-completion Options topic in this chapter for instructions on how to
customize the list if recognizable prefixes.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -645-

Changing the Appearance of JOIN Suggestions

Following a JOIN keyword, SQL Assistant, by default, displays a list of join suggestions based on the available
referential constraints for the tables referenced in the query. To improve code entry efficiency, the suggestions
are expanded automatically to allow single-click selection of joined columns. The resulting suggestion may look
like the following example:

To shorten the list, the column-level is auto-expanded for the first 4 tables only. You can use keyboard
navigation keys and/or the mouse to expand column-level in the remaining tables as needed and to select
columns for the join. .

 Tip: Different code is inserted into the editor depending on which type of item you select in the JOIN
suggestions. The most efficient method requiring less input on your part is to select specific columns to be
joined and letting SQL Assistant generate the complete JOIN clause, including the ON part containing column
matches. For more information, see the Example 2: Building complete SELECT starting with joins and Using
JOIN Clause Completion Features topics in CHAPTER 3.

You can control how many tables are auto-expanded using the Auto expand Join Column-Level configuration
option.

1. Open SQL Assistant's Options dialog.

2. Activate the DB Options tab.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -646-

3. Select the SQL Assistant type whose behavior you want to modify.

4. Expand the Auto-complete option group as shown on the example image.

5. Modify the Auto Expand Join Column-Level option. The number in this option represents the
number of tables that will be automatically auto-expanded. Press the Ok button to apply changes and
close the Options dialog.

 Note: To disable automatic column-level expansion, set this option value to zero.

 Note: Different types of items can be configured for different types of supported database systems. If you
are working with multiple database system types, you may need to customize each type individually.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -647-

Customizing Performance Analysis Options

Performance analysis behavior can be customized in SQL Assistant's Options dialog on the DB Options tab.

To change performance analysis options, use the following method:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the DB Options tab page.

3. In the SQL Assistance list of assistance types, select the type whose behavior you want to
modify.

4. Expand the Performance Analysis option group on right side of the dialog and click the [+] sign
in front of the group name to expand the next level.

5. Modify options as required.

6. Click Ok button to save changes and close the SQL Assistant - Options dialog.

The following performance analysis options can be customized:

Analyze Query Performance – Turns SQL Assistant's code performance analyzer on or off. The default
behavior is "Yes".

Analyze Indexed Columns –Controls whether SQL Assistant's code performance analyzer checks columns
referenced in the code in JOIN and WHERE clauses and checks for missing indexes and / or indexed columns
referenced in such a way that their indexes cannot be used. The default value is "Yes."

Analyze Execution Plans – Controls whether SQL Assistant's code performance analyzer collects estimated
execution plans for queries in the editor. It also checks them for full table scans performed in large tables and
for other poorly performing operations. The default value is "Yes."

CHAPTER 48, Customizing SQL Assistant's Behavior

 -648-

TABLE SCAN – Row Count Threshold – Specifies the threshold value for full table scan operations raising
performance alerts. The default value is 1000 records. Typically if this value is exceeded, it is an indication that
the query has not been optimized query and/or that an index is missing.

IN – Row Count Threshold – Specifies the threshold value for records returned from subqueries used for
column comparisons and JOINs. A query may look like the following:

SELECT ... columns here ...
FROM table1
WHERE col1 IN (SELECT lots_of_records FROM table2 WHERE ... some condition ...)

The default value is 1000 records. If this value is exceeded, it is typically an indication that the query has not
been optimized.

MERGE JOIN – Row Count Threshold – Specifies the threshold value for JOIN operations resulting in data
merges using intermediate tables and raising performance alerts. The default value is 50000 records. Typically
if this value is exceeded, it is an indication that the query has not been optimized query and/or that an index is
missing.

Managing Database Connections

Use the following steps to manage database connections saved in SQL Assistant configuration files.

To modify an existing connection:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the DB Options tab page.

3. Select the DB Connections section on the left side of the dialog.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -649-

4. Select the connection you want to modify. The connection properties will appear on the right side
of the dialog.

5. Edit properties as required.

 Note: ”Server,” ”user,” ”password,” “connection type” and ”database name” are optional
properties. If they are not specified, they can be specified later in the Connection dialog displayed
if SQL Assistant needs to establish a new connection to the database not shared with the target
editor.

Also, note that a different set of properties is available for different connection types. For example,
for Oracle connections, you may need to enter the “Oracle TNS name”, ”connection type”
(Normal, SYSDBA or SYOPER) and/or ”path to Oracle's OCI.DLL”.

Additional information on supported connection types and their properties is available in
CHAPTER 2, Connecting to Your Database.

6. [Optional step] To test that the connection is working properly, click the button in the top
right corner of the Options dialog.

7. To modify other connections, repeat steps 4 and 5 for the connections you want to modify. When
done, click the OK button to save your changes and close the Options dialog.

To create a new connection:

Use steps 1 to 6 as described above. In step 4, instead of selecting an existing connection, click the Plus

Sign icon in the top left corner of the DB Options tab page to add a new connection.

To quickly create a new connection from an existing connection:

Use steps 1 to 3 as described above. In step 4, select an existing connection to copy and modify. Click the

Copy icon in the top left corner of the DB Options tab page to add the new connection, then modify it
as needed. If adding SQL Server connection, use the SQL Server instance name as the connection name.
If adding an Oracle connection, use the Oracle TNS connection name as you would enter it in SQL*Plus
and other Oracle programs.

To delete an existing connection:

Use steps 1 to 3 as described above. After step 3, click the Delete icon in the top left corner of the DB
Options tab page.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -650-

Customizing Brackets and SQL Code Matching and
Navigation

Matching Brackets and Matching Block Delimiters

SQL Assistant supports automatic bracket matching which gives you immediate feedback on misplaced
brackets or open-ended SQL code blocks such as BEGIN without END or IF without END IF, and other SQL
structures requiring beginning and ending keywords. It also provides quick code navigation methods using
matching bracket jumping so you can quickly navigate from the start of a SQL block to the end or visa versa.

The following example screenshot demonstrates the bracket matching feature in action. In this example the
cursor is positioned over the BEGIN keyword. If there is a matching END keyword in the same procedure code,
both keywords are highlighted using the chosen bracket highlighting color.

You can change the behavior of this feature by modifying the following options:

 Highlight Matching Bracket – Specifies the color used to highlight matching brackets and block
delimiters or can be used to turn highlighting completely off. Choose No value in the drop-down to
disable the matching brackets highlighting feature. Choose Yes (Select Color…) value in the
drop-down to choose desired highlighting color using the standard color-picker control.

 Jump to Matching Bracket – Controls behavior of the mouse-over processing for matching
brackets and quick navigation or can be used to turn this feature completely off. The available
options are:

o No – Do not display mouse-over hints for matching brackets

o Yes (Tooltip Only) – Show small tooltips when the mouse is rested over a bracket for 2 or
more seconds.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -651-

o Yes (Tooltip & Text) – Show small tooltips when the mouse is rested over a bracket for 2 or
more seconds. The tooltip also contains a hyperlink that can be used to jump to the code line
containing the matching opening or closing bracket.

Both options are available in the Targets options group and can be configured differently for different targets.
To modify these options:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Targets tab page.

3. On the left side of the screen, select the target whose options you want to modify.

4. On the right side of the screen, change bracket-related options as desired.

5. To modify options for other targets, repeat steps 3 and 4 for each target. When done, click the OK
button to save your changes and close the Options dialog.

SQL Assistant supports matching and highlighting of the following types of brackets and block delimiters:

()
[]
{ }
BEGIN…END
BEGIN TRY…END TRY
BEGIN CATCH… END CATCH
CASE…END
IF...END IF
LOOP...END LOOP
FOR...LOOP… END LOOP
WHILE…LOOP...END LOOP
FOR… END FOR
WHILE…END WHILE
REPEAT...END REPEAT

The set of brackets and block delimiters supported by this feature depends on the current type of SQL
Assistance selected for the active editor which, in turn, is controlled by the database server type attribute.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -652-

Matching Names Highlighting

SQL Assistant supports automatic name matching and highlighting for variables, functions, object names, and
so on, which gives you immediate feedback on the use of these names and their references.

The following sample screenshot demonstrates the name matching feature in action. In this sample, the cursor
is rested on the @CheckDate variable. All occurrences of this variable within the procedure code are
highlighted using the selected name highlighting color.

You can change the behavior of this feature by modifying the following option:

 Highlight Matching Names – Specifies the color used to highlight matching brackets and block
delimiters or can be used to turn the highlighting completely off. Choose No value in the drop-down
to disable the matching names highlighting feature. Choose Yes (Select Color…) value in the
drop-down to choose desired highlighting color using the standard color-picker control.

This option is available in the Targets options group and can be configured differently for different targets. To
modify this option:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Targets tab page.

3. On the left side of the screen, select the target whose options you want to modify.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -653-

4. On the right side of the screen, change name match highlighting options as required.

5. To modify options for other targets, repeat steps 3 and 4 for each target. When done, click the OK
button to save your changes and close the Options dialog.

Customizing Existing and Creating New Code Snippets

Any changes you make to code snippets on the Code Snippets tab page apply only to the SQL dialect
selected in the SQL dialects list in the top left corner of the tab page. Before you change a code snippet, make
sure to select the SQL dialect you want to modify.

To modify an existing code snippets:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Code Snippets tab page.

3. On the left side of the screen, select the SQL dialect for which you want to modify the snippet.

4. Select name of the snippet you want to modify. The snippet code will appear on the right side of
the Options dialog.

5. Change snippet options and edit the snippet text as needed.

6. To modify other code snippets, repeat steps 4 and 5 for each snippet. When done, click the OK
button to save your changes and close the Options dialog.

To create a new snippet:

Use steps 1 to 6 as described above. In step 4, instead of selecting an existing snippet, click the Plus Sign

icon in the top left corner of the Code Snippets tab page to add a new snippet.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -654-

To create a new snippet from an existing snippet:

Use steps 1 to 6 as described above. In step 4, select an existing snippet Click the Copy Sign icon in
the top left corner of the Code Snippets tab page to add a new snippet, modify the snippet copy as
desired, and then rename the new snippet with a unique name.

To delete an existing snippet:

Use steps 1 to 6 as described above. In step 5, instead of editing snippet text, click the Delete icon in
the top left corner of the Code Snippets tab page.

 Tip: By default, when you select the Code Snippets tab, the first available SQL dialect is selected from the
list in the top left corner of the page. If you make changes in code snippets often, it is a good idea to move the
most frequently used SQL dialect to in the top of the list. You can use drag-and-drop to reorder the list. You can
use drag-and-drop to reorder the list. Your changes will be remembered the next time you open the Options
dialog.

Customizing Keywords Used With Keyword Prompts and the
Capitalization Feature

Keyword prompts and the keywords capitalization features are part of the SQL Intellisense described in detail in
CHAPTER 3, Code Assistants and SQL Intellisense

 Important Note: Any changes you make to the keywords and code formatting rules on the Code
Formatting tab page apply only to the SQL dialect selected in the SQL dialects list in the top left corner of the
tab page. Before you make any changes in formatting rules, make sure to select the SQL dialect you want to
modify.

To enable automatic keyword reformatting and/or customize keywords list:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Code Formatting tab page.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -655-

3. On the left side of the screen, select the code formatting style whose keyword list you want to
modify.

4. Click the empty field next to the Keywords option. The small button appears on right side of
the field. Click this button to expand the list of keywords and the formatting functions applied to
these keywords.

In the Convert Keywords to drop-down list, choose the Uppercase function to automatically
convert keywords to upper case. Choose the Lowercase function to automatically convert
keywords to lower case. Choose the Initcaps function to automatically convert keywords to lower
case with first letters in upper case. Choose the Custom-case option to have the keywords
formatted exactly as they are entered in the keywords list.

Choosing the None option effectively disables the automatic keyword formatting feature.

5. Edit the keyword list as needed.

6. Click the OK button to save all changes and close the Options dialog.

To disable automatic keyword reformatting:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Code Formatting tab page.

3. On the left side of the screen, select the SQL dialect whose keyword list you want to modify.

4. In the Convert Keywords to drop-down list, choose None to disable automatic keyword
formatting.

5. Click the OK button to save all changes and close the Options dialog.

 Tip: By default, when you select the Code Formatting tab, the first available SQL dialect is selected from
the list in the top left corner of the page. If you make changes in code formatting often, it is a good idea to
move the most frequently used SQL dialect to the top of the list. Use drag-and-drop method to rearrange order
in which SQL dialect names appear in the list and place the required SQL dialect first. You can use drag-and-
drop to reorder the list. Your changes will be remembered the next time you open the Options dialog

CHAPTER 48, Customizing SQL Assistant's Behavior

 -656-

Customizing List of Preferred Keywords in Keyword Prompts

SQL Assistant keyword prompts typically consist of two sections separated by a horizontal line. The top-section
lists preferred keywords and code structures beginning with the entered letters. The bottom section lists all
other keywords beginning with the same letters. If no keywords are listed in the top section, only one section is
displayed.

For greater efficiency, the preferred keywords section should include keywords and entire code structures that
you type most often. The SQL Assistant default configuration includes a number of predefined choices for
preferred keywords and code structures that you can easily customize using the following procedure:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Code Formatting tab page.

3. On the left side of the screen, select the code formatting style whose preferred keyword list you
want to modify.

4. On the right side of the screen, click the empty field next to the Keywords option. The small
button appears on right side of the field. Click this button to expand the list of keywords.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -657-

5. Scroll down the list of keywords and locate the [Preferred Keywords] section which is close to
the bottom of the list.

6. Customize the list of preferred keywords as you see the fit. Note that you may enter separate
keywords and entire code structures; for example, SELECT TOP 100 * FROM

 Tip: The display order of keywords in the preferred keywords section in keyword prompts
depends on the order of keywords entered in the [Preferred Keywords] section in the Options.
For example, if you enter CREATE TABLE, CREATE PROCEDURE, and CREATE INDEX in the
order specified in this example, you will see them in the same order when you type CR letters in
the editor. This example assumes use of SQL Assistant default settings, in which keyword
prompts are enabled and configured to appear after first 2 characters are typed.

 Tip: Preferred keywords and code structures specified in the [Preferred Keywords] section
do not need to be listed in the list of keywords for code formatting. But in order for your preferred
keywords to appear in keyword prompts, at least one keyword must be defined in the main
section with the same starting letters.

7. Click the OK button to save all changes and close the Options dialog.

Customizing Symbols Triggering Column Name Popups

SQL Assistant automatically displays context-sensitive column name popups. The popups are displayed in the
following cases:

 After certain keywords such as WHERE, GROUP BY, ORDER BY

 In JOIN sections of SQL statements

 After dots following table names or table name aliases

 After commas in parts of SQL statement where column names are expected

 After AND and OR logical operations

You can use the Suggest Columns After option to specify additional symbols and keywords after which
column name popups should be displayed automatically.

To customize options for column name popup handling:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the DB Options tab page.

3. On the left side of the screen, select the required SQL Assistance style whose popup display
options you want to modify.

4. Change value of the Suggest Columns After option as needed. You must enter additional
symbols and/or keywords as a comma separated list, for example:

<,>,<>,!=,BETWEEN

5. Click the OK button to save all changes and close the Options dialog.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -658-

Customizing Handling of Object and Column Names in Case
of Keyword Name Conflicts

By default, SQL Assistant uses the "Only if name = keyword" code auto-completion rule when pasting object
and column names into the code editor. This rule instructs SQL Assistant to enclose pasted names in brackets
(or quotes) only if they match SQL keywords. This rule is provided as a way to avoid creating code syntax
errors. However, database engines may allow certain names to be used without brackets even if they match
predefined keywords. For example, frequently used column names like ID and NAME are allowed and may be
coded without any special treatment in most databases. This kind of special name can be excluded from the
"Only if name = keyword" rule by switching to the "Only if name = keyword (limited)" rule and customizing
the list of exception names.

To change the default rule for adding name delimiters:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the DB Options tab page.

3. On the left side of the screen, select the SQL Assistance style whose name/keywords treatment
you want to modify.

4. On the right side of the screen, click the [+] sign in front of the Auto-Complete section to expand
that section.

5. Modify the value of the Always Add Delimiters option and set it to Only if name = keyword
(limited).

6. Click the OK button to save all changes and close the Options dialog.

To customize the list of exception names in SQL Assistant Options:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Code Formatting tab page.

3. On the left side of the screen, select the code formatting style whose keyword name exclusions
list you want to modify.

4. On the right side of the screen, click the empty field next to the Keywords option. The small
button appears on right side of the field. Click this button to expand the list of keywords.

5. Scroll down the list of keywords and locate the [Do not add delimiters] section located near the
bottom of the list.

6. Customize the list of names you want to exclude.

7. Click the OK button to save all changes and close the Options dialog.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -659-

Customizing Code Auto-completion Options

Code auto-completion behavior can be customized in SQL Assistant's Options dialog on the DB Options tab.

To change auto-completion behavior options, use the following method:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the DB Options tab page.

3. In the SQL Assistance list of assistance types, select the type whose behavior you want to
modify.

4. On right side of the dialog, expand the Auto Complete option group, then click the [+] sign in
front of the group name to expand the next lower level.

5. Modify options as required.

6. Click the Ok button to save changes and close the SQL Assistant - Options dialog.

The following auto-completion features can be customized:

Always Add Delimiters – Controls how SQL Assistant inserts object and column names into the code. Options
are:

 Only if name = keyword - Causes names to be enclosed in brackets (or quotes) only if they match
SQL keywords

 Only if name = keyword (limited) - the same as the "Only if name = keyword" rule except that certain
keyword names commonly recognized by databases, such as ID and NAME, are not automatically
delimited. You can customize the list of exclusions. This list is maintained in the Keywords section in

CHAPTER 48, Customizing SQL Assistant's Behavior

 -660-

SQL Assistant Options, on the Code Formatting tab. See the Customizing Handling of Object and
Column Names Matching Keywords topic for more details.

 Always - Delimiters are added to all inserted names

 Never - Delimiters are never added to inserted names

 Tip: The state of the Always Add Delimiters option has no impact on how SQL Assistant inserts
names containing spaces and special symbols. These names are always enclosed in delimiters.

Always Fully Qualify Object Names – Controls how SQL Assistant inserts object names into the code. The
following choices are supported:

Only for objects in another schema or database – if the selected name is for an object located in a
different database or in a schema different from the current user schema, the name is automatically
expanded to include the database and schema parts using standard dot notation.

With schema name – if the selected name is for an object located in the current database, the name is
always automatically expanded to include schema part. If the selected name is for an object located in a
different database, the name is automatically expanded to include the database and schema parts.

With schema name (functions only) – this option is specific to SQL Server requirements for user-defined
function calls to include schema names. If the selected name is for a user-defined function located in the
current database, the name is always automatically expanded to include schema part. If the selected name
is for a user-defined function located in a different database, the name is automatically expanded to
include the database and schema parts.

\With database and schema names –the selected name is always automatically expanded to include
database and schema parts, even if the referenced object is located in the current database schema.

Auto Add Aliases – Controls the generation of automatic aliases after table and view names and inserting
them before referenced column names.

Example code containing automatically
added aliases:

Example code without aliases:

SELECT
 e.EmployeeID,
 e.LastName,
 e.FirstName,
 e.Title,
 e.TitleOfCourtesy,
 e.BirthDate,
 e.HireDate,
 e.[Address],
 e.City,
 e.Region,
 e.PostalCode,
 e.Country,
 e.HomePhone,
 e.Extension,
 e.Photo,
 e.Notes,
 e.ReportsTo,
 e.PhotoPath
FROM
 Employees AS e

SELECT
 EmployeeID,
 LastName,
 FirstName,
 Title,
 TitleOfCourtesy,
 BirthDate,
 HireDate,
 [Address],
 City,
 Region,
 PostalCode,
 Country,
 HomePhone,
 Extension,
 Photo,
 Notes,
 ReportsTo,
 PhotoPath
FROM
 Employees

CHAPTER 48, Customizing SQL Assistant's Behavior

 -661-

Options are:

 No – Do not add aliases

 Yes (without AS keyword) – automatically add aliases after table names, as in the following
example:
 FROM Employees e

 Yes (with AS keyword) – automatically add aliases after table names, as in the following
example:
 FROM Employees AS e

Ignore Name Prefixes – Specifies name prefixes that SQL Assistant should ignore when calculating automatic
aliases. This option is used only if the Auto Add Aliases options is enabled. Name prefixes to ignore must be
entered as a comma separated list; for example:

TBL_,TFN_,V_,T_,MV_

Aliases Character Case – Specifies character case for generated aliases

Upper Case – generates aliases consisting of upepr case letters only, for example: "PO"

Lower Case (this is the default) - generates aliases consisting of upepr case letters only, for example: "po"

Title Case – Generates alises with firts letter in upper case and the rest in lower case, for example, "Po"

Custom Aliases – List of custom preferred aliases for specific database objects

Regular Names – this method allows you to enter a list of tables and the aliases that you want to use for
them in a simple tabular format. Enter the data as a tab separated list of names and alises, for example:

SALES.Orders SO
Purchasing.orders PO
FinancialStatements.tblBalanceSheetQuarterly qbs
HumanResources.Employee HR_emp
...
Address adrs

 Tip: Each table name may or may not be fully qialfied. If it’s not fully qualified, then the alias can be
used in any database context .

CHAPTER 48, Customizing SQL Assistant's Behavior

 -662-

Regular Expressions – this method allows you to specify a regular expression that will be used to
calculate automatic aliases. For example, the following expression can be used to compose aliases from
first letter in the schema name and the first letter in the object name

(\w).*?\.(\w).* \1\2

For HumanResources.Employee table name as entered, the resulting alias would be " he"

Auto Expand SQL Code – Controls SQL Assistant behavior and the performed activities for object names
selected in object names popup displayed after the first DML statement keyword. For example, if this option is
enabled and table Employee is selected in the popup following the SELECT keyword, SQL Assistant generates
the complete expanded SELECT statement including all required keywords, columns names, aliases, and so
on, as in the following example:

SELECT
 e.EmployeeID,
 e.LastName,
 e.FirstName,
 e.Title,
 e.TitleOfCourtesy,
 e.BirthDate,
 e.HireDate,
 e.[Address],
 e.City,
 e.Region,
 e.PostalCode,
 e.Country,
 e.HomePhone,
 e.Extension,
 e.Photo,
 e.Notes,
 e.ReportsTo,
 e.PhotoPath
FROM
 Employees AS e

CHAPTER 48, Customizing SQL Assistant's Behavior

 -663-

If Auto Expand SQL Code is disabled, only the object name is inserted after the keyword, as in the following
example:

SELECT Employees

Auto-complete / * */ Comments – Controls automatic expansion of multi-line comments. If enabled, pressing
the Enter key after the opening /* comment tag, causes SQL Assistant to automatically generate the entire
comment block, adding the closing tag */ and additional asterisk symbols along the left comment edge. In the
simplest example, an empty comment will appear as in the following example: The edit caret is placed in the
beginning of middle line.

/**

* |
**/

 Tips: All asterisk symbols you enter before pressing the Enter key are automatically copied to the last
line, for example:

/********************

* |
********************/

Pressing the Enter key inside the comment block causes SQL Assistant to automatically insert a new line
and add the left edge asterisk. If the Enter key is pressed in the middle of comment text, the text is split at
that point, and the trailing part is moved to the line following the asterisk.

Before Enter key is pressed (black vertical
bar denotes cursor position):

Before Enter key is pressed (black vertical bar
denotes cursor position):

/************************************

* test line having |several words

*************************************/

/************************************

* test line having

* |several words

*************************************/

Auto-complete – – Comments – Controls the automatic continuation of single-line comments. If enabled,
pressing the Enter key in the middle of a comment line beginning with the double dash (– –) comment tag,
causes SQL Assistant to automatically split the text at that point. The trailing part is moved to the line following
the following line where it begins with the double dash (– –) comment tag.

Before Enter key is pressed (black vertical
bar denotes cursor position):

Before Enter key is pressed (black vertical bar
denotes cursor position):

-- test line having |several words

-- test line having
-- |several words

Item Name Matching Methods - Specifies the method that governs the way SQL Intellisense name matching
responds to names you type in a SQL editor. Note that text matching is case insensitive. The supported
methods are:

 Name Starts with Key String – the name must begin with the text you typed into the editor. For
example, if you typed "Order", names like "OrderHeader", "OrderDetail" would be listed in the context
popup.

 Name Contains Key String, Order Alphabetically – the name must contain the text you typed into
the editor. The text string could be anywhere within the name. For example, if you typed "Order",
names like "OrderHeader", "OrderDetail", "fnOrderData", "prDeleteOrder" would be listed in the

CHAPTER 48, Customizing SQL Assistant's Behavior

 -664-

context popup. The matching names are filtered and then sorted alphabetically. In the example here,
the resulting order is going to be "fnOrderData", "prDeleteOrder", "OrderDetail", "OrderHeader".

 Name Contains Key String, Order by Best Match – the name must contain the text you typed into
the editor. The text string could be anywhere within the name. For example, if you typed "Order",
names like "OrderHeader", "OrderDetail", "fnOrderData", "prDeleteOrder" would be listed in the
context popup. The matching names are filtered and then sorted in order of the best match. In the
example here, the resulting order is going to be "OrderDetail", "OrderHeader", "fnOrderData",
"prDeleteOrder".

 Name Contains Characters from Key String, Order Alphabetically –the name must contain the
characters from the text you typed into the editor. The characters appear in the same order but do not
need to be sequential. For example, if you typed "Ordr", names like "OrderHeader", "OrderDetail",
"fnOrderData", "prDeleteOrder" , "vwOrdrWklyReport", as well as "vwOrdYearlyReport" will be listed
in the context popup. The matching names are filtered and then sorted alphabetically before they are
displayed in the popup.

 Name Contains Characters from Key String, by Best Match –the name must contain the
characters from the text you typed into the editor. The characters appear in the same order but do not
need to be sequential. For example, if you typed "Ordr", names like "OrderHeader", "OrderDetail",
"fnOrderData", "prDeleteOrder" , "vwOrdrWklyReport", as well as "vwOrdYearlyReport" will be listed
in the context popup.. The matching names are filtered and then sorted in order of the best match
before they are displayed in the popup.

Highlight Matching Text Color – Controls the color SQL Assistant uses to highlight matching text in the
popups. By default, the color red is used. Choose No value in the drop-down to disable the highlighting feature.
Choose Yes (Select Color…) value in the drop-down to choose desired highlighting color using the standard
color-picker control.

Customizing Code Formatting Patterns

Code formatting patterns can be built using these elements:

 Keywords

 Ellipses (triple dots indicating text between keywords)

 Parentheses and commas indicating code flow

 White spaces consisting of space and tab characters

CHAPTER 48, Customizing SQL Assistant's Behavior

 -665-

It is important to understand that code-formatting patterns may include more keywords than the actual SQL
statement formatted using the pattern. Keywords included in the pattern that do not appear in the SQL
statement are ignored during code processing and do not affect the results.

Spacing and positions of commas, parentheses and logical operators are very important. To get an idea how
this affects code formatting, consider the following T-SQL DECLARE statement with multiple variables:

DECLARE @var1 int, @var2 datetime, @var3 char(5), @var4 int

If you specify the formatting pattern for DECLARE as

DECLARE …,
 …

The code formatter will produce the following code:

DECLARE @var1 int,
 @var2 datetime,
 @var3 char(5),
 @var4 int

However, if you specify the formatting pattern for DECLARE as the following (note the position of the comma
character):

DECLARE …
 ,…

The code formatter will produce the following code

DECLARE @var1 int
 ,@var2 datetime
 ,@var3 char(5)
 ,@var4 int

Similarly, if a formatting pattern for the WHERE clause in a SELECT statement is defined as:

WHERE …
 AND …

CHAPTER 48, Customizing SQL Assistant's Behavior

 -666-

The code formatter will produce the following code

WHERE col_a = @col_a
 AND col_b = @col_b

However, if you specify the following formatting pattern for the WHERE clause (note the position of the AND
logical operator):

WHERE … AND
 …

The code formatter will produce the following code:

WHERE col_a = @col_a AND
 col_b = @col_b

 Tip: The best way to learn how code formatting works is to modify the default options and to apply code
formatting to your SQL file so you can see the results of your changes.

Customizing Bookmark Handling Options

Bookmark activation and behavior can be configured individually for each target editor on the Targets tab in
SQL Assistant - Options dialog.

To change bookmark handling options, use the following method:

1. Double-click SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. Click the Targets tab page.

3. In the targets list select the target whose options you want to modify.

4. On right side of the dialog, expand Bookmarks option group, click the [+] sign in front of the
group name to expand the next level.

5. Modify options as required.

6. Click Ok button to save changes and close the SQL Assistant - Options dialog.

The following options are available for customizing bookmark handling:

 Enable Bookmarks - Enables the Visual Bookmarks feature in the selected target editor. If this option is
disabled, all other bookmark-related options are disabled as well.

 Show Docked Icons – Enables the use of small docked icons along the edges (top or bottom) of the
editor window. If enabled, docked icons are displayed for bookmarks located outside of the visible area. If

CHAPTER 48, Customizing SQL Assistant's Behavior

 -667-

disabled, bookmarks are highlighted using colored lines and no bookmark icons are used.

 Show Screen Shots – Enables capturing and caching screenshots. if enabled, editor screenshots
captured near bookmark locations are displayed on mouse-over event for docked bookmark icons.

 Highlight Lines – Enables editor text highlighting in bookmarked lines. If enabled, bookmarked lines are
indicated by colored highlighting. Highlight color is unique to each bookmark.

 Allow One-click Create – If enabled, adding new bookmarks can be done with a single mouse click when
the mouse is positioned near the right edge of edit window. If this option is disabled, bookmarks may still
be added using SQL Assistant menus.

 Allow One-click Remove – If enabled, removing bookmark can be done with a single mouse click. If this
option is disabled, bookmarks may still be removed using SQL Assistant menus.

Customizing Error Handling Options

SQL Assistant supports 4 error-handling modes. To choose which mode is right for you, open SQL Assistant
options and activate the Targets page. On the left side of the Targets page, expand the Common section and
then, on the right side of the page, expand the Error Handling option group.

The following error handling modes and options are supported:

 Show system tray notifications – In this mode, if an error occurs, SQL Assistant displays a small
notification message in the system tray area above the SQL Assistant icon. The message contains the first
60 characters of the error message text. Click on the notification message to open the full Error Message
dialog. The Error Message dialog describes the error and gives you the option of reporting the error to
SoftTree Technologies technical support. If you choose to report the error, you will be given a tracking
number for the error. Other error handling activities in this mode are the same as those described below for
the Display error messages.

 Display error messages – In this mode, if an error occurs, SQL Assistant displays the Error Message
dialog describing the error and asks if you want to send an error report to SoftTree Technologies technical
support. If you click the Send button, the error message, SQL Assistant version, name and version of the
target editor, type and version of the current database system, as well as your Windows system type and
version will be sent to SoftTree Technologies technical support.

The error dialog contains two optional edit fields you can use to describe the steps taken before the error
occurred and, optionally, your contact email. Please note that the error data contains no confidential or
personal information unless you explicitly enter such data yourself. Submitted error reports are
processed by an online support system, and a unique tracking number is assigned to each report. The
tracking number can be used later to monitor the status of the issue. By specifying a valid contact email,
you are giving SoftTree Technologies permission to contact you for additional information about the error if
necessary. The email address you provide can also be used to notify you of status changes. For example,
if a bug in SQL Assistant program code is causing an error, SoftTree Technologies may contact you to
notify you that the bug has been fixed. The contact email will be used for communications regarding
the reported error. It will not be used for any other purposes.

 Tip: The error dialog is resizable. If you cannot see the entire error text displayed in the top white area
of the dialog, drag the edge of the dialog to make it bigger.

 Ignore all errors – In this mode, SQL Assistant silently ignores all errors that might occur.

CHAPTER 48, Customizing SQL Assistant's Behavior

 -668-

 Silently report errors to support – This is similar to the first option, except that errors are automatically
reported to SoftTree Technologies technical support, and SQL Assistant does not ask you to describe the
steps. This option may be less disruptive to code processing while still helping to improve future SQL
Assistant versions; however, you do not get a chance to enter related error information or comments.
Selecting this option diminishes the value of reported errors and makes it more difficult to analyze and
troubleshoot the cause of the problem.

In the Options dialog SQL Assistant also allows you to specify a default contact email for the error reporting
service to use in the Display error messages and the Silently report errors to support error-handling
modes. Use Your email address (optional) option to specify your default contact email. Note that this is an
optional value and it can be left blank.

Customizing Data Type Mapping for Data Transformations

The data type mapping for cross databases data conversions are used by Data Factory, Data Transfer, and a
few other tools and features supported by SQL Assistant. The mapping can be customized in SQL Assistant
options.

To review and customize data type mappings:

1. Open the Options dialog.

2. Select the DB Options tab.

3. Expand the Data Type Mapping section in the left-bottom corner.

4. In the database type list select the type of the database whose data type mapping you want to
customize.

5. The data grid with the data type conversion matrix will appear in the main area of the Options dialog.
You can customize the values as a required.

 Tips:

 The mapping supports formulas for dynamic translation of data type attributes, for example,
NUMERIC(p,s) stands for NUMERIC source data type with precision p and scale s. During data
conversion a comparable data type will be used for the destination database with the same precision
and scale.

 Depending on the source and destination database type features and limitations, the same data type
can be converted differently based on its attributes. The data types with multiple mappings display [+]
icon in front of the data type name. Click that icon to expand the data type specific section. Simple
expressions like VARCHAR(n..2000) -> VARCHAR2(n) and VARCHAR(2001..n) -> CLOB are used for
attribute value ranges. In this example, if the source SQL Server data type is VARCHAR and its length
is defined within 1 to 2000 characters, it gets converted to Oracle VARCHAR2 data type with the same
length, but if it's 2001 and longer, the conversion requires using Oracle's CLOB data type.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -669-

CHAPTER 49, Registering and Configuring
Targets for SQL Assistance

Overwiew of Target Editor Registration Modes

SQL Assistant supports two methods for hooking SQL Assistant code into the target editor: add-ons and
dynamic monitoring and hooking. For several pre-configured targets, SQL Assistant provides specially
created add-ons that allow full and easy SQL Assistant integration with the target environment. The add-ons
must be properly installed and configured with the target environment.

The dynamic application monitoring and hooking method is generic and it can be used with many Windows-
based programs, including new and unknown programs. You can register new programs with SQL Assistant
and configure SQL Assistant settings for use with the newly registered programs.

See the Managing SQL Assistant Load Methods topic in CHAPTER 48 for more information about attaching
SQL Assistant to the target editor environment.

If you experience application conflicts when attempting to use the dynamic application monitoring and hooking
method, see the Troubleshooting Application Conflicts topic in this chapter for setting application exceptions.

The following topics describe how to register and unregister SQL Assistant add-ons and new target editors.

Installing and Enabling SQL Assistant Add-ons

SQL Assistant provides a number of add-ons for better integration with popular application development and
database management systems such as Visual Studio, Microsoft SQL Server Management Studio, Eclipse,
Delphi, Oracle SQL Developer, and other. These add-on files are located in the SQL Assistant installation
directory, but they are not necessarily enabled. Do the following to enable an add-on:

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear.

2. On the Targets tab page, on the left side of the screen, select the target for which you want to enable
the add-on.

3. On the right side of the screen, expand the Advanced… option group.

4. Use the drop-down list or double-click the value in the Register SQL Assistant Add-on option to
change the value from False to True.

5. Click the OK button to save all changes and close the Options dialog.

6. To verify the registration, close the SQL Assistant system tray application (see the SQL Assistant
systray icon topic for details) then restart the target editor. The SQL Assistant menu should appear in

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -670-

the target, and SQL Assistant should be active in the Query Editor windows.

The SQL Assistant add-on for Eclipse IDE and derivative products such as Easy-Eclipse, and a number of
others software products is not installed by default. These products can be installed anywhere on the disk.
They typically do not register themselves with the system and SQL Assistant does not know where to find them
so a simple manual installation step is required to install the add-on for Eclipse. Do the following to install and
enable this add-on:

1. Open Windows Explorer and locate the SQL Assistant installation directory. The default path is
C:\Program Files (x86)\SQL Assistant 12

2. Expand the Data subfolder and right-click the com.softtree.sa.eclipse.jar file. Right-click
the file and select the Copy command from the right-click menu.

3. Locate the plugins subfolder of your Eclipse installation. If you have Eclipse installed in the root folder
of the drive C, the subfolder for plugins typically would be C:\eclipse\plugins. Some Eclipse-
based products use
C:\Documents and Settings\{user name}\workspace\metadata\plugins
as the startup folder for their plugins. For the exact plugins subfolder name and location consult your
Eclipse documentation

4. Right-click the plugins subfolder and select the Paste command.

5. To verify the registration, close the SQL Assistant system tray application (see the SQL Assistant
systray icon topic for details) then restart the Eclipse IDE. Click the Help About Eclipse Platform
menu to display Eclipse's About dialog box. In this dialog, click the Plug-in Details… button. The
About Eclipse Platform Plug-ins dialog box will appear. Scroll the list to the bottom. The SQL
Assistant Plug-in name should appear at the end of the list as demonstrated on the following
screenshot.

The SQL Assistant add-on for IBM Data Studio also is not installed by default. Like most other Eclipse
derivative products, the Data Studio can be installed anywhere on the disk and does not register itself with the
system. SQL Assistant does not know where to find this application so a simple manual installation step is
required to install the add-on for Data Studio. Do the following to install and enable this add-on:

1. Open Windows Explorer and locate the SQL Assistant installation directory. The default path is
C:\Program Files (x86)\SQL Assistant 12

2. Expand the Data subfolder and right-click com.softtree.sa.datastudio.jar file. In the

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -671-

right-click menu, click the Copy command.

3. Locate the plugins subfolder of your Data Studio installation. If you have Data Studio installed in the
Program Files subfolder of drive C, the subfolder for plugins typically would be C:\Program
Files\IBM\IBM Data Studio\plugins

4. Right-click the plugins subfolder and click the Paste command in the right-click menu.

5. To verify the registration, close the SQL Assistant system tray application (see the SQL Assistant
systray icon topic for details) then restart the Data Studio. Click the Help About IBM Data Studio
menu to display the Data Studio's About dialog box. In this dialog, click the Plug-in Details… button.
The About IBM Data Studio Plug-ins dialog box will appear. Sort the list by Plug-in Name. The SQL
Assistant DataStudio Plug-in name should appear in the list.

Registering New Targets for SQL Assistance

The simplest way to register a new editing target is to use the Ctrl+Shift+F5 hot key. The following example
demonstrates how Windows WordPad application can be registered with SQL Assistant:

1. Start WordPad from the Windows Start menu.

2. Click the editor area of the WordPad window, to the set the input focus in the editor. Press the Ctrl+
Shift+F5 hot key. The SQL Assistant dialog will appear on the screen as shown in the following screenshot.

3. Customize the target options.

If you would like to use WordPad as an editor for SQL Server files, choose "SQL Server" in the SQL
Assistance drop-down. If you want to use code snippet shortcuts with this editor, choose T-SQL in the
Code Snippets drop-down.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -672-

Before:

After:

Change SQL Assistance option to "SQL Server."

Choose the version of SQL Reference you want to use with the new target. For Microsoft SQL Server
2000, choose "MS T-SQL 2000." For Microsoft SQL Server 2000, choose "MS T-SQL 2005".

To use code snippet shortcuts, change the Code snippets option to "T-SQL."

Customize the Advanced options.

For example, you can change the target name in the Caption option to "WordPad" or other descriptive
name that will be used to reference this target in SQL Assistant Options.

Leave the default Enabled option as "True."

Use "Global" for the Scope option if you want to register WordPad permanently and make SQL Assistant
attach to current and future WordPad instances. To apply options only to the current instance of the
editor, choose either "Current process" or "Current window." For WordPad, both options have the same
effect because the WordPad editor does not have a multiple document interface and can edit only one file
at a time.

Before:

After:

Don't change the Target exe name and Target window class options unless you are instructed to do so
by technical support.

If the same executable file (as specified in Target exe name) is used to start different programs and you
don't want to use SQL Assistant with all of these programs, specify an optional Target Title filter, which
forces SQL Assistant to compare program titles as well as program names. For example, Microsoft SQL
Server Manager for SQL Server 2000 is started using MMC.EXE, which is a general purpose Microsoft

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -673-

tool for launching various server management applications. With the "Microsoft SQL Server Manager %"
Target Title you can limit SQL Assistant to the Microsoft SQL Server Manager application only.

 Tip: The percent sign can be used in Target Title filter property as a wildcard symbol much like a
LIKE operator in SQL queries. Using this wildcard, you can target applications whose title changes
depending on the database connection type or name of the opened object or the file being edited.

Unregistering Previously Registered and Preconfigured
Targets

To unregister already registered targets, including those that come pre-configured with the default installation,
use the procedure described below. Unregistering a target permanently deletes its settings in SQL Assistant.

1. Double-click the SQL Assistant icon in the Windows system tray. The Options dialog will appear.

2. Click the Targets tab page.

3. Select the editing target you want to unregister, then click the Delete button in the top left corner
of the screen.

Disabling Targets Without Deleting Their Registrations

If you do not want to delete an existing target permanently but want to temporarily disable SQL Assistance,
deselect the Target Enabled checkbox as demonstrated in the screenshot above.

Troubleshooting Application Conflicts

Starting with version 6.3, SQL Assistant provides two options for setting application registration exceptions.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -674-

Both options are specified as comma separate lists of file names and file masks using the standard * and ?
wildcards. If you enter a complete file name, make sure to enter it exactly as it appears in the Windows Task
Manager on the Processes tab.

Ignored Targets – Specifies a list of application program files that should be ignored and not registered in the
SQL Assistant's process list. If you have a program that does not run successfully when SQL Assistant is
started before the program, you can add that program's executable file (or files) to the Ignored Targets list.
Add only executable (EXE) files, do not add any other file types.

 Tip: If you are not sure which file name you need to add, look it up in the Windows Task Manager on
the Processes tab.

Allowed System Targets – By default, SQL Assistant ignores all applications started from the Windows home
folder and subfolders except for Windows Notepad and MMC.EXE which is used by SQL Server Enterprise
Manager. If your editor or development environment is started using another program in one of the Windows
system folders, add it to the Allowed System Targets list.

Configuring Eclipse-based Target Editors

Configuring the SQL Assistant Add-on for Use with Eclipse:

1. In the target IDE, click the Windows Preferences menu. The Preferences dialog will appear.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -675-

2. Click SQL Assistant Plug-in in the Preferences tree.

3. File name filter: Enter a regular expression that Eclipse can use to decide for which types of files
the SQL Assistant add-on should be activated. The default value .*\.(sql|sqlpage|ddl) enables
SQL Assistant for files having SQL, SQLPAGTE, and DDL .file extensions.

4. Attach SQL Assistant on startup: If this option is selected, Eclipse will load SQL the Assistant
add-on on startup.

5. SqlAssist.dll path: Enter the full path to the SQLAssist.dll file. This file implements SQL
Assistant integration interface for Eclipse. If this value is incorrect, Eclipse will not load the SQL
Assistant add-on.

Configuring Other Options

If you use specialized SQL editors within the Eclipse environment, it is recommended that you disable the
Code Assistant auto-activation features in Eclipse Preferences. The SQL IntelliSense features available
in SQL Assistant supersede the Code Assistant features of these editors. If left with the default settings,
Code Assistant auto-activation may interfere with the editor's code completion features which, in turn,
might cause various code entry anomalies.

Different types of Eclipse-compatible SQL editors can use different names for this feature and can have
their settings located in different places. The following screenshot demonstrate where and how to disable
this feature in the default SQL Editor that comes with Eclipse Data Tools Platform.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -676-

The following screenshot demonstrates which options should be modified.

The Preferences dialog can be accessed using the Window / Preferences menu in the in the Eclipse IDE.

Configuring IBM Data Studio Targets

Configuring SQL Assistant Add-on for Use with IBM Data Studio

1. In the Data Studio IDE, click the Windows Preferences menu. The Preferences dialog will
appear.

2. Click SQL Assistant Plug-in in the Preferences tree.

3. File names filter: Enter a regular expression that Data Studio can use to decide which types of
files should be activated for the SQL Assistant add-on. The default value .*\.(sql|sqlpage|ddl)
enables SQL Assistant for files having SQL, SQLPAGTE, and DDL .file extensions.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -677-

4. Attach SQL Assistant on startup: If this option is selected, Data Studio loads the SQL Assistant
add-on at startup.

5. SqlAssist.dll path: Enter the full path to the SQLAssist.dll file. This file implements SQL
Assistant communication interface for Data Studio. If this value is incorrect, Data Studio will be
unable to load SQL Assistant add-on.

The Preferences dialog can be accessed using the Window / Preferences menu in the in the Data Studio
IDE.

Configuring Native Tools Provided with SQL Server 2000 and
SQL Server 2005

No changes or customization are required in the settings of SQL Query Analyzer, SQL Server Management
Studio 2005 or Management Studio Express 2005. SQL Assistant can be used with these tools using their
default settings.

However, in order for SQL Server Management Studio to find and load the SQL Assistant add-on, the add-on
must be properly registered.

Add-on registration can be enabled and disabled in SQL Assistant Options as demonstrated on the screenshot
above.

For best experience, it is recommended that you disable automatic text wrapping options to ensure that code
formatting can perform accurately in accordance with your code formatting rules.

 Important Notes for Windows Vista, 7, 8, 8.1, 2008, 2010, 2012: To register the SQL Assistant add-on
in Windows Vista, 7, 8, 8.1, 2008, 2010, and 2012 systems, start SQL Assistant from a Windows Administrator
account. Right-click the SQL Assistant shortcut in the Windows Start Menu and choose Run as Administrator
from the right-click menu. After SQL Assistant starts, open SQL Assistant's Options and set the Add-on
registration state to Yes. Right-click the SQL Server Management Studio shortcut in the Windows Start Menu

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -678-

and choose Run as Administrator mode. Open SQL editor and type SELECT then space. The SQL Assistant
add-on self-registration should be complete. From this point, you can start SQL Assistant and SQL Server
Management Studio from a regular user account.

If multiple users run SQL Assistant on the same system, the add-on registration procedure must be completed
for each user.

Configuring Native Tools Provided with SQL Server 2008

It is recommended that you disable the Statement completion option in SQL Server Management Studio 2008
Options. SQL IntelliSense features available in SQL Assistant supersede the Statement completion features
of SQL Server Management Studio. If left with default settings, Statement completion will interfere with SQL
IntelliSense causing significant inconveniences. The following screenshot demonstrates options that should be
modified.

The Options dialog can be accessed using the Tools Options menu in SQL Server Management Studio
2008.

For best experience, it is recommended that you disable automatic text wrapping options to ensure that code
formatting can perform accurately in accordance with your code formatting rules.

See the Configuring Native Tools Provided with SQL Server 2000 and SQL Server 2005 topic for details on
how to enable or disable SQL Assistant add-on for SQL Server Management Studio.

 Important Notes for Windows Vista, 7, 8, 8.1, 2008, 2010, and 2012: To register the SQL Assistant
add-on in Windows Vista, 7, 8, 8.1, 2008, 2010, and 2012 systems, start SQL Assistant from a Windows
Administrator account. Right-click the SQL Assistant shortcut in the Windows Start Menu and choose Run as
Administrator from the right-click menu. After SQL Assistant starts, open SQL Assistant's Options and set the
Add-on registration state to Yes. Right-click the SQL Server Management Studio shortcut in the Windows Start
Menu and choose Run as Administrator mode. Open SQL editor and type SELECT then space. The SQL
Assistant add-on self-registration should be complete. From this point, you can start SQL Assistant and SQL
Server Management Studio from a regular user account.

If multiple users run SQL Assistant on the same system, the add-on registration procedure must be completed
for each user.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -679-

Configuring Native Tools Provided with SQL Server 2012,
2014, 2016, 17.x, 18.x

It is recommended that you disable the Transact SQL IntelliSense option in SQL Server Management Studio
Options. SQL IntelliSense features available in SQL Assistant supersede the Transact SQL IntelliSense
features of SQL Server Management Studio. If left with default settings, Transact SQL IntelliSense will
interfere with SQL IntelliSense causing significant inconveniences. The following screenshot demonstrates the
option that should be modified.

The Options dialog can be accessed using the Tools Options menu in SQL Server Management Studio
2012.

For best experience, it is recommended that you disable automatic text wrapping options to ensure that code
formatting can perform accurately and match your code formatting rules.

See the Configuring Native Tools Provided with SQL Server 2000 and SQL Server 2005 topic for details on
how to enable or disable SQL Assistant add-on for SQL Server Management Studio.

 Important Notes for Windows Vista, 7, 8, 8.1, 2008, 2010, 2012: To register the SQL Assistant add-on
in Windows Vista, 7, 8, 8.1, 2008, 2010, 2012 systems, start SQL Assistant from a Windows Administrator
account. Right-click the SQL Assistant shortcut in the Windows Start Menu and choose Run as Administrator
from the right-click menu. After SQL Assistant starts, open SQL Assistant's Options and set the Add-on
registration state to Yes. Right-click the SQL Server Management Studio shortcut in the Windows Start Menu
and choose Run as Administrator mode. Open SQL editor and type SELECT then space. The SQL Assistant
add-on self-registration should be complete. From this point, you can start SQL Assistant and SQL Server
Management Studio from a regular user account.

If multiple users run SQL Assistant on the same system, the add-on registration procedure must be completed
for each user.

Configuring Toad Targets

If you use SQL Assistant with recent versions of Quest Software Toad tools, it is recommended that you disable
the Statement Completion and Casing features in Toad Options. SQL IntelliSense features in SQL Assistant

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -680-

supersede Statement Completion features of Toad Editors. If left with default settings, Statement
Completion will interfere with SQL IntelliSense causing significant inconveniences. The following screenshot
demonstrates options that should be modified.

The Options dialog can be accessed using the Tools Options menu in Toad.

Configuring UltraEdit Targets

Different versions of UltraEdit editors render the same text differently. As far as SQL Assistant interface for
UltraEdit is concerted, the important differences affect tab spacing and the width of characters. For best
experience, it is recommended that you set the Tab Stop option value to 2. If that option is set to another value,
certain SQL Assistant functions may appear misaligned on the screen, such as syntax check results
highlighting errors, highlighting of matching brackets, and so on. Note that a Tab Stop value of 2 has been
tested with UltraEdit versions 15 and 16. If you run an older version, you may need to choose a different Tab
Stop value.

The Configuration dialog can be accessed using the Advanced Configuration menu in UltraEdit.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -681-

Configuring Visual Studio .NET, 2003, 2005 and 2008 Targets

No changes or customization are required in the settings of Visual Studio. SQL Assistant can be used with
these tools using their default settings. However, for Visual Studio to find and load the SQL Assistant add-on,
the add-on must be properly registered.

The add-on registration can be enabled and disabled in SQL Assistant Options as shown in the screenshot
above.

For best experience, it is recommended that you disable automatic text wrapping options to ensure that code
formatting can perform accurately and match your code formatting rules.

 Important Notes for Windows Vista, 7, 8, 8.1, 2008, 2010, 2012: To register the SQL Assistant add-on
in Windows Vista, 7, 8, 8.1, 2008, 2010, 2012 systems, start SQL Assistant from a Windows Administrator
account. Right-click the SQL Assistant shortcut in the Windows Start Menu and choose Run as Administrator
from the right-click menu. After SQL Assistant starts, open SQL Assistant's Options and set the Add-on
registration state to Yes. Right-click the SQL Server Management Studio shortcut in the Windows Start Menu
and choose Run as Administrator mode. Open SQL editor and type SELECT then space. The SQL Assistant
add-on self-registration should be complete. From this point, you can start SQL Assistant and SQL Server
Management Studio from a regular user account.

If multiple users run SQL Assistant on the same system, the add-on registration procedure must be completed
for each user.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -682-

Configuring Visual Studio 2010, 2012, 2013, 2015, 2017, and
2019 Targets

No changes or customization are required in the settings of Visual Studio. SQL Assistant can be used with
Visual Studio 2010 and Visual Studio 2013 using the development environment's default settings. However, for
Visual Studio to find and load the SQL Assistant add-on, the add-on must be properly registered.

The add-on registration can be enabled and disabled in SQL Assistant Options as shown in the screenshot
above.

For best experience, it is recommended that you disable automatic text wrapping options to ensure that code
formatting can perform accurately in accordance with your code formatting rules.

 Important Notes for Windows Vista, 7, 8, 8.1, 2008, 2010, 2012: To register the add-on in Windows
Vista, 7, 8, 8.1, 2008, 2010, 2012 systems, start SQL Assistant from a Windows Administrator account. Right-
click SQL Assistant shortcut in the Windows Start Menu and choose Run as Administrator from the right-click
menu. After SQL Assistant starts, open SQL Assistant's Options and set the Add-on registration state to Yes.
From this point, you can start SQL Assistant and SQL Server Management Studio from a regular user account.

If multiple users run SQL Assistant on the same system, the add-on registration procedure must be completed
for each user.

Troubleshooting add-on registration

1. Check the required SQL Assistant manifest file exists:
Windows Vista, 7, 8, 8.1, 2008, 2010, and 2012
C:\Users\[your user name]\AppData\Local\Microsoft\VisualStudio\[VS
version]\Extensions\SoftTree Technologies\SqlAssist.vs\1.0\extension.vsixmanifest

Windows XP, 2000, 2003
C:\Documents and Settings\[your user name]\Application Data\
Microsoft\VisualStudio\10.0\Extensions\SoftTree
Technologies\SqlAssist.vs\1.0\extension.vsixmanifest

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -683-

2. Open the SQL Assistant manifest file in Notepad and verify that the path to SQL Assistant files is fully
qualified and points to the correct installation location. This section of the manifest file should look like
the following:

<Content>
 <MefComponent>C:\Program Files (x86)\SQL Assistant
12\data\SqlAssist.vs.dll</MefComponent>
</Content>

3. Start Visual Studio. Click the Tools Extensions menu. Verify that the SQL Assistant add-on is listed
and enabled. If it is not enabled, click the Enable button and restart Visual Studio. Click the
Tools > Extensions menu again and verify that the SQL Assistant add-on is now enabled.

Configuring DB Tools for Oracle Targets

 Important Notes: Starting with version 6.0, DB Tools for Oracle is shipped with a customized
integrated version of SQL Assistant tuned specifically for Oracle and for DB Tools. For best experience, it
is recommended that when you run DB Tools, you do not concurrently run a separate standalone version
of SQL Assistant software.

Configuring Oracle SQL Developer Targets

Configuring SQL Assistant Plug-in for Use with Oracle SQL Developer

No special configuration is required. After the installation, the SQL Assistant plug-in for Oracle SQL
Developer should be able to operate normally. Simply ensure that the plug-on is enabled.

Click the Tools Preferences menu in SQL Developer, then select Extensions in the Preferences tree.

Verify that the SoftTree SQL Assistant plug-in is enabled. If it is not, enable it and click the OK button.

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -684-

Configuring Oracle JDeveloper Targets

Configuring SQL Assistant Plug-in for Use with Oracle JDeveloper

No special configuration is required. After the installation, the SQL Assistant plug-in for Oracle JDeveloper
should be able to operate normally. Simply ensure that the plug-in is enabled.

Click the Tools Preferences menu in JDeveloper, then select Extensions in the Preferences tree.

Verify that the SoftTree SQL Assistant plug-in is enabled. If it is not, enabled it and click the OK button.

Other Target Environments

In most situations, no changes are required in the settings of the target development environments and
editors listed in SQL Assistant options.

 Warning: Please be aware that SQL Assistant software has been tested with the most recent English
versions of the pre-configured target editors available at the time of the latest major SQL Assistant
software release. The target editors were tested using their default setups. The pre-configured settings are
not guaranteed to be fully compatible with older versions or with versions that are more recent than the
tested versions. The pre-configured settings are also not guaranteed to work with localized versions. You
may need to tweak SQL Assistant settings to get SQL Assistant to work seamlessly with your SQL editor.

Most Common Compatibility Issues and How to Resolve Them

 SQL Assistant does not appear in the target editor
You can try the following: Click the editor window and set the focus to the text part of the editor. Press
the Ctrl+Shift+F5 hotkey to re-register the editor with SQL Assistant. If that works, you should follow
the instructions in the Registering New Targets for SQL Assistance topic in CHAPTER 49. If that does
not work and you get an error such as "Incompatible Window Class," it is likely that the maker of the

CHAPTER 49, Registering and Configuring Targets for SQL Assistance

 -685-

editor developed a version that is incompatible with SQL Assistant and is also incompatible with
standard Windows edit controls. In this case, SQL Assistant will be unable to communicate with the
editor. Please Contact SoftTree Technologies and check to see if the issue can be resolved some
other way.

 Database connectivity issues
Strictly speaking, this is not an editor-specific compatibility issue. The first thing to check is to ensure
that the required database client software has been installed on your system. Without the database
client software, SQL Assistant cannot establish a database connection. To resolve this issue,
download and install the missing client software. For software requirements, please see APPENDIX A,
Hardware and Software Requirements. If the required software has been already installed and you are
still unable to connect to the database, follow the instructions in CHAPTER 2, Connecting to Your
Database.

 Certain hotkeys stop working correctly after a SQL Assistant installation or upgrade
There might be a keyboard conflict. A hotkey reserved in your target editor might be intercepted and
processed by SQL Assistant or visa versa. See the next topic, Resolving Keyboard Hotkey Conflicts
for information on resolving this problem.

Resolving Keyboard Hotkey Conflicts

It is possible that certain keyboard hotkeys used by SQL Assistant are also used by your target editor. In this
case, pressing a conflicting hotkey may lead to a double action or might suppress one of the functions
associated with that hotkey.

It is easy to resolve hotkey conflicts. Every pre-defined default hotkey in SQL Assistant can be changed to any
other key sequence of your choice. This customization can be done either globally across all registered targets
in the Common section of SQL Assistant Options, or individually for each target. If hotkeys are defined
individually, you can assign different hotkey sequences for use with different targets. For more information
about customizing hotkeys, see the Customizing Hot Keys topic in CHAPTER 48, Customizing SQL Assistant's
Behavior.

CHAPTER 50, Managing Scheduled Tasks

 -686-

CHAPTER 50, Managing Scheduled Tasks

Overview

SQL Assistant provides built-in functions for scheduling recurring and delayed SQL Assistant operations using
your computer's system scheduler. Do not confuse them with the graphical management interfaces that SQL
Assistant provides for managing scheduled tasks running on your database servers. They are unrelated.

SQL Assistant enables you to schedule many types of recurring operations and unattended tasks, including:

 SQL code execution - see CHAPTER 16, Scheduling SQL Script Execution.
 Source Code Control repository, database, and workspace automatic updates and synchronization -

see Scheduling Automated Source Control Operations topic in CHAPTER 23, Database Source Code
Control Interface.

 Context Search and Code Reusability FTS repository updates - see Managing FTS Code Repository
topic in CHAPTER 37, Improving Code Reusability.

 Unit testing – see Scheduling Unit Test Project Runs topic in CHAPTER 19, Unit-testing Database
Code.

 Test data generation – see Working With Test Data Generator topic in CHAPTER 18, Generating
Test Data.

 Data import/export – see Scheduling Automated Data Import, Export, and Transfer Operations in
CHAPTER 13, Scripting, Exporting, Importing, and Copying Data.

 Data transfer – see Scheduling Automated Data Import, Export, and Transfer Operations in CHAPTER
13, Scripting, Exporting, Importing, and Copying Data.

 Schema comparison – see Command Line Interface in CHAPTER 27, Schema Compare Utility.
 Job comparison – same scheduling method as for schema comparison, – see Command Line

Interface in CHAPTER 27, Schema Compare Utility.
 Data comparison – see Command Line Interface in CHAPTER 26, Data Compare Utility.
 Database load generation – see Scheduling Database Benchmark Project Runs in CHAPTER 36,

Testing Database Performance Under Heavy Load.

You can also manage generic properties of scheduled tasks using Windows Scheduled Tasks applet in the
Windows Control Panel, such as task's enabled/disabled state, run-time account, task schedule, and so on.

You can use the Scheduled Tasks dialog for modifying already scheduled tasks and customizing SQL
Assistant's specific task properties. The Scheduled Tasks dialog can be opened using SQL Assistant's right-
click or top-level menu in the target SQL editor. Alternatively, you can right-click the SQL Assistant icon in the
Window system tray, and in the right-click menu select SQL Assistant submenu, and then select
Execute/Schedule SQL Scheduled Tasks... menu command.

The Scheduled Tasks dialog lists only scheduled tasks that are known to SQL Assistant. These are the tasks
for which SQL Assistant has created task definitions in the Application Data\SQL
Assistant\Schedule folder. On Windows XP and Windows 2003 systems, the Application Data folder is
typically found in "C:\Documents and Settings\<username>\Application Data\", where "username" is your login
name. The location of this folder differs in Windows Vista, Windows 7, 8, and other Windows versions. You can
learn the actual location of this folder by executing the following command from the command prompt:

echo %APPDATA%

CHAPTER 50, Managing Scheduled Tasks

 -687-

Using Scheduled Tasks Dialog

To disable a task – un-tick the checkbox in front of the task name. This will disable the associated scheduled
Windows task.

To enable a task – tick the checkbox in front of the task name. This will enable the associated scheduled
Windows task.

To change task's schedule and/or associated database connection – select the task that you want to
modify, and then click the Schedule button. This will open the SQL Assistant - Task Schedule dialog. Fill the
required schedule properties and then click the Ok button to save changes.

To open task for editing – select the task that you want to modify, and then click the Edit button. This will
open the task's script or project file in its associated graphical tool which can be used to edit the project
settings. For example, the scheduled test-data generation projects are opened in the Test Data Generator
dialog. Note that not all scheduled tasks are associated with a script or project. Only tasks associated with a
script or project can be edited. Project-less tasks can be edited directly in the task schedule properties by
changing task's command line parameters.

To delete a task – select the task that you want to modify, and then click the Edit button. This will delete the
associated scheduled Windows task and also delete the task properties file from Application Data\SQL
Assistant\Schedule folder.

CHAPTER 51, Backing Up and Sharing SQL Assistant Settings

 -688-

CHAPTER 51, Backing Up and Sharing SQL
Assistant Settings

Overview

All SQL Assistant settings are stored in the SQLAssist.sas configuration file which is located in the user's
AppData\SQL Assistant\<version number> subfolder. The folder is typically found in
"C:\Users\<username>\AppData\Roaming\", where "username" is your login name. The location of this folder
differs in Windows Vista, Windows 7, 8, and other Windows versions. You can learn the actual location of this
folder by executing the following command from the command prompt:

echo %APPDATA%

Backing up SQL Assistant Settings Using the File System

One way to create a backup of your SQL Assistant settings is to simply create a backup copy of the
SQLAssist.sas file described in the Overview topic.

 Warning: Note that this type of backup contains the complete set of SQL Assistant settings you have on
your system, including all database connections and credentials that you may have saved in the file. Be careful
not give this file to other users. If you have saved automatic connections and connection passwords in the
configuration file, even though passwords are stored in encrypted form, other users will theoretically be able to
use your database credentials if given your configuration file. To avoid getting into this situation, you can use
the Export/Import utilities described in the following sections in this chapter

Backing up SQL Assistant Settings Using the Import/Export
Utilities

The Export/Import utilities can be accessed from the SQL Assistant graphical Options dialog or from the
command line interface. The Export/Import utilities provide complete control over which settings are exported
from SQL Assistant configuration. You can choose to export all settings or selected groups of settings.

To export SQL Assistant settings to a file:

1. Double click the SQL Assistant icon in the system tray. The Options dialog will appear on the screen.

2. In the bottom left corner of the Options dialog, click the Import/Export button. The SQL Assistant
Import / Export Options dialog will appear on the screen.

CHAPTER 51, Backing Up and Sharing SQL Assistant Settings

 -689-

3. Select the Export tab.

Choose the export file name. You can type a new file name or use the browse button to open the
Select Export File dialog or you can pick one of the files you used previously from the Select the
destination file list.

 Tip: Two types of export file formats are supported by the export, native SQL Assistant's configuration
file type and generic XML file type. The type of the export format is determined by file extension. Native
format files must have .SAS extension, while XML files must have .XML extension.

4. In the Select which options to export window, choose the options you want to export. Click the [+]
sign in front of option groups and subgroups to drilldown to specific settings.

5. Select the type of the export file to create. The following choices are available:

 Merge – Instructs the Import utility to compare settings saved in the export file against the
settings in your active SQL Assistant configuration file and import only settings that are new
to your file. For example, if the export file contains formatting rules for SELECT, MERGE and
DELETE statements and your active file already has formatting rules for SELECT and
DELETE (which you may have customized locally), the Import utility will skip rules for
SELECT and DELETE and import rules for MERGE statement only.

 Overwrite – Instructs the Import utility to compare settings saved in the export file against the
settings in your active SQL Assistant configuration file and overwrite matching settings in
your active SQL Assistant configuration file. If the export file contains new settings that
cannot be found in your active configuration file, they will be added to your file too.

 Don't Export –Instructs the Export utility to export all settings except those that are selected
in the Select which options to export window. Use this option to create export files that do
not include customized, user-sensitive settings such as database connections, keyboard
shortcuts and so on. This option is provided for your convenience to allow exporting and later
importing most of the settings, skipping only a few selected options.

7. Click the Export button.

 Warning: Do not edit settings export files directly using external programs. Any issues arising from
incorrectly modified files will not be supported and may lead to a data loss.

CHAPTER 51, Backing Up and Sharing SQL Assistant Settings

 -690-

Command Line Backup to XML Files

You can use SaCmd.exe utility to export SQL Assistant's settings to XML files from the command line.

"C:\Program Files (x86)\SQL Assistant 12\SACmd.exe" "sasxml:<XML export file name>"

Replace <XML export file name> including brackets with the name of the file you want the settings to be
exported to.

Warning: If you specify an existing file, its contents will be overwritten

Restoring SQL Assistant Settings from a Backup File

If you have created a backup file within the File System as described in the topic Backup SQL Assistant
Settings Using File System you can restore the settings by simply restoring this file to its original location.

 Warning: Make sure to shutdown SQL Assistant and all targets before restoring this file. If you fail to close
all targets, the restored configuration file could be overwritten by one of the running SQL Assistant add-ons.

Restoring SQL Assistant Settings Using the Import/Export
Utilities

To restore default SQL Assistant settings:

1. Double click SQL Assistant's icon in the system tray. The Options dialog will appear on the screen.

2. In the bottom left corner of the Options dialog, click the Import/Export button. The SQL Assistant
Import / Export Options dialog will appear on the screen.

3. Make sure the Load Default Options checkbox is checked and that all options are selected. If you
want to restore only a subset of options, customize the selection and deselect the options, option
groups and subgroups you do not want to restore.

4. Click the Import button.

To import SQL Assistant settings from an export file:

1. Double click SQL Assistant's icon in the system tray. The Options dialog will appear on the screen.

2. In the left bottom corner of the Options dialog, click the Import/Export button. The SQL Assistant
Import / Export Options dialog will appear on the screen.

3. Deselect the Load Default Options checkbox.

4. Select the previously created export file from which you want to import SQL Assistant settings. You
can type the file name or use the […] browse button to open Select Export File dialog or you can pick
one of the files you used previously from the Select the source file list.

CHAPTER 51, Backing Up and Sharing SQL Assistant Settings

 -691-

5. Choose the options you want to import. If you want to import only a subset of options, customize the
selection and uncheck options, option groups and subgroups you do not want to restore.

6. Click the Import button.

Sharing SQL Assistant Settings Between Team Members

A person responsible for maintaining enterprise-wide coding standards can use the Import/Export utilities
described above to create export files created using selected, standardized groups of settings. The
standardized export files can be then distributed to other team members and imported on their systems.

Automating Distribution and Sharing of SQL Assistant
Settings

The steps for exporting SQL Assistant settings, sharing the export file, and then importing it on a different
systems can be fully automated. Following is a suggested procedure for creating an automated process:

1. Create an export file with selected settings as described in Backing up SQL Assistant Settings Using
the Import/Export Utilities topic or using the command line interaface.

2. Copy the export file to a shared network drive accessible to all team members.

3. Add the following command to each SQL Assistant user's logon script:

"C:\Program Files (x86)\SQL Assistant 12\SQLAssist.exe" /merge:< export file name>

Replace the <export file name> placeholder with the full file path and file name of the export file. If the
export file name or path includes space characters, you must enclose the entire /merge:< export file
name> parameter value in double-quotes.

Note that if you maintain team member computers within an Active Directory environment, the described 3rd
step is required just once. You can use Active Directory tools to set up and modify users' logon scripts and
include commands to import SQL Assistant settings into users copies of SQLAssist.sas files.. To ensure that
this method works reliably, always use the same file name and path for the shared export file.

CHAPTER 35, Document Manager and Code History Add-on

 -692-

Customizing Add-on Behavior

Options in the Document Manager section for the target editor control behavior of the Document Manager
and Code History add-on.

To customize target-specific options

1. Double-click the SQL Assistant icon in the Windows System Tray. The SQL Assistant - Options
dialog will appear

2. Click the Targets tab page.

3. In the left window of the Targets page, select the target editor type, for example, SQL Server
Management Studio from the list of targets.

4. Expand the Document Manager section on the right side of the Options dialog

CHAPTER 35, Document Manager and Code History Add-on

 -693-

5. Customize options as required

The Active option enables or disables the Document Manager and Code History add-on. the default
value is Yes.

The Managed Documents Mask option allows you to customize which file types should be tracked. If
no value is specified, files of all types are tracked. To enter one or more types, specify file extensions
as a pipe-separated list, for example SQL|DDL|TXT.

The Prompt to Restore Tabs on Startup option enables or disables the Restore Tabs feature. Three
choices are available:

None - all tabs are restored automatically on the editor startup without displaying any prompts
Message - a simple "Restore - Yes/No" message box is displayed, you can choose Yes to restore
all tabs, or choose No to not to restore anything.
Dialog - the "Restore Tabs" dialog is displayed. You can review and choose which tabs to restore
and which not.

The Track Changes un Unsaved Documents option enables or disables tracking changes in tabs
containing unnamed scripts that have not been saved to file system files yet. The default value is Yes.
If you set this value to No, SQL Assistant will track changes in named files only and ignore all
unnamed scripts, such as scripts opened directly from the database or pasted into a new editor tab
from the clipboard.

The Recovery Backup Interval (min) option controls how often SQL Assistant checks for script
changes and saves new script version. The interval value is in minutes. The default value is 15
minutes. To disable the Code History Feature, set this value to zero.

The File History Length (days) option controls how long SQL Assistant stores file references in the
history list and the associated revision files. By default it deletes files having all revisions that are 180
days or older.

CHAPTER 52, Installation and Uninstallation

 -694-

CHAPTER 52, Installation and Uninstallation

Installation

The SQL Assistant setup program provides a simple, intuitive installation method. Simply run the setup program
and follow prompts displayed on the screen.

 Important Notes for Windows Vista and later version of Windows: When installing the software on
these systems, make sure you run the setup in the Windows Administrator mode. When logged in as a local
system administrator, you must right-click the setup program and choose Run as Administrator in the context
menu to run it with elevated privileges. Failure to do so will enable Windows to virtualize all registry and file
changes made by the installer and remove them after you logoff from the system. As a result, next time you
login and try to run SQL Assistant, the program could behave incorrectly if it is unable to locate and load the
required settings. This might also affect loading of SQL Assistant add-ons from other programs such as SQL
Server Management Studio, Visual Studio, and others.

 Important Notes for using Remote Desktop and Terminal Servers: Remote installations of SQL
Assistant software are not directly supported at this time. You should install the software directly on the system.
After installation, you can access and run SQL Assistant software remotely.

Uninstallation

SQL Assistant supports standard uninstallation mechanism for removing program files from the computer.

To uninstall the SQL Assistant:

1. Click the Windows Start button.

2. From the Start Menu, select Settings, then Control Panel.

3. Double-click the Add/Remove Programs icon in the Control Panel.

4. Select SQL Assistant in the programs list, then click the Add/Remove button.

Checking and Installing Updates

Manual Mode

1. Right-click SQL Assistant's icon in the system tray and select the Check for Updates command from
the right-click menu.

2. If new updates are available, you will receive a message indicating the available version as well as a
prompt to download and install the update.

CHAPTER 52, Installation and Uninstallation

 -695-

 To initiate the update, click the OK button. The update installation process begins
immediately.

 If you click the Cancel button, the message will disappear and no updates will be installed.
You will be prompted to install the update at a later time.

Automatic Mode

In automatic mode, SQL Assistant runs in the background, periodically checking for new updates When a new
update becomes available, SQL Assistant asks your permission to download and install it. If you click the OK
button, the automatic update process begins immediately. If you click the Cancel button, the message
disappear and no updates are installed.

The frequency of automatic checks for updates is controlled by SQL Assistant Options. The default frequency is
set to “Weekly”. You can change this value to “Monthly” using this procedure:

1. Double-click the SQL Assistant icon in the system tray.

2. On the Options dialog, choose the Targets tab page.

3. On the left side of the Options dialog, click the Common section.

4. On the right side of the Options dialog, change the value of the Check for Updates option to
“Monthly.”

5. Click the Ok button to save changes and close the dialog.

To turn off Automatic Mode:

1. Double-click the SQL Assistant icon in the system tray.

2. On the Options dialog, choose the Targets tab page.

3. On the left side of the Options dialog, click the Common section.

4. On the right side of the Options dialog, change the value of the Check for Updates option to
“Never”.

5. Click the Ok button to save changes and close the dialog.

 Tip: By default, SQL Assistant uses the Internet connection settings configured in the Internet Explorer web
browser. If the browser is configured to connect to the Internet via a proxy server, SQL Assistant uses that
connection type; otherwise, it attempts to connect to the Internet directly. If you do use proxy server for Internet
connections but do not use Internet Explorer as your browser, you can specify proxy server settings directly in
SQL Assistant's options. Use the steps described above to open the Common section in SQL Assistant
options. In that section, specify the proxy server’s network name or IP address and the server’s port number.

APPENDIX A, Hardware and Software Requirements

 -696-

APPENDIX A, Hardware and Software
Requirements

Minimum Requirements

1 x86 or x64-based workstation or server running Windows 7 or later Windows version.

2 2 GB RAM

3 478 MB free disk space for full installation

4 Required database client software (consult your database system documentation for details)

5 If ODBC database interface is used, ODBC 3.0 and compatible database connectivity driver

6 If spell check feature is used, Microsoft Word 97 or later must be installed on the system.

7 If Open in Excel or Export from Excel features are used, Microsoft Excel 97 or later must be installed
on the system.

Database Server Software

Any of the supported database servers:

 Oracle 8i, 9i, 10g, 11g, 12c, 18c, 19c

 Microsoft SQL Server 2000, 2005, 2008, 2012, 2014, 2016, 2017, 2019, 2022

 Windows Azure SQL Database 11.x, 12.x (formerly SQL Azure)

 Apache Hive 2.x, 3.x

 Apache SparkSQL 2.x, 3.x

 DB2 UDB for LUW 7.x, 8.x, 9.x, 10.x, 11x

 DB2 UDB for iSeries 5.x, 6.x, 7.x

 MySQL 5.x, 8.x

 MariaDB 5.x, 10.x

 SAP Sybase SQL Anywhere 9.x to 16.x (formerly Adaptive Server Anywhere)

 SAP Sybase ASE 12.x, 15.x, 16.x

 PostgreSQL 8.x, 9.x, 10.x, 11.x, 12.x

 Microsoft Access 2003 to Office 365 (11.x to 16.x)

 Amazon Redshift 1.x

 Teradata 14.x, 15.x, 16.x

 IBM Netezza 7.x

 Pivotal Greenplum 4.3.x, 5.x, 6.x

 SQLite 2.x, 3.x

Database Client Software

Depending on the database type and selected target editor, you may need to have one or more of the following
database client software packages installed on the computer running the target editor:

 Oracle OCI version 8.0 or later, which is part of the Oracle client software provided by Oracle
Corporation.

 Oracle ODBC Driver provided by Oracle Corporation.

 Microsoft SQL Server ODBC driver for SQL Server 2000 and later provided by Microsoft
Corporation.

 Microsoft Access ODBC driver for Microsoft Access 2003 and later provided by Microsoft

APPENDIX A, Hardware and Software Requirements

 -697-

Corporation.

 Sybase ASE ODBC driver for ASE 12 and later provided by Sybase Corporation

 Adaptive Server Enterprise ODBC driver for ASE 15 provided by Sybase Corporation

 Adaptive Server Anywhere (a.k.a. SQL Anywhere) ODBC drivers for ASA 9 or later provided by
Sybase Corporation

 IBM DB2 ODBC driver for DB2 7 and later, which is part of IBM DB2 ODBC drivers software provided
by IBM Corporation.

 MySQL ODBC 3.51 driver provided by Oracle Corporation.

 MySQL Connector v4.1 or later which is part of MySQL client software provided by Oracle
Corporation. MySQL native client libmysql is available as a shared library libmysql.dll.

 MariaDB native client which is part of MariaDB client software provided by MariaDB Foundation. Part
of that is MariaDB native client libmariadb is available as shared library libmariadb.dll.

 PostgreSQL LibPQ library version 9.0 or later, included with SQL Assistant software.

 PostgreSQL ODBC driver (ANSI) provided by PostgreSQL Global Development Group.

 PostgreSQL ODBC driver (UNICODE) provided by PostgreSQL Global Development Group.

 Amazon Redshift ODBC driver provided by Amazon LLC.

 Teradata ODBC driver provided by Teradata Corporation.

 IBM Netezza ODBC driver provided by provided by IBM Corporation.

 SQLite ODBC driver provided by Christian Werner

 ADO.NET software and database connectivity drivers, which are part of Microsoft NET Framework
v2.0 or later provided by Microsoft Corporation

 Apache Hive and Apache SparkSQL ODBC drives available from various vendors.

 Tip: Note that the text in bold indicates actual driver names available directly from database vendors. SQL
Assistant currently does not provide support for connectivity drivers provided by third party vendors. You can try
using them at your own risk.

APPENDIX B, License Agreement

 -698-

APPENDIX B, License Agreement

SOFTWARE PRODUCT USER LICENSE

Copyright laws and international copyright treaties, as well as other intellectual property laws and treaties
protect this SOFTWARE PRODUCT. The SOFTWARE PRODUCT is licensed, not sold.

CAUTION: Loading this software onto a computer indicates your acceptance of the following terms. Please
read them carefully.

GRANT OF LICENSE: SoftTree Technologies, Inc. ("SoftTree Technologies") grants you a license to use the
software ("Software"). One licensed copy of the Software may either be used by a single person who uses the
software personally on one or more computers, or installed on a single workstation used non-simultaneously by
multiple people, but not both. One licensed copy of the Software can be used with any number of database
servers.

You may make other copies of the Software for backup and archival purposes only. You may permanently
transfer all of your rights under this Software LICENSE only in conjunction with a permanent transfer of your
validly licensed copy of the product(s).

The Software and associated add-in components are licensed on a RUN-TIME basis, which means, that for
each computer on which the Software is installed, a valid run-time license must exist.

RESTRICTIONS: Unregistered versions (shareware licensed copies) of the Software may be used for a period
of not more than 14 days. After 14 days, you must either stop using the Software, or obtain a validly licensed
copy.

You must maintain all copyright notices on all copies of the Software. You may not sell copies of the Software
to third parties without express written consent of SoftTree Technologies and under SoftTree Technologies'
instruction.

EVALUATION copies may be distributed freely without charge so long as the Software remains whole including
but not limited to existing copyright notices, installation and setup utilities, help files, licensing agreement, In
executing such an act as distributing without the similar copyright or license violation, to the maximum extent
permitted by applicable law you may be held liable for loss of revenue to SoftTree Technologies or SoftTree
Technologies' representatives due to loss of sales or devaluation of the Software or both.

You must comply with all applicable laws regarding the use of the Software.

COPYRIGHT: The Software is the proprietary product of SoftTree Technologies and is protected by copyright
law. You acquire only the right to use the Software and do not acquire any rights of ownership.

For your convenience, SoftTree Technologies provides certain Software components in the source code format.
You may customize this code for your environment, but you agree not to publish, transfer, or redistribute in any
other form both the original code and the modified code.

You agree not to remove any product identification, copyright notices, or other notices or proprietary restrictions
from the Software.

You agree not to cause or permit the reverse engineering, disassembly, or decompilation of the Software. You
shall not disclose the results of any benchmark tests of the Software to any third party without SoftTree
Technologies' prior written approval.

DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS: You may not rent, lease or transfer the Software
except as outlined under GRANT OF LICENSE - use and copy.

Without prejudice to any other rights, SoftTree Technologies may terminate this Software LICENSE if you fail to
comply with the terms and conditions of this Software LICENSE. In such event, you must destroy all copies of
the Software and all of its component parts.

APPENDIX B, License Agreement

 -699-

WARRANTY DISCLAIMER: SoftTree Technologies provides this license on an "as is" basis without warranty
of any kind; SoftTree Technologies disclaims all express and implied warranties, including the implied
warranties of merchantability or fitness for a particular purpose.

LIMITATION OF LIABILITY: SoftTree Technologies shall not be liable for any damages, including direct,
indirect, incidental, special or consequential damages, or damages for loss of profits, revenue, data or data
use, incurred by you or any third party, whether in an action in contract or tort, even if you or any other person
has been advised of the possibility of such damages.

GOVERNING LAW: This Agreement is governed by the laws of the State of New York and the intellectual
property laws of the United States of America.

SoftTree Technologies, Inc.
USA

Copyright (C) 2006-2023 SoftTree Technologies, Inc. All Rights Reserved.

UniCodeEditor portions of the Software - Copyright (C) 1999-2001 digital publishing AG, Copyright (c) 1999-
2005 Mike Lischke
VirtualTree portions of the Software - Copyright (C) 1999-2005 Mike Lischke
EControl Editor portions of the Software - Copyright (C) 2004-2015 Mikhail Zakharov.
pg_dump, pg_restore, pqLib - Copyright (c) 1996-2021, PostgreSQL Global Development Group. Portions
Copyright (c) 1994, Regents of the University of California.
libmariadb - Copyright (C) 2012, 2020, MariaDB Corporation. Portions copyright (C) 2000 MySQL AB & MySQL
Finland AB & TCX DataKonsult AB.
FastScript portions of the Software - Copyright (c) 1998-2005 Fast Reports Inc.
TrStringGridEd portions of the Software - Copyright (c) 2005-2017 Rosinský Software
FastReport and FastCube portions of the Software - Copyright (C) 2013, 2017 Fast Reports Inc.
TeeChart portions of the Software - Copyright (C) 2013 Steema Software.
Git Credential Manager for Windows - Copyright (C) 2015 Microsoft Corporation.
SQL Server Shared Management Objects (SMO) - Copyright (C) 2020 Microsoft Corporation
madExcept portions of the software - Copyright (C) 1999 - 2018 Mathias Rauen
AlphaSkins portions of the software – Copyright © 2002-2019 AC Team
SynPdf and Synopse framework - Copyright (C) 2016 Arnaud Bouchez
Apache Cassandra native driver - portions Copyright (c) 2020 DataStax, Inc.

	About This Guide
	Intended Audience
	Conventions Used in This Document
	Abbreviations and Product Reference Terms
	Trademarks

	CHAPTER 1, Overview of the SoftTree SQL Assistant
	Introduction
	Key Benefits
	32-bit and 64-bit Versions
	Licensing and Editions

	CHAPTER 2, Connecting to Your Database
	Overview
	Ad-hoc and Remembered Connections
	Reordering, and Filtering Connections by Name
	Organizing Connections
	Common Connection Properties and Database Driver Specific Properties

	Oracle Database Connections and Settings
	SQL Server Database Connections and Settings
	Apache Hive Connections and Settings
	Apache SparkSQL Connections and Settings
	MySQL Database Connections and Settings
	MariaDB Database Connections and Settings
	DB2 Database Connections and Settings
	Netezza Database Connections and Settings
	Sybase Database Connections and Settings
	PostgreSQL Database Connections and Settings
	Redshift Database Connections and Settings
	Greenplum Connections and Settings
	Teradata Database Connections and Settings
	Microsoft Access Database Connections and Settings
	SQLite Database Connections and Settings
	MongoDB Database Connections and Settings
	Apache Cassandra Database Connections and Settings
	Snowflake Database Connections and Settings
	Database Connection Settings and Security
	Shared, Automatic, and Interactive Database Connections
	Shared Connections
	Automatic and Interactive Database Connections

	Custom Connection Parameters
	Automatic Recovery of a Broken Database Connection

	CHAPTER 3, Code Assistants and SQL Intellisense
	Starting and Stopping SQL Assistant
	Temporarily Pausing SQL Assistant
	SQL Intellisense
	SQL Assistant Windows and Appearance
	Manually Invoking SQL Assistant Popups Using Keyboard Hot Keys
	Manually Invoking SQL Assistant Popups Using Context and Top-level Menus
	Manually Invoking SQL Assistant Popups from the System Tray
	Viewing SQL Assistant Usage Statistics from the System Tray

	Understanding and Using SQL Assistant's Usage Statistics
	Types of Statistics Collected
	Disabling and Enabling Statistics Collection
	Resetting Statistics

	How to Build Advanced SQL Commands With Only a Few Keystrokes
	Example 1: Building complete SELECT statement starting with column names
	Example 2: Building complete SELECT statement starting with joins
	Example 3: Creating multi-line comments with 4 keys
	Example 4: Generating complete-cursor logic with 7 keys and 1 click

	Using Object Name Code Completion Features
	Object Name Aliases
	Using Object, Schema, and Database Name Auto-Completion

	Using Variable Name Auto-Completion
	Using Column and Parameter Names Completion Features
	Enabling Display of Key Columns and Indexed Columns

	Using JOIN Clause Completion Features
	Using Multiple Columns Selection in DML Statements
	Using Context-based Suggestions Based on Historical Coding Patterns
	Using Function Argument Hints Features
	Using Advanced Oracle Package and Object Type Attribute Completion Features
	Using Keywords Completion and Syntax Hints Features
	Using Local and Global Variable Names Completion Features
	Using Package Variable Names and Type Names Completion Features
	Using User/Role Names Completion Features
	Using Code Auto-Expansion and Auto-Generation Features
	Automatic Generation of DML Statements
	Automatic Generation of Variable Declarations
	Advanced Interactive Code Snippets

	Advanced Code Expansion for * and Object Columns and Arguments
	Advanced Code Expansion and Reference for DDL Commands
	Working with SQL Assistant Popups
	Navigation Keys
	Selection Keys
	Scrolling Content
	Resizing Content
	Resizing Individual Columns
	Moving Content
	Refreshing Content

	Using Mouse-over Hints
	Using Data Preview and Code Preview Hyperlinks in Mouse-over Hints
	Using the Column and Variable Data-type Hints Feature

	Using the Keyword Capitalization and Formatting Feature
	Using the Automatic Tab-Replacement Feature
	Using the Smart Auto-Indent Feature
	Using the Smart Undo Feature
	Using the Smart Text Navigation Feature
	Highlighting of Trailing White-space Characters
	Highlighting of Matching Column/Value Pairs in INSERT Statements
	Highlighting of Current SQL Statement with a Single Keypress
	One-Click Actions for Specially Formatted Comments
	Converting SQL Queries to Application Code

	CHAPTER 4, Code Structure View and Bird's Eye View
	Overview of Code Structure View
	Working with the Code Structure View Interface
	Code Navigation
	Expanding / Collapsing Multiple Levels
	Grouping Similar Commands
	Filtering Content by Schema Object References
	Scrolling Content
	Resizing Content
	Persisting Code Structure View

	Overview of Bird's Eye View
	Using Partial Code Display vs. Full Code Display

	Working with the Bird's Eye View Interface
	Code Navigation
	Refreshing Content
	Scaling the View
	Scrolling Content
	Resizing Content
	Persisting Bird's Eye View

	CHAPTER 5, Code Formatter and Beautifier
	Overview
	Applying Formatting Styles to Code

	Formatting Styles, Rules and Options
	General Options
	Spacing, Line Breaks, and Text-Wrapping Options
	Commas and Logical Operators Formatting Options
	Keywords

	Statement-level Formatting Patterns
	Special Formatting Rules
	Testing Code Formatter Effective Settings
	Commenting and Uncommenting Code Blocks
	Formatting SQLCMD Scripts
	Command Line Interface
	Using DOS Batch Processing to Format Multiple SQL Files

	CHAPTER 6, Database Explorer
	Overview
	Persisting Database Explorer Pane
	Content Filtering and Sorting
	Using Context Menus
	Using Drag-and-Drop

	Managing Database and Schema Objects
	Source Code Control Integration
	Database and Schema Scope Aggregated Statistics
	Updating Table and Index Statistics
	Refactoring Existing Schema Objects
	Using Table Information Reports
	Performing Database and Schema Scope Backup and Restore

	CHAPTER 7, Code Entry Automation using Code Snippets
	Overview
	Auto-formatting Generated Code

	Macro-variables and Dynamic Code Generation
	Using Passive Macro-Variables
	Using Active Macro-Variables
	Macro-variables Execution
	Using Macro-variables with Text Prefixes and Text Suffixes
	Escaping $ Symbols in Snippet Codes

	Custom Interractive Prompts
	Special Cases for Column/Variable and Argument/Value Pairs
	Code Snippet Execution Modes
	Advanced Code Entry Automation
	Advanced Snippet Programming
	$$…$$ Macro
	$OBJECT(…)$ Macro
	$COLUMNS(…)$ Macro
	$ARGS(…)$ Macro
	Other Special Macros
	$CURRENT(…)$ Macro

	CHAPTER 8, Smart Database Refactoring
	Overview
	Code Refactoring Macros
	Refactoring Wizard Dialog
	Code Dependencies Analyzer
	Code References Analyzer
	Extract View
	Extract Procedure
	Rename Table or View
	Rename Table or View Column
	Rename Procedure or Function
	Rename Procedure or Function Parameter
	Rename Local Variable
	Add Table Column
	Drop Table Column
	Add Procedure or Function Parameter
	Drop Procedure or Function Parameter
	Drop Procedure or Function
	Drop Table or View
	Qualify Object Names
	Reformat and Beautify Database Code

	CHAPTER 9, Interactive SQL Reference System
	Overview
	Invoking the SQL Reference System
	Using the SQL Reference Index and Table of Contents
	Persisting SQL Reference Table of Contents
	Searching Contents
	Resizing Table of Contents

	Using SQL Command Syntax and Functions Lookup
	Working with the Visual SQL Command Builder Interface
	Scrolling Content
	Resizing the Visual SQL Command Builder window
	Moving the Visual SQL Command Builder window
	Navigating Recently Visited Topics

	CHAPTER 10, One-click DDL Code View
	Overview
	Working with the Code View Interface
	Navigating Code Views
	Scrolling Content
	Resizing Content
	Copying Code
	Comparing Code Between Code View and Editor
	Comparing Code Between Code View and a File
	Customizing DDL Code Reverse-Engineering for Code View

	CHAPTER 11, Data Display and Editing
	Overview
	Working with Data Grid Interface
	NULL Values
	Long and Multi-line Text Values
	Expanded Cell View
	Scrolling Content
	Resizing Content
	Copying Data to the Clipboard
	Copying Data to a New Excel Worksheet
	Saving Data to Files
	Printing Data and Saving it as Reports
	Scripting Data as SQL INSERT Commands
	Loading All Records
	Sorting Content
	Filtering Content
	Finding Data Values
	Finding Columns
	Freezing Grid Columns

	Changing Data
	Activating Edit Mode
	Cell Value Manipulations
	Row Manipulations
	Undoing Changes
	Saving and Scripting Changes

	Customizing Fonts
	Customizing Data Display Formats
	Column Specific Formats
	Data-type Specific Formats

	Conditional Formatting
	Applying Conditional Formatting Rules
	Highlighting Cells with Unique or Duplicate Values
	Clearing Rules
	Using "Stop if True" Option
	Managing Rules
	Saving and Reusing Rules

	Data Grid Limitations

	CHAPTER 12, Working with Workspace Database
	Overview
	Saving Query Results to Workspace Database
	Executing Queries and Reports Against Saved Data
	Attaching CSV Files as External Tables
	Exporting Data from Workspace Database
	Backing Up and Restoring Workspace Database
	Offline Database Backup
	Online Database Backup
	Database Restore

	CHAPTER 13, Scripting, Exporting, and Importing Data
	Overview
	Exporting Table Data to Flat Files, Excel Files, and Apache Parquet Files
	Exporting Multiple Tables in a Schema or Database
	Exporting Query Results to Flat Files
	Exporting Query Results to Excel
	Exporting Data to Other Programs Using Clipboard
	Exporting Tables, Schemas, and Databases to XML and JSON Files
	Overview
	Export to Flattened 3-Level XML or JSON Data Schema
	Export to Multi-Level Hierarchical XML or JSON Data Schema with Nested Tables

	Scripting out Table Data
	Handling Date and Time Values
	Handling Special Symbols in Text-based Values
	Handling Binary Data Values

	Importing Data from Excel and Flat Files
	Import Excel Data Dialog Usage and Controls

	Importing Data from Apache Parquet Files
	Importing Tables, Schemas, and Databases from XML and JSON Files
	Overview
	Importing XML Data Schema
	XML and JSON Import/Export Options

	Bulk Loading Data into Schemas and Databases
	Overview

	Copying Data Between Database Servers
	Overview
	Method 1 – Using Data Transfer Utility
	Method 2 – Using Data Factory
	Method 3 – Using Data Scripting
	Method 3 – Using Data Export and Import Utilities

	Loading Data Concurrently into Multiple Database Servers
	Method 1 – Using the ETL Orchestrator
	Method 2 – Using Scripted Datasets
	Method 3 – Using Command Line Interface

	Scheduling Automated Data Import, Export, and Transfer Operations
	Managing Scheduled Tasks

	CHAPTER 14, Executing SQL Scripts
	Overview
	Handling of Batch Delimiters
	Working with the SQL Code Execution Interface
	Invoking the SQL Code Execution Function for the Current Connection
	Reading and Understanding Code Execution Output
	Messages
	Query Results

	Working with Query Results
	Enabling and Reading Oracle's DBMS_OUTPUT Output
	Scrolling Content
	Locating Errors
	Resizing Content
	Limitations

	Using Code Execution History
	Overview
	Filtering SQL Execution History
	SQL History Retention Period and Other Options
	Query Execution Statistics

	Using SQL Preprocessor for Advanced Code Execution

	CHAPTER 15, Executing SQL Scripts on Multiple Servers
	Overview
	Running Scripts on Multiple Servers
	Code Execution and Output Options
	Managing Connection Groups and Connection Settings

	CHAPTER 16, Scheduling SQL Script Execution
	Overview
	Scheduling SQL Scripts
	Scheduled Task Properties
	Modifying Scheduled SQL Scripts

	CHAPTER 17, Generating SQL Procedures and Automating Database Management Operations
	Overview
	Code Generator Macros
	Creating and Customizing Code Templates and Template Groups
	Adding, Deleting and Disabling Templates
	Practical Example – Creating a New Template for Data Retrieval with Paging
	Advanced Methods for Programming Code Generator Templates

	Generating SQL Code

	CHAPTER 18, Generating Test Data
	Overview
	Working With Test Data Generator
	Common Concepts
	Opening and Saving Projects
	Adding Tables to a Project
	Removing Tables from a Project
	Modifying Table Data Generation Options
	Scrolling Content
	Resizing Content
	Populating Tables with Test Data
	Previewing and Comparing Results
	Creating Seeded Test Data
	Loading Data Samples from Another Database Server or Database

	Data Generation Options
	Project Scope Options
	Table Scope Options
	Column Scope Options
	Specifying Lookup Table for Column Data Source Values
	Specifying the Data Library File for Column Data Source Values
	Handling Date and Time Values
	Handling Numeric Values
	Handling Binary Values
	Using Regular Expressions

	Data Libraries
	Predefined Data Library Files
	Managing Data Library Files
	Managing Data Library Queries

	Command Line Interface

	CHAPTER 19, Unit-testing Database Code
	Overview
	Working With the Unit Testing Framework
	Common Concepts
	Opening and Saving Projects
	Adding New Unit Tests
	Adding Generic Test Cases to Units
	Adding New Test Case and Unit Versions
	Removing Test Cases and Units
	Disabling and Enabling Test Cases and Units
	Modifying Test Cases and Units
	Modifying Project Properties
	Testing Individual Test Cases and Units
	Running Unit Test Projects
	Scheduling Unit Test Project Runs
	Testing in Stress-test Mode
	Scrolling Content
	Resizing Content

	Project Scope Options
	Unit Test Scope Options
	Test Case Scope Options
	Initialization
	Execution
	Cleanup
	Status and Performance Checking
	Custom Validation Using SQL Code
	Custom Validation Using Scripting Interfaces

	Using Custom Templates for Generation of Test Cases
	Customizing Test Case Templates
	Adding and Removing Unit Test Types
	Adding and Removing Test Case Templates
	Modifying Templates

	Command Line Interface

	CHAPTER 20, SQL Syntax Checker
	Overview
	Automatic Mode
	Manual Mode
	Special Considerations
	Working with SQL Syntax Checker Automatic Interface
	Starting the SQL Syntax Checker
	Controlling Syntax Check Frequency
	Turning off Automatic Syntax Checking Mode

	Working with SQL Syntax Checker Manual Interface
	Starting the SQL Syntax Checker
	Scrolling Syntax Check Content
	Locating Syntax Errors
	Resizing Content

	CHAPTER 21, SQL Performance Monitoring and Tuning
	Overview of Performance Tools
	Authorization Requirements
	Performance Dashboards
	Requirements

	Overview of SQL Performance Analyzer and Execution Plans
	Performance Evaluation Rules

	SQL Execution Plans and Query Tuning
	Overview of Query Tuning
	Query Execution Plans
	Reading and Understanding Execution Plans
	Query Plan Types, Estimated vs. Actual
	Locating Performance Impacting Operations for Query Tuning
	Comparing Execution Plans of Different Query Versions
	Reviewing and Comparing Historical Execution Plans
	SQL Server Query Store Explorer and Reports
	Oracle Active Session History Explorer
	Oracle Automatic Workload Repository Explorer and Reports

	SQL Server SQL Profiler
	Oracle SQL Profiler
	PostgreSQL SQL Profiler
	Identifying Long Running and Resource Intensive Recurring SQL Queries

	CHAPTER 22, Spell Checker
	Overview
	Using On-demand Spell Checker
	Using Real-time Spell Checker
	Choosing Spell Check Language

	CHAPTER 23, Database Source Code Control Interface
	Overview
	Concepts and Source Code System Differences

	Prerequisites
	Repository
	Workspace
	Creating a Workspace
	Multiple workspaces

	Connecting to SVN Repository Server
	Connection parameters:

	Connecting to TFS Repository Server
	Connection parameters:

	Connecting to Git Repository Server
	Connection parameters:

	Connecting to Perforce Repository Server
	Connection parameters:

	Basic Database to Workspace to Repository Comparison
	Advanced 3-Way Code Comparison and Synchronization
	Configuring Multiple Source Code Control Projects
	Managing SCS Projects

	Repository Browser
	Repository Browser Menus
	Icon Overlays and Item Colors
	Content Filtering

	Target Editor Context Menus
	Database Explorer Integration
	Choosing Project Path in Repository
	Getting Source Code from Source Control Repository Server
	Getting Source Code from Database Server
	Submitting Changes to Source Control Repository Server
	Submiting Changes to Database Server
	Editing Schema Object Code
	Database Object Change History
	Additional Workspace and Repository Management Commands
	Lock and Unlock
	Cleanup
	Undo
	Create Folder

	Automating Source Control Repository Updates
	Automating Database Updates from Source Control Repository
	Scheduling Automated Source Control Operations

	CHAPTER 24, Reporting, Data Pivot and Analytics
	Overview
	Standalone Reports
	Predefined Reports
	Working with Report Designer
	Overview
	Keyboard and Mouse Controls
	Report Variables
	Report Objects
	Report Bands
	Text Objects
	Expressions
	Groups
	Aggregate Functions
	Page and Report Totals
	Conditional Highlighting
	Multi-page Reports
	Nested Reports (Subreports)
	Report Scripts

	Running Reports, Printing, Saving to PDF files
	Adding Reports to Database Explorer

	Data Grids Integrated Reporting
	Changing Column Sizes

	Data Pivot and Advanced Analytics
	Overview
	Pivot-grid User-Interface
	Quick Tutorial
	Dimensions and Measures
	Totals
	Drill-Down/Up and Drill-Through
	Partial Rotation and Full Transposition
	Grouping
	Sorting
	Filtering
	Conditional and Continuous Data Highlighting
	Saving Data-Pivot for Continued Data Analysis
	Printing Data-Pivot and Saving it

	Charts
	Basic Chart Operations
	Data Source Selection
	Customizing Visual Properties

	CHAPTER 25, Code Compare Utility
	Overview
	Using External File Compare Tools

	Using Code Compare Dialog
	Color Highlighting
	Dialog Controls:
	Selecting Text Files for Comparison
	Selecting Window Targets For Comparison
	Using Synchronized and Independent Content Scrolling
	Navigating Content
	Resizing Content

	Visualizing Code Differences

	CHAPTER 26, Data Compare Utility
	Overview
	The Data Compare Dialog
	Comparison Scope and Options
	Selecting Databases, Schemas, and Tables for Comparison
	Matching Tables and Columns
	Matching Differently Named Tables
	Defining and Matching Key Columns
	Data-Types Handling and Compatibility
	Data Comparison Results
	Color Coding
	Reducing the Clutter, Hiding Columns without Differences
	Printing Comparison Results Summary Report and Exporting it to Excel and PDF
	Saving Complete Comparison Results to External Files
	Copying Sample Comparison Results to Clipboard
	Synchronizing Data in Destination Tables
	Resizing Content
	Opening and Saving Projects

	Scheduling Automated Data Comparisons
	Command Line Interface

	CHAPTER 27, Schema Compare Utility
	Overview
	How Schema Comparison Engine Works

	The Schema Compare Dialog
	Navigation
	Comparison Scope and Options
	Selecting Servers, Databases, Schemas, and Objects for Comparison
	Opening and Saving Projects
	Schema Comparison Results
	Color Coding
	Action Legend
	Resizing Content

	Visual Comparison Results for Procedural Objects
	Filtering Comparison Results
	Category Filters
	Name and Attribute Filters
	Custom Filter Expressions
	Functions Supported in Custom Filter Expressions
	Saving, Reusing, and Managing Filters

	Printing Comparison Report, and Exporting it to Excel and PDF
	Schema Synchronization

	Extending and Customizing Schema Compare Functions
	Comparison Rules
	Adding, Copying, Deleting and Disabling Comparison Rules
	Customizing Default Comparison Options
	The Anatomy of Queries
	Query Properties
	Attribute Value Modifiers
	Using Macros in Queries

	The Anatomy of Templates
	Template Properties
	Using Macros in Templates
	Use of SQL Assistant's Standard Macros
	Use of Comparison Engine-specific Macros
	Use of Macros Returning Schema Object Attributes
	Use of Text Prefixes and Suffixes with Macros, and Default Values
	Additional Modifiers for Macro-variables
	Calling Nested Template

	Extending Schema Comparison, a Practical Example

	Scheduling Automated Data Comparisons
	Command Line Interface

	CHAPTER 28, Job Compare Utility
	Overview
	How Job Comparison Engine Works

	The Job Compare Dialog
	Navigation
	Comparison Options
	Selecting Servers for Comparison
	Job Comparison Results
	Color Coding
	Action Legend
	Resizing Content

	Printing Comparison Report, and Exporting it to Excel and PDF
	Job Synchronization

	CHAPTER 29, Code Search & Replace in Files
	Overview
	Supported File Search Options
	Working With Search Results

	CHAPTER 30, Code Search & Replace in Databases
	Overview
	Running Fast Single-Server Code Search
	Searching Code Across Multiple Servers
	Replacing Code Across Multiple Servers
	Multi-server Code Search and Replace dialog

	Using Context SQL Search

	CHAPTER 31, Data Search & Replace
	Overview
	Searching Data Across Multiple Servers
	Replacing Data Across Multiple Servers
	Working with Data Search Results Interface
	NULL Values
	Long and Multi-line Text Values
	Expanded Cell View
	Scrolling Content
	Resizing Content

	CHAPTER 32, Visual Bookmarks
	Overview
	Bookmarks Enumeration
	To-Do Tasks, and Other Special Tags

	Working with Visual Bookmarks
	Creating Bookmarks
	Removing Bookmarks
	Jumping to Bookmarked Line
	Loading Saved Bookmarks from Comments

	CHAPTER 33, To-Do Tasks and Reminders
	Overview
	Options
	Working with Tasks and Reminders Interface
	Navigation
	Opening Source Files and Navigating to Bookmarked Lines
	Filtering the Tasks and Reminders List
	Scrolling Content
	Resizing Content
	Refreshing and Clearing the Tasks and Reminders List

	CHAPTER 34, Integrated Development Environments
	Overview
	Standard SQL Editor
	Connecting to Databases
	Working with Databases

	Professional SQL Editor IDE
	PDB and Edition Views of Your Oracle Database Server
	Tabbed and MDI Layouts
	Tab Management Functions

	Text Change Map
	Search and Replace Functions
	Search and Replace Options
	Using Regular Expressions
	Simple matches
	Escape sequences
	Character classes
	Metacharacters
	Metacharacters - line separators
	Metacharacters - predefined classes
	Metacharacters - word boundaries
	Metacharacters - iterators
	Metacharacters - alternatives
	Metacharacters - sub-expressions
	Metacharacters - back-references
	Modifiers
	Perl extensions
	Inline Comments

	Matching Words Navigation
	Advanced Text Processor
	Running the Advanced Text Processor
	Configuring Text Processing Rules
	Text Processing Rule Group Properties
	Text Processing Rule Properties

	Fast Synchronous Renaming of Multiple Identifiers
	Code Views, Code Folding, and Code Navigation
	Zoom
	Word Wrap, Ruler, Column Markers
	Incremental Search
	Matching Identifier Navigation
	Line Jumps
	Bookmarks
	Code Regions, Folding, and Outlining
	Code Outlining
	Line Numbering
	Hyperlinks
	Code Structure and Code Page Views for Fast Code Navigation

	Split Screen for Synchronous Off-line Code Editing
	File Operations, Formats, and Encoding
	Printing and Documenting Your Code
	Printing
	Saving Code for Documentation Purposes

	Connecting to Databases
	Working with Databases
	Running SQL Queries
	Using Source Code Control
	Recording Editor Macros for Repetitive Text Operations
	Macro Commands

	Customizing SQL Editor Options and Behavior
	Customizing Syntax Highlighting

	CHAPTER 35, Document Manager and Code History Add-on
	Overview
	Enabling and Customizing Document Management Interface

	Restoring Tabs, Connections, Bookmarks, Edit Positions
	Code Change History
	Reopening Recently Opened Files and Unnamed Scripts
	Comparing Script Versions
	Method 1
	Method 2

	Saving Tabs, Bookmarks, Edit Positions

	CHAPTER 36, Testing Database Performance
	Overview
	Common Concepts
	Worker Processes and Threads
	Benchmark and Workload Templates
	Using Database Benchmark in Conjunction with Test Data Generator

	Scalability
	Working with Database Benchmark
	Opening and Saving Projects
	Adding Worker Processes to a Project
	Removing Worker Processes from a Project
	Disabling and Enabling Worker Processes
	Modifying Database Workload Generation Options
	Saving and Analyzing Load Test Results
	Scrolling Content
	Resizing Content

	Running Database Load Test
	Scheduling Database Benchmark Project Runs

	Database Benchmark Options
	Project Scope Options
	Worker Process Scope Options

	Command Line Interface

	CHAPTER 37, Improving Code Reusability
	Overview
	FTS Code Repository
	Managing FTS Code Repository

	The Light Bulb
	Advanced Context-based SQL Search
	Automatic search
	Manual search

	Tuning Code Context Behavior

	CHAPTER 38, Entity Relationships, Graphical Dependencies, and Data Flows
	Overview
	ER Diagrams
	Code Dependencies Diagrams
	Data Flow Diagrams

	The Database Model Workspace
	Main Components and Controls

	Working with Diagrams
	Single Object and Multi-Object Operations
	Selecting Objects
	Grouping and Ungrouping Objects
	Moving, Rotating, and Resizing Objects
	Adjusting Connector Lines
	Appearance
	Customizing and Creating Themes
	Navigation
	Pan Mode
	Zoom
	Search
	Bird's Eye View

	Auto-layout
	Working with Layers
	Adding Schema Objects
	Adding Relations and Dependencies
	Using Notes
	Using Images
	Using Stock Icons
	Printing Diagrams
	Saving Diagrams to Images and PDF Files

	Working with Model
	Creating Blank Model
	Reverse-engineering Existing Database Schemas
	Adding Existing Schema Objects to Model
	Generating and Executing Database Update Scripts
	Refreshing Model from Database
	Saving and Reopening Models

	CHAPTER 39, SQL Code Visualizer and Database Documenter
	Overview
	SQL Code Visualizer
	Visual Database Documenter

	CHAPTER 40, Sanitizing and Obfuscating Database Data
	Overview
	Working with Data Sanitizer
	Opening and Saving Projects

	Scheduling Data Sanitization During Quiet Hours

	CHAPTER 41, Cloning Databases, Schemas, and Schema Objects
	Overview
	Working with Clon It

	CHAPTER 42, Tab Manager, Task Manager, and Database Session Monitor
	Overview
	Tab Manager
	Task Manager
	Session Monitor
	Session Monitor Capabilities and Customizations

	CHAPTER 43, Command Selector
	Overview
	Configuration

	CHAPTER 44, Visual Database Management
	Overview
	Usage
	Creating New Objects
	Updating Existing Objects
	Database Management Operations
	Database Change Preview and Manual Corrections
	Error Handling
	Smart Schema Refactoring
	Scheduling Database Changes

	CHAPTER 45, Analyzing Application Data Lineage
	Overview
	Quick Start
	Preparing for Data Lineage Analysis
	Running Data Lineage Analysis

	Application Log Files
	Enabling ODBC Tracing
	Centralized Log Management Systems
	Creating, Customizing, and Testing Parsing Rules
	About Parsing Rules
	Creating and Customing Parsing Rules
	Parsers for Text-based Application Logs
	Parsers for JSON-based Application Logs
	Parsers for ODBC and Driver-trace Logs
	Parsers for XML-Files
	Parsers for Application Source Files

	Working with Data Lineage Diagrams
	Main Components and Controls
	Multi-tabbed Multi-document Interface
	Single Object and Multi-Object Operations
	Selecting Objects
	Grouping and Ungrouping Objects
	Moving, Rotating, and Resizing Objects
	Connector Lines and Mouse-over Hints
	Diagram Appearance, Navigation, Pan Mode, Zoom, and Search
	Using Notes
	Printing Diagrams
	Saving Diagrams to Images and PDF Files

	CHAPTER 46, Automating ETL Operations and Other Processes
	Overview
	Designing Automation Processes
	Control Flow
	Linear task dependencies
	One-to-many task dependencies
	Many-to-one task dependencies

	Adding Tasks
	Modifying Tasks
	Deleting Tasks
	Disabling Tasks
	Connecting Tasks
	Changing Task Connection Types
	Tasks Execution Groups
	Common Edit and File Operations
	Changing Database Connections
	Adding Annotations and Images

	Running and Debugging
	Progress Reporting
	Running Single Task
	Running Entire Project
	Pausing Project Execution
	Aborting Project Run
	Project Execution with Breakpoints

	Scheduling Unattended Runs

	CHAPTER 47, Querying and Manipulating CSV Files
	Overview
	The Data File Query Utility
	The Data File Transformation Utility

	CHAPTER 48, Customizing SQL Assistant's Behavior
	Overview
	Customizing Functional Hot Keys
	Customizing Code Snippet Activation Keys
	Managing SQL Assistant Load Methods
	Target Editor Monitoring and Integration
	Native Add-ons
	Add-on Installations

	Customizing SQL Assistant Menus
	Custom Menu Items in the Main Menu
	Custom Menu Items in Right-click Context Menus

	Customizing Target Editor Menu Integration
	Additional Menus in SQL Server Management Studio Grid Controls

	Managing Plugins for SQL Assistant
	Customizing Settings for Eclipse-based Target Editors
	Customizing SQL Assistance Types
	Customizing Database Catalog Queries
	Two Queries for Retrieving Table Column Information
	Special Macro Variables Allowed in Database Catalog Queries

	Using Advanced Filtering for Fast Database Catalog Data Access
	Using Object Type Filtering
	Changing the Order of Objects in Common Object Names Popup
	Changing the Order of Tables in Context Popups
	Changing the Appearance of JOIN Suggestions
	Customizing Performance Analysis Options
	Managing Database Connections
	Customizing Brackets and SQL Code Matching and Navigation
	Matching Brackets and Matching Block Delimiters
	Matching Names Highlighting

	Customizing Existing and Creating New Code Snippets
	Customizing Keywords Used With Keyword Prompts and the Capitalization Feature
	Customizing List of Preferred Keywords in Keyword Prompts
	Customizing Symbols Triggering Column Name Popups
	Customizing Handling of Object and Column Names in Case of Keyword Name Conflicts
	Customizing Code Auto-completion Options
	Customizing Code Formatting Patterns
	Customizing Bookmark Handling Options
	Customizing Error Handling Options
	Customizing Data Type Mapping for Data Transformations

	CHAPTER 49, Registering and Configuring Targets for SQL Assistance
	Overwiew of Target Editor Registration Modes
	Installing and Enabling SQL Assistant Add-ons
	Registering New Targets for SQL Assistance
	Unregistering Previously Registered and Preconfigured Targets
	Disabling Targets Without Deleting Their Registrations
	Troubleshooting Application Conflicts
	Configuring Eclipse-based Target Editors
	Configuring IBM Data Studio Targets
	Configuring Native Tools Provided with SQL Server 2000 and SQL Server 2005
	Configuring Native Tools Provided with SQL Server 2008
	Configuring Native Tools Provided with SQL Server 2012, 2014, 2016, 17.x, 18.x
	Configuring Toad Targets
	Configuring UltraEdit Targets
	Configuring Visual Studio .NET, 2003, 2005 and 2008 Targets
	Configuring Visual Studio 2010, 2012, 2013, 2015, 2017, and 2019 Targets
	Configuring DB Tools for Oracle Targets
	Configuring Oracle SQL Developer Targets
	Configuring Oracle JDeveloper Targets
	Other Target Environments
	Most Common Compatibility Issues and How to Resolve Them

	Resolving Keyboard Hotkey Conflicts

	CHAPTER 50, Managing Scheduled Tasks
	Overview
	Using Scheduled Tasks Dialog

	CHAPTER 51, Backing Up and Sharing SQL Assistant Settings
	Overview
	Backing up SQL Assistant Settings Using the File System
	Backing up SQL Assistant Settings Using the Import/Export Utilities
	Command Line Backup to XML Files

	Restoring SQL Assistant Settings from a Backup File
	Restoring SQL Assistant Settings Using the Import/Export Utilities
	Sharing SQL Assistant Settings Between Team Members
	Automating Distribution and Sharing of SQL Assistant Settings
	Customizing Add-on Behavior

	CHAPTER 52, Installation and Uninstallation
	Installation
	Uninstallation
	Checking and Installing Updates
	Manual Mode
	Automatic Mode

	APPENDIX A, Hardware and Software Requirements
	APPENDIX B, License Agreement

