DB Audit Expert 3.1

Application Programming
Interface Reference

Version 1.0

Copyright © 2006-2007 SoftTree Technologies, Inc.

All rights reserved

Contents

N Lo LU A I g ST TU o = P 7
[a1 =Y aTo L=To I AN N o |11 o ol PP 7
Conventions used iN thiS dOCUMENL............uuiiiieiiiiiiiiee e e reeeee s 7
Abbreviations and Product REErE€NCE TEIMMIS......cciccii it 8
TrademarkS. ..o 8

CHAPTER 1, DB Audit API Architecture, Classes and Methodscccccvviiiiiiiiiieiiieeeeenns 9
ATCHITECTUIE OVEIVIEW.......ceeiiiiiiiieeeeeeeeeeee ettt eeeeeeeeeeeeaeeesesesesesesssesesesesesesssssesssessssssssssssnnnnreees 9
Database Profiles and ConNectioNS SEIUP.......cc.uviiiiieeoiiiiiieie e e srree e e e 10

Manually Configuring Database CONNECLIONSeeeveeeeiiiiiiiiieieee et re e e e e seaeneees 10
Programmatically Configuring Database Connections.............ccccceeeiiiiiiiiiiiee e, 11
Testing Database CONNECHONScoiuiiiiiiiiiee et 11
0 Lo L1 S 1= (0 oI Y = PSS 11
Overview of System AUt CIASSESocccuiiiiiiee e e e e e e e e 11
Overview of Data-Change Audit CIASSESuuuiiiiiiiiiiiiiiia et 12
AUt REPOIING AP ...t e et e e e e et e e e snbee e e e 12
LAY T (=T 1 = Lo =Y SR 12

(O o VN e N o N 1 1= - V| =4 o o P 14
Client-Side API INSLAIIALIONceviieeiieiieiie e e e e e s e s e e e e s e e snnrraereeaeeaas 14
Database Server-Side INStallationccooiiiiiiiieiec e e 14

DB2 for Linux, Unix and WINAOWS..........ccoooiiiiiiiie e 14
DB2 for zSeries and iSeries Platforms ... 15
(@] =Tl (= {0) gAY T o [0V SRR 15
Oracle for NoN-Windows PlatfOrmsS..........ooccuiiiiiiic e 15
MiICrosoft SQL SEIVEN ..o 15
SYDASE ASE @GN0 ASA ... 16

CHAPTER 3, Database CONNECLIVILY ...ccciciieiiiiiiie i e e e e e e e e nnranee e e e 17

Profile Manager Class and Related ClasSES..........cuvieeiiiiiiiiiiiiie s sseee e e 17
L@ YT 4T USSR 17
Instantiating Profile Manager Class. ... 18

(o =11 g IS = T o] TP PP PP PPPPTRTPPRPPTPN 18
L1115 7= T o Pt 18
Database DrVEr ClaSS. ..o 19
(00] 41511101 (o] APPSO PUPPPPT PP PPRPPPN 19
EENGIMIE .ttt e e e n e e 19
SEEINBIMIE ...ttt e et e e e et e e e e e e e e s e e e e e s 20
(o T=T A Lo oTod B4V =Tq - 11 PR OPPPPRRN 20
SELIADCDIIVEIPALN ...ttt 21
[0 T<T A Lo oTod B4V = T O F= 1] PRSPPI 21
SELIADCDIIVEICIASS ... e 22
(oI Lol oTod B4V =Tl Y o= TP PPT PR TPPPPPPRNt 22
SELIADCDIIVEITYPE .ottt e e e e bt e e et e e et e e et e e e enbe e e enes 23
Managing Database DIVEISiiieii i s s s e e e e e e s s e e e e e e s annenaeees 23
OEIDDDIIVEILIST ... eeeeeee ettt ettt ettt e e e e ettt e e e e e e st bae e e e e e e e e aannneeeeeaeeeeaanntaeeeaeanee 24

OEIDDDIIVEINGIMES. ...ttt ettt e e e e et b et e e e e e e e bbbb e e e e e e easnbbneeeeeeaaees 24
(o [S11D] o] 1Y/ S PO PT PP PPPPPTRI 25
=T (0] Blo] B Y= OO PTP R RUPPPRPN 25
EIETEDDDIIVETeeeeeee ettt ettt e e e e e ettt et e e e e e e e s bttt e eae e e e aannnbeeeeaeeeaannsaneeasannes 26
Database Connection Profile ClassS...........uiiiiiiiiiiiieiiee et 26
Constructor
[0 <11 F=T g TP PPRPPN
SEIN I e
OEIDIIVEINGME ...ttt r et e h bt e e ek et e e st e e s b e e e et eenreee s 28
SEIDIVEINAIME ...ttt e oottt e e e e e e bbbt e e e e e e abb b e e e e e e e e e antbeeeeeaan 28
[0 =] A8 Lo | o Tod 1 = 4 U PPUPRN
SEEJADCURL ...ttt et
getUsername
setUsername
getPassword
setPassword
getREPOSItOrYDAtADASE.......ceiiiiiiiiie e 33
SEtREPOSIHONYDAIADASE ...ttt 33
getCONNECHONPAIAMELETcoiiiiiiiiiiiiii ettt e e e et e e e e e e et bneeeaae e an 34
SEtCONNECHONPAIAMELETeiiiiiiiie e e e 35
isLoggedOnAsSYSDBA
getDbPath
setDbPath
[0 2T LAY F= T IS =T o To 1= TS PTRUPPPPRN
SEIMAUISENAET ...t
[0S LAY F=T IS T Y= PP PPRRR
LTS oV ST = P RPRR TR
JEIMAIIPASSWOIT....c.ce ettt e e e ettt e e e e e et e e e e e e e e s sabbrneeeeeeanees
SEIMAIIPASSWOITeeeiiiei ettt e e e e e sttt e e e e e e e s bbt e e e e e e e aasnntbeeeeaaeeeaannereeeean
Managing and Using Database Profiles..........cccccovviiiiiiiic e 41
(o<1 1D o] o o) 1= TN PP PPTRRN 41
(o L1 1D o] = o)1 1= NN F= g U= PR SPPPPPRRN 41
[0 T=1 1D o] = o] 11 =PTSRS
= Yo (0] Do = o) {1 = PRSPPI
EIEIEDDPTOFIE.ceiee et e e e e e e e e e e e
createDbConnect
Default Configuration Generator ClaSS........c.iiicuiriiiiieee i e s s s r e e e s s e e e e e e aans 44
OVBIVIBW ...t 44
Database CONNECLIVILY ClaSS.......coiiuuiiiiiiiiee ettt e e e e e e e e e e e e aaas 44
(@)V oY= 44
Connecting/Disconnecting to/from Databasecccuvviiiiieeiiiiiiieeeeee e 44
connect
disconnect
TESHNG CONMNECTION ...ceiiiiiiiiiiie ettt e ettt e e e e e s bbb e e e e e e e e aaabb e e e e e e e e e aanebeeeeeaan 45
USING CONNECTION.......eiiiiiieee ettt ettt ettt st e e as b e e e eb e e e s sk et e e antb e e e anbe e e s nnneeeeabneenans 46
Getting Connection INfOrMAatioN............coiiiiiiieiiee e e 47
(510 o] o1 o[Tox 1o [F PPN
checkConnected
(o<1 1D o)V =T 1T o PPN
GEIDDPTOIIE .o
EIDDDIIVET ...ttt ettt e e oottt e e e e e e bbbt e e e e e e e e b e e e e e e e e e e a b nneee e e anee

(o<1 (@f0] o1 o T=Tox 1 0] o H OO PT R POPPPPPN 49

FEPOSIONYUSEA ...ttt e ekt e et e e s e e s es e e e et e e s nnbneeenreee s 49
CHAPTER 4, System Audit Managementccooiiiiiiiiiiiiee e ccieeer e e e s sseee e e e e e s nnnreneeeae e 51
ClasS HIBIAICNYeeiiiiiiie ettt e e e b e e et e e e sanneas 51
Parameter Names and VAIUES.........coooiiiiiiiiiiie ettt 52
Oracle System Audit Management TASKScccciiiiiii e 53
Set SYSIEM AUGIT STALE.eiiiii e e e e e s e e e e e e e e 53
INSEAll SYSIEM AUIL.......uiiiiiii e e e e e e e e e s e e e e e e s et areeaeeesearaeeas 53
UNINSEAll SYSEEM AUGITceeieie et e et e e e e e e e e e e e e e s annenreeeaaeeeannneas 53

ENABIE SYSIEM AUIL......oeeiiii i e e e e s e e e e e s et r e e e e s e e nae s 54

DiSable SYStem AUIL........ooi et e e e e e r e e e e e e e e e e e e as 54

Set Audit Operations and FiltEISooi i 55
Add SQL StatemMent AUuiiiiiiee it e e e e s e r e e e e s e a e e e e s ensnrreeeas 55
Remove SQL Statement Audit...........ooooviiiiiiiii 59

PaYo [0 W@ o] [= oy AXod ot XIS AV (o 1| S USRS UPRRSR 60
Remove ODJECt ACCESS AUIL........u ittt e e e e e e e e e e e e e e e e e s eenneeee 62

A SESSION AUGIL. ...ttt e 64
REMOVE SESSION AUIL.....c.iiii ittt e et e e e e e et e e e e e e e e s annaeneeeaaeeeannnees 65
Configure Alternative AUdit Trail.........cooo i 67
Install/Uninstall Oracle Alternative Audit Trailccoooiiiiiiiiiiiic e 67
Schedule/Remove Oracle Alternative Data Transfer JOD..........c..ooiiiiiiiiieee e 69

Set Advanced AUt OPLIONS.eii i 71
Install/Uninstall Oracle SYS Operations AUdit.............ccooiiiiiiiiiiiieeiiiee e 71
Install/Uninstall Server Errors Auditing and AlErtiNg..........ccuvveiiiereiiiieeeeiie e 73

Move SYS.AUDS$ Table to NON-SYSTEM tableSpace............ccccevvieiieiiiieiiie e 75
INfOrmatioNal MELNOUSoiviiii it e e s sraeeeeans 77
Get SYSIEM AUAIE STALUSeeeeiiiiieiiei et e e et e s e e sannees 77

Install DB Audit Mail Sending SQL ProCedurecccoiiiiiiiiieie et ee e sevivneeeeee 78
Microsoft SQL Server System Audit Management Tasksccccevciiiiiiiee i 79
Set SYSIEM AUGIT STALE.eiiiii e e e e e s e e e e e e e e 79
INSEAll SYSTEM AUIL.......uiiiiiei i e e e e e s e e e e e e s et abeaeeeeseareeeas 79
UNINSEAll SYSEEM AUGITceeie et e e e e e e e e e e e e e s anneeeeeeaaeeeannneas 84

ENABIE SYSIEM AUIL......oeiiiii i e e e e e e s e e e e e s et e e e e e e e e naes 84

Disable SYStem AUIL........ooi et e e e e e e e e e e e s e e e e e e e anaeas 84

Set Audit Operations and FiltEIScooiiiiiiiie e 85
Update AUdit OPEIatiONS.......ccoiuiiiiiiie e e e ettt e e e e e s e e e e e st e e e e e e e s santbaaaeeaeessasaeees 85

0T oo Fo L LI YN (o 10 T 1= = PSR 87

Set Advanced AUt OPLIONS.iiiiiiiiie e 88
Update AUdit QUEUE SIZE......ooieiieiiieie ettt ettt e e e e et e e e e e e s abbbnee e e e e e e annenee 88
Informational MethOASuuiiiii e 89
Get CUITENT AUIE SELHNGS ..oviiiiiiiiiiiiee e e e e e e r e e e e e s s r e e e e e e s s ensnraaeaeaeeeans 89

Get SYStEM AUIL STALUSeeiiiiiiiiiii et e e e e et e e e e e e e e taee e e e e e e s aannsaneeeaaeaanns 90

Install DB Audit Mail Sending SQL ProCedurecoocveiiiiiiieiiiiiiee e 91
Sybase SQL Server and ASE System Audit Management Tasks.........ccccccvveeeiriicinneeeneeenn 92
Set SYSIEM AU STALE.....ueiiiii i e e s e e e e s e e s e e e e e e e aaans 92
INSEAIl SYSTEM AUGIL.......eeeeeeee et e e et e e e e e e s et e e e e e e s e naaeaeeeaaeeaneeeeas 92
UNINStall SYSIEM AUGITeeiiiiiiiiiiiei e e e e e e e e st er e e e e s esarrreeaeeesaanneas 92

ENABIE SYSIEM AUIL ...t e e e e e s e e e e e e s e nnn e e e e e e e e e nneas 93

DiSable SYStEM AUIL.......eiiie i e e e e e e e r e e e e s a e e e s e aaae s 94

Set Audit Operations and FiltErSccoiiiiiiiiieic e e e 95

Add Server-level Operations AUIt.............ooiiiiiiiiiiiiie e eeee s 95

Remove Server-level Operations AUIt..........vviiiiiiiiiiee e 929

Add Database-level OPEratioNscc.uueeiiiiiiiiiiiei e e e e e e e sabeees 100
Remove Database-level Operations AUitc..eeeiiiiiiiiiiiiii e 103

Add Schema Object-IeVel AUIt..........cccuiiiiiiee e e e e 104
Remove Schema Object-level AUit........... ..o e 107

P Yo (o I Moo [B (Y= Y U Lo | PP PEPPR 109
Remove Login-level AUIto e e e 111

Set Advanced AUt OPLIONS.........ooi it 112
Update AUdit QUEUE SIZE.........uueiiiiiieiiiti ettt e et e e e e ettt e e e e e s anneees 112

Set 'Suspend Audit When Device Full' StatUScuuuiiiiiiiieee e 113

Add New System Audit Trail Table...........cooiiiiiiiiiiiiiee e 115

Attach Threshold ProCeAUIES.........coi i 116
Uninstall Threshold ProCEAUIESccoiiiiiiiiiiieciic ettt 117
INfOrmational MELNOUScovuiiiiiiiiiii e 118
Get SYSIEM AUAIE SEATUSeeiiiiiieiiiiee et e st e et e s e nneeas 118

Get System Audit Trail Tables COUNT.........c..viiiiiiei e 119

LT U o [@ TN CTU =T . 120

Get 'Suspend Audit When Device FUll' STatuscvvviiiiiiiiiiiiiiecc e e e 121

Install DB Audit Mail Sending SQL ProCedurecccceeeveiiiiiieeeie e ciiiiieeee e 122
DB2 System Audit Management TASKScoui i 123
Set SYSemM AUAIL STALE.......coiiiiiiii e 124
INSEAIl SYSTEM AUGIL. ... e e e e e e e e e e e e anneeas 124
UNINSEall SYSTEM AUITeeeeiiiiee et e e e nnes 126

ENADIE SYSIEM AUIL......ueeiiiiiiiiieei e e e e e e e s e e e e e e s e et e e e e e e e eannees 127

DiSable SYStem AUIL.......coii et e e e e e e e e e e et e e e e e e e nnees 127

Set AUt OPEIALIONSoiiiiiiiiei ittt e s e e e e e e e eeees 128
FIUSH AUAIt DALAeeiiiiiiiiiie et e e et e e e nbee e e e eneee 129
INfOrmational MELNOUScoiuiiiii i e e 130
Get SYStEM AUAIE SEATUSeeiiiiiieiiiiee ettt e sttt e st e e 130

Install DB Audit Mail Sending SQL ProCedurecccceeviviiiiiieieiee e csiireeee e e e 131
Common System Audit Management Tasks (All Database Systems)ccccccoccvvveeeeennnn. 132
Truncate System Audit Trail Table ... 132
Archive System Audit Trail Datato a Table...........ccccooiiiii e, 133
Archive System Audit Trail Datato @ Fil€..........ccccvvieiiiee e 135
Uninstall Audit Repository ODJECEScuviiiiiiiec e 136
CHAPTER 5, Data-change Audit Managementoooiiiiiiiiiiiiiee e 138
(O F= T o 11T = (o o) PP 138
Parameter Names and VAlUES.........couuuiiiiiiiiaeeee et e e 139
Data-change Audit Management TASKSouiiiiiireiiiie et 139
Install Data-change Audit for a Table ... 139
Uninstall Data-change Audit for a Table.........cooiiiiiiiiiiie e 144
Enable Data-change AUdit THOGETcooii it e e e e e 146
Disable Data-change AUt THGGETcooiuriieiiiiie ettt 147
Truncate Data-change Audit Trail Tablec.c..vvviiiieii i 148
Archive Data-change Audit Trail to a Table...........cccoceeee i, 150
Archive Data-change Audit Trail to @ File........ooo i 152
Configure Settings for Data-change Audit REPOIScccovviiiiiiiieiiiiie e 153
Gt TADIE AlIASES...cci ittt e e e e e e e e e e e et eaeeanee 153

SEETADIE AlIGS covvviieeieeeiie ettt ettt e e e e e et e e e e e e e ea e e e e e e eert e aeeeararaaaaes 154

Gt COIUMN ANBSES ...ttt ettt e e ettt e e e e e e e et bt e e e e e e s e satbaeeaaeesasnnsaaeeaaaeeans 156

SO COIUMN AlIBS...cei ittt e e e e st e e e e e e e s babb e e e e e e e saannbbneeeaeenanes 157

CHAPTER 6, Generating AUudit REPOISuuiiiiiie et e e e snnrrare e e 160
Class HIBIAICRY.......ueeiiii e e e s e e e e e s e e aeeeeaea s 160
Parameter Names and VAlUES.........oouuuiiiiiiiaaie et e e 161
GENETALING REPOITS ..ottt ettt e et e e et e e e st e e e s abbe e e e aneees 161
Common Report Filters and Parameters.........ccooicciuiieiiee i e e e s nnveeeeeee e 164
SYSEM AUAIL REPOIS ..o e e e s e e e e e e e s e aaraeeeeaaeeas 165
Data-change AUit REPOITScooiiiiiiiiiiiee ettt e e e e e e e e snnbeeeeaeaeas 166
CHAPTER 7, APl INvocation MethodsScoovuiiiiiiiiieeeeee e e e 168
Direct Invocation from Java Programscecouuiieiiiiiiee it e e 168
Direct Invocation from Non-Java Programs............eueeereeoiiiiciiiieiree e scnieeee e e e e e s senveeeeeeee s 168
Indirect Invocation Using BatCh FilESccciiiiiiiie e 169
Remote Invocation Using RMI funCtionalityccoooiiiiiiiiiie e 169
APPENDIX A, Hardware and Software ReqUIremMentscccccvveeeiiiiiiieiieee e eeiieieeeee e 171
APPENDIX B, LICENSING uttiiiitiiiiiiiiiie ettt seiiit e s etie e e s ssteeessnsteeesssstaeessnntaeaesnssaeeesansaeeesanseeeesanes 173

About This Guide

About This Guide

This manual describes the features of the DB Audit Expert's API product, including how to invoke the
API functions, which functions are available, their parameters and available options. The described
features and how-to instructions apply to all supported database management systems running on any
platform, unless otherwise noted.

Intended Audience

This document is for application and database developers who need to build back-end auditing
functions into their database applications.

Conventions used in this document

This section describes the style conventions used in this document.

Italic

An italic font is used for filenames, URLS, emphasized text, and the first usage of technical terms.

Monospace

A monospaced font is used for code fragments and data elements.

Bold

A bold font is used for important messages, names of options, nhames of controls and menu items,
and keys.

User Input

Keys are rendered in bold to stand out from other text. Key combinations that are meant to be typed
simultaneously are rendered with "+" sign between the keys, such as:

Ctrl+F
Keys that are meant to be typed in sequence will be separated with commas, for example:
Alt+S, H

This would mean that the user is expected to type the Alt and S keys simultaneously and then to type
the H key.

Graphical symbols

% — This symbol is used to indicate DBMS specific options and issues and to mark useful auditing
tips.

% — This symbol is used to indicate important notes.

About This Guide

Abbreviations and Product Reference Terms

DBMS — Database Management System
Oracle — This refers to all supported Oracle® database servers
SQL Server — This refers to all versions of Microsoft® SQL Server™ database servers.

ASE — This refers to all versions of the Sybase® SQL Server™ and Sybase® Adaptive Server®
Enterprise database servers.

ASA — This refers to all versions of the Sybase® Adaptive Server® Anywhere database servers.

DB2 - This refers to all versions of the IBM® DB2® database servers.

The terms ‘DB Audit Expert’ and ‘DB Audit’ are used interchangeably in this document — they both
refer to the same product]

Trademarks

DB Audit, DB Audit Expert, DB Mail for Oracle, 24x7 Automation Suite, 24x7 Scheduler, DB Tools for
Oracle are trademarks of SoftTree Technologies, Inc.

Windows NT, Windows 2000, Windows XP are registered trademarks of Microsoft Corporation. UNIX
is the registered trademark of the X/Open Consortium. Sun, SunOS, Solaris, SPARC are trademarks
or registered trademarks of Sun Microsystems, Inc. Ultrix, Digital UNIX and DEC are trademarks of
Digital Equipment Corporation. HP-UX is a trademark of Hewlett-Packard Co. IRIX is a trademark of
Silicon Graphics, Inc. AlX is a trademark of International Business Machines, Inc. AT&T is a trademark
of American Telephone and Telegraph, Inc.

Microsoft SQL Server is a registered trademark of Microsoft Corporation.
Oracle is a registered trademark of Oracle Corporation.

Sybase, Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Anywhere Studio
are registered trademarks of Sybase, Inc. or its subsidiaries.

IBM, DB2, UDB are registered trademarks of International Business Machines Corporation

All other trademarks appearing in this document are trademarks of their respective owners. All rights
reserved.

CHAPTER 1, DB Audit API Architecture, Classes and Methods

CHAPTER 1, DB Audit API Architecture,
Classes and Methods

Architecture Overview

DB Audit Java APl implementation consists of 6 functional class groups:

Database Profile Management
Database Connectivity

Audit Setup

Audit Reporting

Command Line Interface
RMI-based Client/Server Interface

ourLDOE

o o o o o o o o o o o

DB Audit Programmatic Interfaces

] Direct Remote Command Line :
Invocation API Invocation API Interface
Audit Setup Audit Reports Alerts and Reports
Classes Classes Scheduling Classes
Database DB Audit
Profiles Database Connectivity Classes and JDBC Drivers Alert Center

MySQL support — 1Q 2007

: :

These class groups allow:

e Integration and packaging of DB Audit as a JAR file for direct loading and method invocation
from Java and non-Java programs.

e Invoking DB Audit methods from any application that can execute shell commands, in other
words, allow use of console-mode interface

e Running DB Audit as a server application and using Java RMI to invoke its methods remotely
from Java client programs. This interface can be used by remote thin clients to remotely install
audit functions, run audit reports and manage audit settings.

CHAPTER 1, DB Audit API Architecture, Classes and Methods

Database Profiles and Connections Setup

Manually Configuring Database Connections

1.

Locate profiles.xml file in the installation directory. Open this file in any text editor, for example,
in UNIX vi or in Windows Notepad.

In the opened file locate pre-configured profile matching the type of the database connection you
want to setup, for example, for Oracle connection, find "Oracle Profile." Rename this profile using
a more descriptive name, for example, "Oracle Financials Server."

Enter the database connection URL (jdbcUrl field), user and password fields of the chosen

profile in the profileList section. Note that the formats of URL strings are DBMS specific and
differ for different drivers, database systems and communication protocols. Check your JDBC
driver documentation for what to put in the JDBC URL.

Use the following formats for TCP/IP based connections using pre-configured JDBC drivers
packaged with DB Audit API:

i DB2: jdbc:db2://[DB2_server_name]:[port(default — 50000)]/[database_name]
Example: jdbc:db2://MY_BIG_SERVER:50000/DATAWARE

% SQL Server: jdbc:sqglserver://[[MSSQL_server_name]:[port(default — 1433)]
Example: jdbc:sqlserver://IMY_BIG_SERVER:1433

Note: To connect to a hamed instance through, you must specify the port number that is
associated with the named instance, instead of the name of the named instance. For
more information see Microsoft Knowledge Base article #313225
http://support.microsoft.com/kb/313225.

Note about using Trusted/Windows Authentication connections:

SQL Server 2000: At present, due to limitations in the Microsoft JDBC driver, Windows
Authentication is not supported. The database server must be configured to use Mixed
Authentication mode and the connection must be made using SQL Server user account..
SQL Server 2005: To use Windows Authentication, add integratedSecurity=true option
to the end of the database URL value. In addition, you must copy sqljdbc_auth.dll file to
your application directory so that the JDBC driver can find it in the current directory. On a
32-bit processor system, copy sqljdbc_auth.dll file from the x86 folder; on a 64-bit
processor system, copy sqljdbc_auth.dll file from the x64 folder. For more information
see "Building the Connection URL" document posted on Microsoft web site
http://msdn2.microsoft.com/en-us/ms378428.aspx

Example: jdbc:sqlserver://IMY_BIG_SERVER:1433;integratedSecurity=true;

% Oracle: jdbc:oracle:thin:@[Oracle_server_name]:[port(default — 1521)]:[sid]
Example: jdbc:oracle:thin:@MY_BIG_SERVER:1521:0RCL

&- ASE, ASA: jdbc:sybase:Tds:[Sybase_server_name]:[port(default — 2048)]/[database_name]
Example: jdbc:sybase:Tds: MY_BIG_SERVER:2048/MASTER

% Important Note: Saving user and password values in the profile properties is

-10-

http://support.microsoft.com/kb/313225
http://msdn2.microsoft.com/en-us/ms378428.aspx

CHAPTER 1, DB Audit API Architecture, Classes and Methods

optional. If specified you can use the profile later for subsequent connections without
providing user and password values each time. This option is not recommended for
security reasons because the saved user and password values are stored as open
text. Anyone who has access to the profiles.xml file can read them. If you do not
specify user and password values in the profile, you will need to provide then as
parameters in the database connection method or on the command line if you use the
command line interface.

4. Enter additional parameters if required

qk Oracle: If a SYS connection to Oracle is needed, you must use SYSDBA option. Specify
"sysdba" (without quotes) in the connectionParameter field.

‘\5 SQL Server and ASE: The repositoryDatabase field has to be specified in the profile. This
value controls in which database DB Audit will search/create its audit repository tables.

i DB2: The dbPath field has to be specified in the profile. This value instructs DB Audit where
to find DB2/SQLLIB/FUNCTION directory on the server.

5. If necessary, configure connections to additional database servers adding additional profiles and
entering their properties as instructed above in steps 3 and 4.

Programmatically Configuring Database Connections

Use the Database Profiles Manager class to manage profiles programmatically. For more information
read Database Connection Profile Manager Class topic in CHAPTER 3.

Testing Database Connections

The simplest way to verify your profiles.xml file contains the correct settings is to run the test console
using the following command line:

java -jar dbaudit.jar /D profileName [/U user] [/P password] /T

The profileName here is the name of the profile as it is entered in profiles.xml file. User and password
parameters are required if they are not saved with the profile.

Audit Setup API

Overview of System Audit Classes

A set of classes is provided for installing and configured audit settings for system audit. The base
interface class is AuditSetup whose full name is
com.softtreetech.com.dbaudit.auditsetup.system.AuditSetup. In the same package are also
available several descendant interface classes for specific database systems and their

implementations.

-11-

CHAPTER 1, DB Audit API Architecture, Classes and Methods

e AuditSetupDB2Impl

e AuditSetupMssqlimpl

e AuditSetupOraclelmpl
e AuditSetupSybaselmpl

All required classes are stored within dbaudit.jar library. These classes and their methods are
described in CHAPTER 4, System Audit Management.

Overview of Data-Change Audit Classes

A set of classes is provided for installing and configured audit settings for data-change audit. The base
interface class is AuditSetupData whose full name is
com.softtreetech.com.dbaudit.auditsetup.data.AuditSetupData. In the same package are also
available several descendants interface classes for specific database systems and their
implementations.

e AuditSetupDataDB2Impl
e AuditSetupDataMssqlimpl
e AuditSetupDataOraclelmpl

e AuditSetupDataSybaselmpl

All required classes are stored within dbaudit.jar library. These classes and their methods are
described in CHAPTER 5, Data-change Audit Management.

Audit Reporting API

The Reports class is provided for running audit reports. This class internally interfaces with other
database type specific classes, which normally not need to be called directly.

All required classes are stored within dbaudit.jar library. The Reports class and its methods is
described in CHAPTER 6, Generating Audit Reports.

RMI Interface API

The RMI interface allows running DB Audit as a server on one computer or appliance and invoking its
functions remotely from other computers and appliances. You can run DB Audit APl in a server mode
using the following command (the entire command must be entered on a single line):

java -Djava.security.policy=security.policy -cp .;dbaudit.jar
com.softtreetech.dbaudit.rmi.DBAuditRMIServer

All the classes required for the server are located within dbaudit.jar file. The main class for running
the server is DBAuditRMIServer.

-12-

CHAPTER 1, DB Audit API Architecture, Classes and Methods

The DBAuditRMIClient.jar file contains the classes required for running the client part.

The detailed description of RMI interface and its classes and methods is described in Remote
Invocation Using RMI functionality topic in CHAPTER?Y.

-13-

CHAPTER 2, Installation

CHAPTER 2, Installation

Client-Side API Installation

The installation of DB Audit's API is straightforward and consists of 1 or 2 steps:

1. Unzip dbaudit_NNN.zip file to the main directory of your application or any other directory
from where you can load the unzipped files. Note that that NNN in the ZIP file name is
substituted with the API build number.

2. If you are going to use DB Audit Alert Center, unzip alertcenter_NNN.zip file to the same
directory where you unzipped files from dbaudit_NNN.zip. Note that that NNN in the ZIP file
name is substituted with the API build number. Numbers in dbaudit and alertcenter zip files
can differ but that doesn't mean they are incompatible.

Database Server-Side Installation

% Important: Database server side installation is DBMS and feature specific.

DB2 for Linux, Unix and Windows

Read the following if you are going to use system auditing with DB2. You can skip this topic if you
are not going to run system auditing.

You must perform the following steps:

1.

From the DB Audit API installation directory, from the server_side_files/db2
subdirectory, copy dbauditRunner jar file to your DB2 server to [db2
homel]/sqllib/function subdirectory. If DB2 is running on a Windows system, also copy
dbauditRunnerSrv.exe file to your DB2 server to [db2 home]/sqllib/function
subdirectory.

Add dbauditRunner jar file to the Java CLASSPATH environment variable for the DB2
instance owner and if required bounce your DB2 instance in order for the new
CLASSPATH to take effect.

Start DB Audit interface service on your DB2 server running the following command in
[db2 home]/sqllib/function directory:

java —jar dbauditRunner.jar

On Linux and Unix systems: Add this command to the profile of the DB2 instance
owner so that it can start automatically when your DB2 computer starts.

On Windows systems: Run dbauditRunnerSrv.exe program from the command line
with —install parameter, which will install DB Audit interface service as Windows native
services.

dbauditRunnerSrv.exe -install
By default the service will be installed under LocalSystem account. If DB2 instance is run

under a different account, it is recommended that you change the DB Audit's service to
run under the same account your DB2 instance is run. This can be done in Windows

-14-

CHAPTER 2, Installation

Control Panel's Administrative Tools. Use the Services applet to modify service security
settings and properties.

Schedule periodic run of Audit Record Flushing and Loading Procedures. See
"Scheduling System Audit Record Flushing and Loading Procedures" topic in CHAPTER
3 of the DB Audit User's Guide for detailed instructions on how to do that.

It is important that you have the system audit installation for DB2 completed before you
attempt to run Audit Record Flushing and Loading Procedures. These procedures can be
installed using either installSysAudit APl method or using DB Audit's Management
Console. See "DB2 System Audit Management" topic in CHAPTER 5 for more
information.

DB2 for zSeries and iSeries Platforms

DB Audit doesn't require additional files to be installed on the server.

Oracle for Windows

Read the following if you are going to audit activities of privileged users connected as SYSDBA or
SYSOPER. You can skip this topic if you are not going to run this type of auditing.

You must perform the following installation steps:

1.

From the DB Audit API installation directory, from the server_side_files/oracle
subdirectory, copy OraLogMonitor.exe file to your Oracle server to C:\Windows
subdirectory or any other subdirectory in the system search path.

Create new entry in the system registry to store path to the Oracle directory where you
want audit files to be generated
Registry path:

HKEY_LOCAL_MACHINE\SOFTWARE\SoftTree Technologies, Inc.\DB Audit\EventLog
Registry value name:

AuditPath
Registry value type:

String

From that directory run OraLogMonitor.exe program from the command line with —install
parameter, which will install DB Audit Event Log Monitoring Service. For example,

C:\Windows> OraLogMonitor.exe — install

Oracle for non-Windows Platforms

DB Audit doesn't require additional files to be installed on the server.

Microsoft SQL Server

Read the following if you are going to use system auditing with SQL Server. You can skip this

-15-

CHAPTER 2, Installation

topic if you are not going to run system auditing.

You must perform the following installation step:

1. From the DB Audit API installation directory, from the server_side_files/mssql
subdirectory, copy xp_dbaudit.dll file to your SQL Server computer to [SQL Server
home]\Binn subdirectory.

ﬁ!. Tip: If you are not sure from which directory your SQL Server instance is started you
can find out this in the properties of the SQL Server service. Open Services applet from
Administrative Programs group in the Windows Control Panel. Locate the required SQL
Server instance in the services list. The service name for the default instance is usually
"MSSQLSERVER." Double-click the service name to open service properties dialog. The
Path to Executable is displayed below the service name and description. This is the
directory where you need to copy xp_dbaudit.dll file.

Sybase ASE and ASA

DB Audit doesn't require additional files to be installed on the server.

-16-

CHAPTER 3, Database Connectivity

CHAPTER 3, Database Connectivity

Profile Manager Class and Related Classes

Overview

The ProfileManager class provides methods for configuring database driver settings and managing
connection profiles. The full class name is com.softtreetech.com.dbaudit.ProfileManager for the
class declaration and com.softtreetech.com.dbaudit.ProfileManagerimpl for the class
implementation.

The class must be instantiated and initialized before it can be used to manage connection profiles.
Use getinstance method to get the default instance with default configuration parameters or use
initinstance method to initialize the profile manager interface using custom profile path. Once you
have obtained an instance of the ProfileManager, you can add/delete/update drivers and profiles in
the profiles configuration file. You can also use it to create an instance of the DbConnectimpl class
and then use it to connect to a database.

Examples:
ProfileManager profileManager = ProfileManagerimpl.getinstance();

ProfileManager profileManager = ProfileManagerimpl.initinstance("/home/myapp/profiles.xml");

ConfigBean Class DbProfile Class DbConnect Class
(config file generator) (connection and other settings) (database connectivity)

1
1
1
1
1
1
1
1
1
1
1
1
1
:
1

\ 4 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(database connectivity)

[DbDriver Class]

Logical relationships between i
database connectivity classes and \
the Profile Manager interface)

b
Database Specific]

Driver Classes

The profile manager uses several auxiliary classes for storing profile settings and managing
connections. The highlighted classes provide database connectivity methods and are used with direct
Java interface or RMI-based Java interface. Note that the DB Audit command line interface hides all
internal class complexity and automatically establishes database connections as required.

ConfigBean — this class implements configuration bean and is used internally to read, write and
parse the profiles configuration file. The DefaultConfigGenerator class can be used to generate

-17-

CHAPTER 3, Database Connectivity

the default configuration file containing 4 pre-configured database drivers and 1 sample
connection profile for each supported DBMS type. For detailed description of this class methods
and properties read Default Configuration Generator Class topic.

DbDriver — this class implements JDBC driver interface including driver type, driver search path,
and the name of the driver class that is invoked when the driver is loaded. For detailed description
of this class methods and properties read Database Driver Class topic.

DbProfile — this class is used internally to hold database connection profile properties and some
additional parameters associated with the database connection. Profile properties include but not
limited to the following: profile name, database URL, driver used, user name, password,
repository database name, connection type, DB2 system path, email server name for sending
alerts, email account and password for sending alerts. For detailed description of this class
methods and properties read Database Connection Profile Class topic.

Instantiating Profile Manager Class

getinstance

public ProfileManager getinstance()
throws java.io.lOException

Description:

Instantiates and initializes the profile manager using default configuration.
Parameters:

None
Return:

ProfileManager object
Throws:

java.lang.IOException — if the default configuration file cannot be found or accessed.
Example:

ProfileManager profileManager = ProfileManagerimpl.getinstance();

initinstance

public ProfileManager initinstance(String pathToProfilesXML)
throws java.io.lOException

Description:
Instantiates and initializes the profile manager using custom path to the configuration file.
Parameters:
pathToProfilesXML — full path to the profiles configuration file.
Return:
ProfileManager object
Throws:

java.lang.IOException — if the specified configuration file cannot be found or accessed.

-18-

CHAPTER 3, Database Connectivity

Example:

ProfileManager profileManager = ProfileManagerimpl.initinstance("/home/myapp/profiles.xml");

Database Driver Class

Database driver class DbDriver encapsulates properties and methods describing type and location of
database client libraries used by DB Audit for communicating with the database. The following usefull
properties and methods are available in this class:

Constructor
public DbDriver()

Description:
Creates new instance of DbDriver class.
Parameters:

None

getName
public java.lang.String getName()

Description:
Returns descriptive driver name, for example, "Oracle".

%Tip: do not confuse driver name with driver type. Drivers are available from many vendors and
their names could be really anything, not necessarily matching name of the type of the database
system they are used for. Driver names often contain driver type and version numbers.

Parameters:

None
Return:

String description of driver name, for example, "Oracle".
Example:

1. Create ProfileManager instance using default configuration file and obtain list of registered
drivers:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List driverList = profileManager.getDbDriverList();

2. Print name of each registered driver to the standard output:
for (inti = 0; i < driverList.size(); i++)
System.out.printin(driverList.get(i).getName());

-19-

CHAPTER 3, Database Connectivity

setName

public void setName(java.lang.String name)

Description:
Sets descriptive driver name, for example, "Oracle".

%Tip: do not confuse driver name with driver type. Drivers are available from many vendors and
their names could be really anything, not necessarily matching name of the type of the database
system they are used for. Driver names often contain driver type and version numbers.

Parameters:

Name — driver name.
Return:

None
Example:

Create a new instance of DbDriver class, set driver properties and register it with the
ProfileManager:

DbDriver driver = newDbDriver();

driver.setName("My DB2 driver version 1.4");
driver.setJdbcDriverType(DbDriver.DB2_TYPE);
driver.setJdbcDriverPath("db2/db2jcc.jar;db2/db2jcc_license_cu.jar");
driver.setJdbcDriverClass("com.ibm.db2.jcc.DB2Driver");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbDriver(driver);

getJdbcDriverPath
public java.lang.String getJdbcDriverPath()

Description:
Returns path to driver libraries.

%Tip: A driver path can consists of one or more libraries — JAR files. Path can be specified as
an absolute path or as a path relative to the location of dbaudit.jar file. In case of multiple files,
the path values must be separated by a semicolon, for example:
db2/db2jcc.jar;db2/db2jcc_license_cu.jar

Parameters:

None
Return:

Semicolon-separated names of driver libraries including their paths
Example:

1. Create ProfileManager instance using default configuration file and obtain list of registered
drivers:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List driverList = profileManager.getDbDriverList();

-20-

CHAPTER 3, Database Connectivity

2. Print path of each registered driver to the standard output:
for (inti = 0; i < driverList.size(); i++)
System.out.printin(driverList.get(i).getJdbcDriverPath());

setJdbcDriverPath
public void setJdbcDriverPath(java.lang.String jdbcDriverPath)

Description:
Sets path to driver libraries.

%Tip: A driver path can consists of one or more libraries — JAR files. Path can be specified as
an absolute path or as a path relative to the location of dbaudit.jar file. In case of multiple files, the
path values must be separated by a semicolon, for example:
db2/db2jcc.jar;db2/db2jcc_license_cu.jar

Parameters:

jdbcDriverPath — Semicolon-separated names of driver libraries including their path..
Return:

None
Example:

Create a new instance of DbDriver class, set driver properties and register it with the
ProfileManager:

DbDriver driver = newDbDriver();

driver.setName("My DB2 driver version 1.4");
driver.setJdbcDriverType(DbDriver.DB2_TYPE);
driver.setJdbcDriverPath("db2/db2jcc.jar;db2/db2jcc_license_cu.jar");
driver.setJdbcDriverClass("com.ibm.db2.jcc.DB2Driver");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbDriver(driver);

getJdbcDriverClass
public java.lang.String getJdbcDriverClass()

Description:

Returns name of the main driver class used as an interface class for the JDBC compliant
database driver.

Parameters:
None
Return:

Name of the main driver class.

-21-

CHAPTER 3, Database Connectivity

Example:

1. Create ProfileManager instance using default configuration file and obtain list of registered
drivers:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List driverList = profileManager.getDbDriverList();

2. Print name of main class of each registered driver to the standard output:
for (inti = 0; i < driverList.size(); i++)
System.out.printin(driverList.get(i).getJdbcDriverClass());

setJdbcDriverClass

public void setJdbcDriverClass(java.lang.String jdbcDriverClass)

Description:

Sets name of the main driver class which can be used as an interface class for the JDBC
compliant database driver.

Parameters:

Name of the main driver class.
Return:

None
Example:

Create a new instance of DbDriver class, set driver properties and register it with the
ProfileManager:

DbDriver driver = newDbDriver();

driver.setName("My DB2 driver version 1.4");
driver.setJdbcDriverType(DbDriver.DB2_TYPE);
driver.setJdbcDriverPath("db2/db2jcc.jar;db2/db2jcc_license_cu.jar");
driver.setJdbcDriverClass("com.ibm.db2.jcc.DB2Driver");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbDriver(driver);

getJdbcDriverType
public int getJdbcDriverType()

Description:

Returns type of the database driver.
Parameters:

None
Return:

Integer value whose value matches one of the following constants pre-defined in the DbDriver
class:

e DbDriver.DB2_TYPE
e DbDriver.MSSQL_TYPE
e DbDriver. ORACLE_TYPE

-22-

CHAPTER 3, Database Connectivity

e DbDriver.SYBASE_TYPE

Example:

1. Create ProfileManager instance using default configuration file and obtain list of registered
drivers:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List driverList = profileManager.getDbDriverList();

2. Print type of each registered driver to the standard output:
for (inti = 0; i < driverList.size(); i++)
System.out.printin(Integer.toString(driverList.get(i).getJdbcDriverType()));

setJdbcDriverType
public void setJdbcDriverType(int jdbcDriverType)

Description:
Sets type of the database driver.
Parameters:

Type value that must much one of the following constants pre-defined in the DbDriver class:

e DbDriver.DB2_TYPE
e DbDriver. MSSQL_TYPE
e DbDriver.ORACLE_TYPE
e DbDriver.SYBASE_TYPE
Return:
None
Example:

Create a new instance of DbDriver class, set driver properties and register it with the
ProfileManager:

DbDriver driver = newDbDriver();

driver.setName("My DB2 driver version 1.4");
driver.setJdbcDriverType(DbDriver.DB2_TYPE);
driver.setJdbcDriverPath("db2/db2jcc.jar;db2/db2jcc_license_cu.jar");
driver.setJdbcDriverClass("com.ibm.db2.jcc.DB2Driver");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbDriver(driver);

Managing Database Drivers

DB Audit APl comes with 4 drivers pre-configured — 1 for each supported database type. In case if you
want to use a non-default driver or have a more recent version of a database driver available you can
use the following methods to manage existing and register new drivers.

-23-

CHAPTER 3, Database Connectivity

getDbDriverList

public java.util.List getDbDriverList()
throws java.io.|OException

Description:

Returns alphabetically sorted list of drivers from profiles.xml file.
Parameters:

None.
Return:

List of DbDriver objects sorted by driver name
Throws:

java.lang.IOException — if the configuration file cannot be accessed.
Example:

1. Create ProfileManager instance using default configuration file and obtain list of registered
drivers:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List driverList = profileManager.getDbDriverList();

2. Print name of each registered driver to the standard output:
for (inti = 0; i < driverList.size(); i++)
System.out.printin(driverList.get(i).getName());

getDbDriverNames

public String[] getDbDriverNames()
throws java.io.lOException

Description:

Returns string array of database driver names from profiles.xml file.
Parameters:

None
Return:

Array of driver names
Throws:

java.lang.lOException — if the configuration file cannot be accessed.
Example:

1. Create ProfileManager instance using default configuration file and obtain list of registered
driver names:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
String name[] = profileManager.getDbDriverNames();

2. Print name of each registered driver to the standard output:
for (inti = 0; i < name.length; i++)
System.out.printin(name(i));

-24-

CHAPTER 3, Database Connectivity

getDbDriver

public DbDriver getDbDriver(java.lang.String driverName)
throws java.io.|OException

Description:
Finds driver information by driver name
Parameters:
driverName — driver name as it is specified in profiles.xml file, for example, "Oracle"
Return:
DbDriver object or null if not found
Throws:
java.lang.lOException — if the configuration file cannot be accessed.
Example:

Create ProfileManager instance using default configuration file and obtain instance of Oracle
driver class:

ProfileManager profileManager = ProfileManagerimpl.getinstance();

DbDriver driver = profileManager.getDbDriver ("Oracle");

addDbDriver

public void addDbDriver(DbDriver driver)
throws java.io.lOException

Description:
Registers new JDBC driver or updates registration of an existing one whose name matches.
Parameters:
driver — object of DbDriver calls whose properties describe JDBC driver interface.
Return:
None
Throws:
java.lang.lOException — if the configuration file cannot be accessed.
Usage:

To add a new driver to the configuration file, first create a new DbDriver object, for example,
DbDriver driver = new DbDriver() then call setters of the created DbDriver object to populate its
properties. After that you can call addDbDriver method to add the prepared driver to the
configuration.

-25-

CHAPTER 3, Database Connectivity

Example:

Create a new instance of DbDriver class, set driver properties and register it with the
ProfileManager:

DbDriver driver = newDbDriver();

driver.setName("My DB2 driver version 1.4");
driver.setJdbcDriverType(DbDriver.DB2_TYPE);
driver.setJdbcDriverPath("db2/db2jcc.jar;db2/db2jcc_license_cu.jar");
driver.setJdbcDriverClass("com.ibm.db2.jcc.DB2Driver");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbDriver(driver);

deleteDbDriver

public void deleteDbDriver(java.lang.String driverName)
throws java.io.lOException

Description:
Deletes driver registration from the profiles configuration file.
Parameters:
driverName — driver name, for example, "Oracle"
Return:
None
Throws:
java.lang.|OException — if the configuration file cannot be accessed or written.
Example:

Create ProfileManager instance using default configuration file and unregister database driver
who name is My Oracle Driver:

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.deleteDbDriver("My Oracle Driver");

Database Connection Profile Class

Constructor
public DbProfile()

Description:
Creates new instance of DbProfile class.
Parameters:

None

-26-

CHAPTER 3, Database Connectivity

getName
public java.lang.String getName()

Description:
Returns profile name, for example, "DataWare Server Connection”
Parameters:
None
Return:
Profile name
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

2. Print name of each configured profile to the standard output:
for (inti = 0; i < profileList.size(); i++)
System.out.printin(profileList.get(i).getName());

setName

public void setName(java.lang.String nhame)

Description:
Sets profile name, for example, " DataWare Server Connection".

%Tip: do not confuse profile name with driver name or driver type. Profile name is simply a
descriptive name attached to a set of database connection properties, which you can use later to
refer to a particular database connection.

Parameters:

name — profile name.
Return:

None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("DataWare Server Connection");
profile.setDriverName("OracleDriver");
profile.setJdbcUrl("jdbc:oracle:thin:@MY_BIG_SERVER:1521:0RCL");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

-27-

CHAPTER 3, Database Connectivity

getDriverName

public java.lang.String getDriverName()

Description:

Returns name of registered database driver associated with the specified connection profile. See
Managing Database Drivers topic for more details.

Parameters:
None
Return:
Driver name
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

2. Print driver name of each configured profile to the standard output:
for (inti = 0; i < profileList.size(); i++)
System.out.printin(profileList.get(i).getDriverName());

setDriverName

public void setDriverName(java.lang.String driverName)

Description:
Associates previously registered database driver with this profile.
%Tip: do not confuse profile name with driver name or driver type.
Parameters:

driverName — JDBC driver name. This is the name used with the driver registration. If you use
default configuration file, driver name can be either of the following: OracleDriver, Db2Driver,
MssqlDriver, SybaseDriver.

Return:

None

-28-

CHAPTER 3, Database Connectivity

Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("DataWare Server Connection");
profile.setDriverName("OracleDriver");
profile.setJdbcUrl("jdbc:oracle:thin:@MY_BIG_SERVER:1521:0RCL");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

getJdbcURL
public java.lang.String getJdbcURLY()

Description:
Returns database server connection URL database driver with this profile.
%Tip: do not confuse profile name with driver name or driver type.
Parameters:
None
Return:
Database connection string in URL format
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

2. Print database connection URL of each configured profile to the standard output:
for (inti = 0; i < profileList.size(); i++)
System.out.printin(profileList.get(i).getJdbcURLY());

setJdbcURL
public void setJdbcURL (java.lang.String jdbcURL)

Description:
Sets connection string in JDBC URL format.
Parameters:
jdbcURL — Database connection URL string
%Tip: URL strings are DBMS specific and differ for different drivers, database systems and

communication protocols. Check your JDBC driver documentation for what to put in the JDBC
URL. Use the following formats for TCP/IP based connections using pre-configured JDBC drivers

-20-

CHAPTER 3, Database Connectivity

packaged with DB Audit API:

jdbc:db2://[DB2_server_name]:[port(default — 50000)]/[database_name]
jdbc:sqlserver://[[MSSQL_server_name]:[port(default — 1433)]
jdbc:oracle:thin:@[Oracle_server_name]:[port(default — 1521)]:[sid]
jdbc:sybase:Tds:[Sybase_server_name]:[port(default — 2048)]/[database_name]

See Database Profiles and Connections Setup topic in CHAPTER 1 for more information and for
examples for each supported DBMS type.

Return:
None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("DataWare Server Connection");
profile.setDriverName("OracleDriver");
profile.setJdbcUrl("jdbc:oracle:thin:@MY_BIG_SERVER:1521:0RCL");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

getUsername

public java.lang.String getUsername()

Description:
Returns optional user name saved with the profile.
Parameters:
None
Return:
Connection user name if one is saved with the profile or null otherwise.
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

2. Print user name saved with each configured profile:
for (inti = 0; i < profileList.size(); i++)
if (profileList.get(i).getName() == null)
System.out.printin("<User name not saved>");
else
System.out.printin("User: " + profileList.get(i).getName());

-30-

CHAPTER 3, Database Connectivity

setUsername

public void setUsername(java.lang.String username)

Description:

Sets connection user name. Saving connection names and passwords with a profile is optional. If
saved, connections can be later established using the simple "connect” method without additional
parameters and users don't need to know them. If not saved, they can be provided by users later
at the time of connection, perhaps using some interactive prompt for the user and password
values.

Parameters:

username — User name to be used for the database connection.
Return:

None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("DataWare Server Connection");
profile.setDriverName("OracleDriver");
profile.setJdbcUrl("jdbc:oracle:thin:@MY_BIG_SERVER:1521:0RCL");
profile.setUsername("auditer");

profile.setPassword("secret");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

Example 2:

Create a new instance of DbProfile class, obtain profile for "'DATAWARE" database and update
user and password values for that profile:

ProfileManager profileManager = ProfileManagerimpl.getinstance();
DbProfile profile = profileManager.getDbProfile("Dataware");

profile.setUsername("auditer");
profile.setPassword("secret");

profileManager.deleteDbProfile("Dataware");
profileManager.deleteDbProfile(profile);

getPassword

public java.lang.String getPassword()

Description:

Returns optional password saved with the profile.

-31-

CHAPTER 3, Database Connectivity

Parameters:

None
Return:

Connection password if one is saved with the profile or null otherwise.
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

2. Print password saved with each configured profile:
for (inti = 0; i < profileList.size(); i++)
if (profileList.get(i).getPassword() == null)
System.out.printin("<Password not saved>");
else
System.out.printin("Password: " + profileList.get(i).getPassword());

setPassword

public void setPassword(java.lang.String password)

Description:

Sets connection password. Saving connection names and passwords with a profile is optional. If
saved, connections can be later established using the simple "connect" method without additional
parameters and users don't need to know them when running your application. If not saved, they
can be provided by users later at the time of connection, perhaps using some interactive prompt
for the user and password values.

Parameters:

password — Password to be used for the database connection.
Return:

None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("'DataWare Server Connection");
profile.setDriverName("OracleDriver");
profile.setJdbcUrl("jdbc:oracle:thin:@MY_BIG_SERVER:1521:0RCL");
profile.setUsername("auditer");

profile.setPassword("secret");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

-32-

CHAPTER 3, Database Connectivity

Example 2:

Create a new instance of DbProfile class, obtain profile for "Dataware" database and update user
and password values for that profile:

ProfileManager profileManager = ProfileManagerimpl.getinstance();
DbProfile profile = profileManager.getDbProfile("Dataware");

profile.setUsername("auditer");
profile.setPassword("secret");

profileManager.deleteDbProfile("Dataware");
profileManager.deleteDbProfile(profile);

getRepositoryDatabase
public java.lang.String getRepositoryDatabase()

Description:

Returns name of the repository database used by auditing processes running in the database
server for which the profile is used.

ﬁ!. SQL Server, ASE: This value is only applicable and required for SQL Server and Sybase
ASE systems. In ASE it is only required for data-change auditing. In ASE system auditing
processes always use sybsecurity database.

% Important Note: This returns the name saved using setRepositoryDatabase method. The
current profile settings can be different from effective settings used in previously installed audit
procedures.

Parameters:

None
Return:

Name of the repository database as it is saved wityh the profile.
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

2. Print password saved with each configured profile:
for (inti = 0; i < profileList.size(); i++)
if (profileList.get(i).getName() == null)
System.out.printin("<Password not saved>");
else
System.out.printin("Password: " + profileList.get(i).getName());

setRepositoryDatabase

public void setRepositoryDatabase(java.lang.String repositoryDatabase)

-33-

CHAPTER 3, Database Connectivity

Description:
Saves in the profile settings name of the repository database used by auditing processes.
Parameters:
repositoryDatabase — Name of repository database used to store local audit trail data for the
database server pointed by this profile.

ﬁ!. SQL Server, ASE: This value is only applicable and required for SQL Server and Sybase
ASE systems. In ASE it is only required for data-change auditing. In ASE system auditing
processes always use sybsecurity database.

Return:
None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();
profile.setName("DataWare Server Connection");
profile.setDriverName("MssqlDriver");
profile.setJdbcUrl("jdbc:sglserver://MY_BIG_SERVER:1433");
profile.setRepositoryDatabase("auditdb");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

getConnectionParameter

public java.lang.String getConnectionParameter()

Description:
Returns additional connection parameters associated with the profile.

i Oracle: The only connection parameter supported at this time is SYSDBA connection type
that can be optionally used with Oracle connections.

Parameters:

None
Return:

Additional connection parameters if available or null otherwise
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

-34-

CHAPTER 3, Database Connectivity

2. Print connection parameters saved with each configured profile:
for (inti = 0; i < profileList.size(); i++)
if (profileList.get(i).getConnectionParameter() == null)
System.out.printin("<Not available>");
else
System.out.printin(profileList.get(i).getConnectionParameter());

setConnectionParameter

public void setConnectionParameter(java.lang.String connectionParameter)

Description:
Sets additional connection parameters associated with the profile.

% Oracle: The only connection parameter supported at this time is SYSDBA connection type
that can be optionally used with Oracle connections.

Parameters:

connectionParameter — connection parameter controlling connection type, one of the following:

e null — this is the same as Normal

e Normal
e SYSDBA
e SYSOPER
Return:
None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("Oracle Server Connection");
profile.setDriverName("OracleDriver");
profile.setJdbcUrl("jdbc:oracle:thin@MY_BIG_SERVER:1521:0RCL");
profile.setUsername("sys");

profile.setPassword("secret");
profile.setConnectionParameter("SYSDBA");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com”);

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

isLoggedOnAsSYSDBA
public boolean isLoggedOnAsSYSDBA()

-35-

CHAPTER 3, Database Connectivity

Description:

Returns effective settings for Oracle connection established using an instance of the DBProfile
class.

Parameters:
None
Return:

Returns true if the profile currently connected to an Oracle database using SYSDBA connection
type or false otherwise.

Example:

DbProfile profile = obtain profile referenbce ...;
if (profile.isLoggedOnAsSYSDBA())
... perform some action here ...;
else
System.out.printin("Must be connection as SYSDBA to perform this action");

getDbPath
public java.lang.String getDbPath()

Description:

Returns path to the database server SQLLIB directory associated with the profile. The value
returned is the one previously set using setDbPath method.

i DB2: This method is only applicable to DB2 connections.
Parameters:

None
Return:

DB2's path to SQLLIB directory if previously set using setDBPath method or null otherwise
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

2. Print DB2 path saved with each configured DB2 profile:
for (inti = 0; i < profileList.size(); i++)

{
DbDriver driver = profileManeger.getDbDriver(profileList.get(i).getDriverName());
if (driver.getJdbcDriverType != DbDriver.DB2_TYPE)
System.out.printin("<Not applicable to this database type>");
else
if (profileList.get(i).getDbPath() == null)
System.out.printin("<Path not specified>");
else
System.out.printin(profileList.get(i).getDbPath());
}

-36-

CHAPTER 3, Database Connectivity

setDbPath
public void setDbPath(java.lang.String dbPath)

Description:
Saves in the profile settings path to the DB2 SQLLIB directory on the DB2 server.
Parameters:

dbPath — path to the DB2 SQLLIB directory.

i DB2: This method is only applicable to DB2 connections.
Return:

None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("DataWare Server Connection");
profile.setDriverName("Db2Driver");
profile.setJdbcUrl("jdbc:db2://MY_BIG_SERVER:5000:TOOLS");
profile.setDbPath(*/home/db2/v8/sqllib");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

getMailSender
public java.lang.String getMailSender()

Description:

Retrieves email address of the account used in DB Audit email sending procedures and alerts.
This is the account from which alert emails will be originated. Retuened value is the one saved in
the profile settings using setMailSender method.

% Important Note: This method retrieves current profile settings. These settings can be

different from effective email settings used in previously installed email procedures.
Parameters:

None
Return:

Email address or account name if previously set using setMailSender method or null otherwise.
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

-37-

CHAPTER 3, Database Connectivity

2. Print mail sender address saved with each configured profile:
for (inti = 0; i < profileList.size(); i++)
if (profileList.get(i).getMailSender() == null)
System.out.printin("<Email sender not saved>");
else
System.out.printin("Email sender: " + profileList.get(i).getMailSender());

setMailSender

public void setMailSender(java.lang.String mailSender)

Description:

Saves in the profile settings email address of the account for use in DB Audit email sending
procedures and alerts. This is the account from which alert emails will be originated.

% Important Note: This method simply updates the profile settings. In order to update effective
email settings in already installed email procedures you must execute the
installDBAuditMailSendingSQLProcedure method which is described in CHAPTER 4, System
Audit Management

Parameters:

mailSender — email address or name recognized by your email server.
Return:

None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("DataWare Server Connection®);
profile.setDriverName("OracleDriver");
profile.setddbcUrl("jdbc:oracle:thin@MY_BIG_SERVER:1521:0RCL");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

getMailServer
public java.lang.String getMailServer()
Description:

Retrieves name or IP address of the email server as it was saved in the profile settings using
setMailServer method.

% Important Note: This method retrieves current profile settings. These settings can be
different from effective email settings used in previously installed email procedures.
Parameters:

mailServer — network computer name or IP address of your email server.

-38-

CHAPTER 3, Database Connectivity

Return:
None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("DataWare Server Connection");
profile.setDriverName("OracleDriver");
profile.setddbcUrl("jdbc:oracle:thin@MY_BIG_SERVER:1521:0RCL");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

setMailServer

public void setMailServer(java.lang.String mailServer)

Description:

Saves in the profile settings name or IP address of the email server for use in DB Audit email
sending procedures and alerts.

% Important Note: This method simply updates the profile settings. In order to update effective
email settings in already installed email procedures you must execute the
installDBAuditMailSendingSQLProcedure method which is described in CHAPTER 4, System
Audit Management

Parameters:

mailServer — network computer name or IP address of your email server.
Return:

None
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("DataWare Server Connection");
profile.setDriverName("OracleDriver");
profile.setddbcUrl("jdbc:oracle:thin@MY_BIG_SERVER:1521:0RCL");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

getMailPassword

public java.lang.String getMailPassword()

-30-

CHAPTER 3, Database Connectivity

Description:
Retrieves email password saved in the profile settings using setMailPassword method.

% Important Note: This method retrieves current profile settings. These settings can be
different from effective email settings used in previously installed email procedures.

%Tip: Email password is typically not required when using email server in the same network
domain.

Parameters:
None

Return:

Email password if previously set using setMailPassword method or null otherwise.
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

2. Print mail password saved with each configured profile:
for (inti = 0; i < profileList.size(); i++)
if (profileList.get(i).getMailPassword() == null)
System.out.printin("<Email password not saved>");
else
System.out.printin("Email password: " + profileList.get(i).getMailPassword());

setMailPassword

public void setMailPassword(java.lang.String mailPassword)

Description:

Saves in the profile settings email password of the account for use in DB Audit email sending
procedures and alerts. This is the account from which alert emails will be originated.

%Tip: Email password is typically not required when using email server in the same network
domain.

% Important Note: This method simply updates the profile settings. In order to update effective
email settings in already installed email procedures you must execute the
installDBAuditMailSendingSQLProcedure method which is described in CHAPTER 4, System
Audit Management

Parameters:
mailPassword — email password required by your email server for email sender authentication.
Return:

None

-40-

CHAPTER 3, Database Connectivity

Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("DataWare Server Connection");
profile.setDriverName("OracleDriver");
profile.setJdbcUrl("jdbc:oracle:thin:@MY_BIG_SERVER:1521:0RCL");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");
profile.setMailPassword("secret")

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

Managing and Using Database Profiles

getDbProfileList

public java.util.List getDbProfileList()
throws java.io.lOException

Description:

Returns alphabetically sorted list of database profiles from profiles.xml file.
Parameters:

None.
Return:

List of DbProfile objects sorted by profile name
Throws:

java.lang.IOException — if the configuration file cannot be accessed.
Example:

1. Create ProfileManager instance using default configuration file and obtain list of configured
database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
java.util.List profileList = profileManager.getDbProfileList();

2. Print name of each configured profile to the standard output:
for (inti = 0; i < profileList.size(); i++)
System.out.printin(profileList.get(i).getName());

getDbProfileNames

public String[] getDbProfileNames()
throws java.io.lOException

Description:
Returns string array of database profile names from profiles.xml file.
Parameters:

None.

-41-

CHAPTER 3, Database Connectivity

Return:

Array of profile names
Throws:

java.lang.IOException — if the configuration file cannot be accessed.
Example:

1. Create ProfileManager instance using default configuration file and obtain names of
configured database connection profiles:
ProfileManager profileManager = ProfileManagerimpl.getinstance();
String name([] = profileManager.getDbProfileNames();

2. Print name of each configured profile to the standard output:
for (inti=0; i < name.length; i++) System.out.printin(name[l]);

getDbProfile

public DbProfile getDbProfile(java.lang.String profileName)
throws java.io.lOException

Description:
Finds and returns database profile information by its name
Parameters:
profileName — profile name
Return:
DbProfile object or null if not found
Throws:

java.lang.lOException — if the configuration file cannot be accessed.

addDbProfile

public void addDbProfile(DbProfile profile)
throws java.io.lOException

Description:
Creates a new database profile or updates an existing one whose name matches.
Parameters:

profile — database profile object with completed properties. Properties password, connection type
and repositoryDatabase are optional.

Return:

None
Throws:

java.lang.|OException — if the configuration file cannot be accessed or written.
Usage:

To add a new profile to the configuration file, first create a new DbProfile object, for example,
DbProfile driver = new DbProfile() then call setters of the created DbProfile object to populate its
properties. After that you can call addDbProfile method to add the prepared profile to the

-42-

CHAPTER 3, Database Connectivity

configuration.
Example:

Create a new instance of DbProfile class, set profile properties and register it with the
ProfileManager:

DbProfile profile = newDbProfile();

profile.setName("My DB2 Profile");

profile.setDriverName("Db2Driver");
profile.setddbcUrl("jdbc:db2://MY_BIG_SERVER:50000/DATAWARE");
profile.setMailServer("smtp.my-email-server.com");
profile.setMailSender("db_audit@my-company.com");

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.addDbProfile(profile);

deleteDbProfile

public void deleteDbProfile(java.lang.String profileName)
throws java.io.|OException

Description:
Deletes database profile if it can be found by its name
Parameters:
profileName — profile name
Return:
None
Throws:
java.lang.lOException — if the configuration file cannot be accessed or written.
Example:

Delete profile with the name "Dataware":

ProfileManager profileManager = ProfileManagerimpl.getinstance();
profileManager.deleteDbProfile("Dataware");

createDbConnect

public DbConnect createDbConnect(java.lang.String profileName)
throws java.io.lOException

Description:

Creates new DbConnectimpl object and initializes it with the data from the given profile. The
returned object is effectively prepared for establishing a new database connection.

Parameters:
profileName — profile name
Return:

DbConnectimpl object

-43-

CHAPTER 3, Database Connectivity

Throws:

java.lang.|OException — if the configuration file cannot be accessed or written.

Default Configuration Generator Class

Overview

The DefaultConfigGenerator class can be used to generate default configuration file profiles.xml
using preconfigured driver settings for Oracle, DB2, Microsoft SQL Server and Sybase database
drivers and also create 1 profile for each named database system. The full class name is
com.softtreetech.dbaudit.DefaultConfigGenerator.

To create default configuration file simply create an instance of DefaultConfigGenerator class, for
example:

DefaultConfigGenerator dcg = new DefaultConfigGenerator();

Database Connectivity Class

Overview
Database connectivity class encapsulates all database connectivity functions for all supported
database systems and provides single DbConnect object for interfacing with the database.

The full class name is com.softtreetech.com.dbaudit.DbConnect for the class declaration and
com.softtreetech.com.dbaudit.DbConnectimpl for the class implementation.

Connecting/Disconnecting to/from Database

connect

public void connect(java.lang.String username, java.lang.String password)
throws java.lang.ClassNotFoundException, java.sql.SQLException

Description:
Establishes new connection, if it does not already exist
Parameters:

username — username to be used. If null, then the saved user name from profile settings is used
for the new connection.

password — password to be used. If null, then the saved password from profile settings is used for
the new connection.

Return:

None

-44-

CHAPTER 3, Database Connectivity

Throws:
java.lang.ClassNotFoundException — if the JDBC driver could not be loaded
java.sgl.SQLException — if a connection error occurs

Example:

/I connect to database

DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

/I Do something here

/I disconnect when done

con.disconnect();

disconnect

public void disconnect()
throws java.sgl.SQLException

Description:

Disconnects from the database.
Parameters:

None
Return:

None
Throws:

java.sgl.SQLException — if an error occurs.
Example:

/I connect to database

DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

/I Do something here

/I disconnect when done

con.disconnect();

Testing Connection
Using the console interface, run the following:
java -jar dbaudit.jar /D profileName [/U user] [/P password] /T

User and password are optional If not specified on the command line the console will use values
saved with the profile.

-45-

CHAPTER 3, Database Connectivity

Using the API functions methods, code the following:

try {
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("profileName");
/I also can use DbConnect con = new DbConnectimpl("profileName", db_type) method
con.connect("user", "password");
con.disconnect();

catch (Exception e) {
System.out.printin("Cannot connect. " + e.getMessage());
}

User and password values are optional. If null value is specified for the user the DbConnect class will
use values saved with the profile.

Using Connection

1. Create an instance of type DbConnect class:
DbConnect connection = new DbConnectimpl("My Profile", "DB2");
or using driver type independent method

DbConnect connection = ProfileManagerimpl.getinstance().createDbConnect("My Profile");

2. Connect to database:
connection.connect("username”, "password");

or for a sysdba connection in Oracle

nwon

connection.connect("username”,

non

password”, "sysdba");

3. Run required SQL commands using available JDBC methods, for example, any of the
following standard JDBC methods can be used:

ResultSet connection.executeQuery(String sql) — to execute a query that returns a
ResultSet. For more information see Java documentation for executeQuery method.

int connection.executeUpdate(String sql) — to execute an update-like query that doesn't
return a result set. For more information see Java documentation for executeUpdate method.

int connection.execute(String sql) — to execute an arbitrary query having or not having a
ResultSet. For more information see Java documentation for executeUpdate method.

For example,

connection.execute("ALTER SESSION SET TIME_ZONE="05:00");

%Tip: The DbConnectimpl class exposes many additional "execute" like methods which are
extended the 3 base methods listed above and provide convenient way to execute query with
parameters, queries of specific SQL types and more. Their names and their parameter names are self-
explanatory. These methods are documented in the JavaDocs files provided with the DB Audit API
library.

-46-

CHAPTER 3, Database Connectivity

Getting Connection Information

isConnected

public boolean isConnected()

Description:

Reports current connection state.
Parameters:

None
Return:

true if connected and false otherwise
Example:

void MyFunction(DbConnect con)

if (con.isConnected())
/I ... execute some commands here ...

else
System.out.printin("Not connected to the database");

checkConnected

public void checkConnected()
throws lllegalStateException

Description:

Checks current connection state and throws exception if not connected to the
database

Parameters:

None
Return:

None
Throws:

java.lang.lllegalStateException — if not connected to the database
Example:

void MyFunction(DbConnect con)

try {

con.checkConnected();
/I ... execute some commands here ...

}

catch (Exception e) {
System.out.println("Not connected to the database");
}

-47-

CHAPTER 3, Database Connectivity

getDbVersion

public DbVersion getDbVersion()
throws java.sql.SQLException

Description:

Reports version of the database the object is connected to.
Parameters:

None
Return:

DbVersion object containing database version info.
Throws:

java.lang.SQLException — if an error occurs.
Example:

/I connect to database

DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

/I check Oracle version. If version 10g or later run Text of SQL Queries report

DbVersion ver = con.getDbVersion();

if (ver.isSameOrLater("10.0"))

{
Reports reports = ReportsFactory.getReportsinstance(con, null, null);
reports.doTextOfSQLQueriesReport("SCOTT", null, null, null);

}

else

{ . . . N
System.out.printin("SQL Queries report is not supported in this version");

}

/I disconnect from database
con.disconnect();

getDbProfile
public DbProfile getDbProfile()
Description:
Returns database profile info associated with the current connection.
Parameters:
None
Return:

DbProfile object

Example:
void MyFunction(DbConnect con)
{
/I print name of the profile associated with the connection
System.out.printin("Connected to " + con.getDbProfile().getName());
}

-48-

CHAPTER 3, Database Connectivity

getDbDriver
public DbDriver getDbDriver()
Description:
Returns database driver info associated with the current connection.
Parameters:
None
Return:

DbDriver object

Example:
void MyFunction(DbConnect con)
{
/I print name of the database driver associated with the connection
System.out.printin("Using database driver " + con.getDbDriver().getName());
}

getConnection
public java.sgl.Connection getConnection()
Description:

Returns JDBC native database connection object associated with the current connection. If the
database is connected, the returned object can be used to execute various operations in that
database.

Parameters:
None
Return:

java.sgl.Connection object

Example:

ResultSet MyFunction(DbConnect con)

{
/I obtain reference to internal JDBC connection class
Connection jdbcCon = con.getConnection();
/I ... do something with this connection here ...
/I ... for example, execute a SELECT query and return the created ResultSet object
Statement stmt = jdbcCon.createStatement();
return stmt.executeQuery("SELECT * FROM v$parameters");

}

repositoryUsed

public boolean repositoryUsed()

-49-

CHAPTER 3, Database Connectivity

Description:

Reports whether the connected database server type requires a repository database to store audit
data.

Parameters:

None
Return:

Return true if repository is supported and false otherwise
Example:

void MyFunction(DbConnect con)

if (con.repositoryUsed())
System.out.printin(""We need a repository for this database type");
else
System.out.printin(""We don't need a repository for this database type");

-50-

CHAPTER 4, System Audit Management

CHAPTER 4, System Audit Management

Class Hierarchy

The following diagram demonstrates internal hierarchy of DB Audit classes used for system audit
management tasks. All described classes are part of com.softtreetech.dbaudit.auditsetup.system
package. As you can see on the diagram, the system audit setup is based on single common interface
while specific implementations are provided to perform DBMS specific audit setups.

AuditSetupSystemCommon
interface class

. R I

[AuditSetupSystemOracle] AuditSetupSystemDB2

Oracle interface class DB2 interface class

v v

[AuditSetupSystemOraclelmpI] AuditSetupSystemDB2Impl

A 4 h 4

AuditSetupSystemSybase AuditSetupSystemMssq|
Sybase interface class MS SQL Server interface class

v !

AuditSetupSystemSybaselmpl AuditSetupSystemMssglimpl]

System audit classes and their hierarchy

The highlighted classes provide DBMS specific implementations. Use them with direct Java interface
or RMI-based Java interface. Note that the DB Audit command line interface hides all internal class
complexity and provides flat keyword based interface. In case if you use the direct Java interface or
RMI-based Java interface be sure to instantiate the correct classes when attempting to execute
database-system specific audit setups or make changes in the existing configuration.

The following topics describe methods for performing DBMS specific system audit manegement tasks.
For reader's convenience, all available methods are organized in task-oriented groups. Each topic
describes method's specification, parameters and return values, and also includes code samples
demonstrating how to call these methods.

-51-

CHAPTER 4, System Audit Management

Parameter Names and Values

ﬁ“ Important notes for using DB Audit command line interface :

Be sure to enclose any parameter names and values containing spaces in double quotes. If
you do not do that, the Operation System will pass each word as a separate parameter or
parameter value. This in turn will lead to incorrect results.

For example, if you want to install system auditing in DB2 to audit all DDL schema changes,
you need to specify Object Drop and Create as the name of the operation to audit. The
simplified syntax for this command is

java -jar dbaudit.jar /D db2ProfileName [/U user] [/P password] /A /F
mode:installSysAudit;operations:<OPERATIONS>;optionWhen:<OPTION_WHEN>

Note that everything after the /F command line switch (the text in bold) is a single command
line parameter which contains certain keywords and their values. Therefore if you enter it
without quotes as in the below example

java -jar dbaudit.jar /D db2ProfileName /A /F mode:installSysAudit;operations:Object
Drop and Create;optionWhen:ALWAYS

you are going to have problems because DB Audit will receive 8 command line parameter
values:

/D

db2ProfileName

/A

IF

mode:installSysAudit;operations:Object

Drop

and

Create;optionWhen:ALWAYS

instead of the required 5 parameter values:

/D

db2ProfileName

IA

IF

mode:installSysAudit;operations:Object Drop and Create;optionWhen:ALWAYS

The correct command in this case is (the following must be entered on a single line)

java -jar dbaudit.jar /D db2ProfileName /A /F "mode:installSysAudit;operations:Object Drop
and Create;optionWhen:ALWAYS"

All commands and parameter names are cAskE SeNsltlvE

Semicolon symbol is used as keyword and parameter separator. Use of semicolon in
parameter values is not supported!

-52-

CHAPTER 4, System Audit Management

Oracle System Audit Management Tasks

Set System Audit State

Install System Audit

Oracle system audit is a native feature of Oracle databases that is installed with the Oracle server.
There is no need to install or uninstall any additional programs or procedures and that is why DB Audit

See "System audit trail management" topic in chapter 3 of DB Audit User's Guide for information on
how to activate and deactivate Oracle system audit processes.

DB Audit provides several methods that can be used to enhance the default Oracle auditing and
ensure the default system auditing is manageable. For more information, see the following topics:

Configure and Manage Alternative Audit Trail

Install/Uninstall Oracle SYS Operations Audit
Move SYS.AUD$ Table to Non-SYSTEM tablespace

Install/Uninstall Server Errors Auditing and Alerting

Uninstall System Audit

Oracle system audit is a native feature of Oracle databases that is installed with the Oracle server and
cannot be uninstalled.

In case if you want to disable the system auditing see "System audit trail management" topic in
chapter 3 of DB Audit User's Guide for information on how to activate and deactivate Oracle system
audit processes.

Use the methods described in Uninstall Audit Repository Objects topic to uninstall both the system
audit and data-change audit objects and other options and enhancements that you have previously
installed using DB Audit APl or DB Audit GUI.

% Important Notes: The "uninstall" method completely removes DB Audit from the database, it
removes all previously installed audit settings, stored procedures and tables including data-change
audit trail tables and triggers and also removes DB_AUDIT schema and user. The "uninstall" method
does not remove Oracle native system audit trail tables.

Using the console interface

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F mode:uninstallAudit

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

-53-

CHAPTER 4, System Audit Management

Example uninstallation (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F "mode:uninstallAudit "

Using the API functions
void auditSetup.uninstallAudit();

Throws:
java.sqgl.SQLException — if an error occurs.
Parameters:

None

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Uninstall DB Audit tables, procedures, schema and user
auditSetup.uninstallAudit();

Enable System Audit

To enable DB Audit compatible auditing you will need to set the AUDIT_TRAIL=DB parameter in the
Oracle instance parameters INIT.ORA file and then restart the instance because this parameter is not
settable dynamically. On UNIX systems this file is normally located in the ‘dbs’ subdirectory under the
ORACLE_HOME directory. On Windows systems this file is named INITORCL.ORA and it is normally
located in the ‘Database’ subdirectory under the ORACLE_HOME directory. In Oracle versions 9i and
later the instance parameters file is located in [ORACLE_HOMEN\admin\ORCL\pfile directory.

% Important Notes: The Error Audit and SYSDBA/SYSOPER Operations Audit are independent
processes that are not affected by this method. See Install/Uninstall Server Errors Auditing and
Alerting and Install/Uninstall Oracle SYS Operations Audit topics for information on how to manage
these system audit methods options.

Disable System Audit

To disable the system auditing you will need to set the AUDIT_TRAIL=FALSE parameter in the Oracle
instance parameters file and then restart the instance because this parameter is not settable
dynamically.

% Important Notes: The Error Audit and SYSDBA/SYSOPER Operations Audit are independent
processes that are not affected by this method. See Install/Uninstall Server Errors Auditing and
Alerting and Install/Uninstall Oracle SYS Operations Audit topics for information on how to manage
these system audit methods options.

-54-

CHAPTER 4, System Audit Management

Set Audit Operations and Filters

Add SQL Statement Audit

This method turns on auditing of particular SQL operation types such as ALTER TABLE, DELETE,
SELECT and so on. For easy of use Oracle groups different types of SQL operations. For example, to
audit security related operations such as GRANT and REVOKE for a table, view or snapshot, use
GRANT TABLE group. The following table can be used as reference for available SQL Statement
Type names. See "Tables of Auditing Options" topic in the Oracle SQL Reference for a complete list of
SQL Statement Type names supported by your Oracle server version.

You can call this method multiple types adding different operation types with different options and

filters as required.

SQL Statement Type

Comments

ALL

Audit all statements. This option is exclusive. If you specify ALL, do
not specify any other group.

ALTER SEQUENCE

ALTER SEQUENCE

ALTER TABLE ALTER TABLE
CLUSTER CREATE CLUSTER
AUDIT CLUSTER
DROP CLUSTER
TRUNCATE CLUSTER
COMMENT TABLE COMMENT ON TABLE table, view, snapshot, procedure, function,

package
COMMENT ON COLUMN table.column, view.column,
snapshot.column

DATABASE LINK

CREATE DATABASE LINK
DROP DATABASE LINK

DELETE TABLE

DELETE FROM table, view

DIRECTORY

CREATE DIRECTORY
DROP DIRECTORY

EXECUTE PROCEDURE

Execution of any procedure or function or access to
any variable, library, or cursor inside a package.

GRANT DIRECTORY

GRANT privilege ON directory
REVOKE privilege ON directory

GRANT PROCEDURE

GRANT privilege ON procedure, function, package
REVOKE privilege ON procedure, function, package

GRANT SEQUENCE GRANT privilege ON sequence
REVOKE privilege ON sequence
GRANT TABLE GRANT privilege ON table, view, snapshot.
REVOKE privilege ON table, view, snapshot
GRANT TYPE GRANT privilege ON TYPE
REVOKE privilege ON TYPE
INDEX CREATE INDEX

ALTER INDEX

-55-

CHAPTER 4, System Audit Management

DROP INDEX

INSERT TABLE

INSERT INTO table, view

LOCK TABLE

LOCK TABLE table, view

NOT EXISTS

All SQL statements that fail because a specified object does not
exist.

PROCEDURE

CREATE FUNCTION
CREATE LIBRARY
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
DROP FUNCTION

DROP LIBRARY

DROP PACKAGE

DROP PROCEDURE

PROFILE

CREATE PROFILE
ALTER PROFILE
DROP PROFILE

PUBLIC DATABASE LINK

CREATE PUBLIC DATABASE LINK
DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM

CREATE PUBLIC SYNONYM
DROP PUBLIC SYNONYM

ROLE

CREATE ROLE
ALTER ROLE
DROP ROLE
SET ROLE

ROLLBACK SEGMENT

CREATE ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

SELECT SEQUENCE

Any statement containing sequence.CURRVAL or
sequence.NEXTVAL

SELECT TABLE SELECT FROM table, view, snapshot
SEQUENCE CREATE SEQUENCE
DROP SEQUENCE
SESSION Logons and logouts
SYNONYM CREATE SYNONYM

DROP SYNONYM

SYSTEM AUDIT

AUDIT (SQL Statements)
NOAUDIT (SQL Statements)

SYSTEM GRANT

GRANT (System Privileges and Roles)
REVOKE (System Privileges and Roles)

TABLE

CREATE TABLE
DROP TABLE
TRUNCATE TABLE

TABLESPACE

CREATE TABLESPACE
ALTER TABLESPACE
DROP TABLESPACE

-56-

CHAPTER 4, System Audit Management

TRIGGER CREATE TRIGGER

ALTER TRIGGER with ENABLE and DISABLE options

DROP TRIGGER

ALTER TABLE with ENABLE ALL TRIGGERS or DISABLE ALL
TRIGGERS clauses

TYPE CREATE TYPE
CREATE TYPE BODY
ALTER TYPE

DROP TYPE

DROP TYPE BODY

UPDATE TABLE UPDATE table, view

USER CREATE USER
ALTER USER
DROP USER

VIEW CREATE VIEW
DROP VIEW

Using the console interface

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
"mode:addOracleStatements;statements:<STATEMENTS>;users:<USERS>;optionBy:<BY
OPTION>;optionWhen:<WHEN OPTION>"

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<STATEMENTS> — required. Comma-separated list of SQL Statement Types supported by your
version of the Oracle database. For the reference .

<BY OPTION> — One of the following values: BY ACCESS, BY SESSION

BY ACCESS causes the audit system to insert one record into the audit trail for each
execution of an auditable operation — this is the default and most commonly used option.

BY SESSION causes the audit system to insert only one record in the audit trail, for each
user and schema object, during the session that includes an audited action, even though the
user executes the same operation for the same object multiple times.

<WHEN OPTION> — optional. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement. This is the default option.

-57-

CHAPTER 4, System Audit Management

<USERS> — optional. Comma-separated list of database user names. If no specified then all
users are audited.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F "mode:addOracleStatements;statements:SYSTEM
AUDIT,SYSTEM GRANT,TABLE;users:TESTUSER, TESTUSER1,
optionBy:BY ACCESS;optionWhen:ALWAYS"

Using the API functions

void auditSetup.addAuditStatements(String[] sqlStatements, String[] users, String optionBy, String
optionWhen);

Throws:

java.sgl.SQLException — if an error occurs.

Parameters:

sqlStatements — String array of SQL Statement Types supported by your version of the Oracle
database. Consult your Oracle documentation for details. See "Tables of Auditing Options" topic
in the Oracle SQL Reference.

optionBy — One of the following values: BY ACCESS, BY SESSION

BY ACCESS causes the audit system to insert one record into the audit trail for each
execution of an auditable operation — this is the most commonly used option.

BY SESSION causes the audit system to insert only one record in the audit trail, for each
user and schema object, during the session that includes an audited action, even though the
user executes the same operation for the same object multiple times.

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

users — String array of database user names.

Example:

1.

Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

Add Oracle statement audits for 3 types of statements and 2 users
auditSetup.addAuditStatements({"SYSTEM AUDIT", " SYSTEM GRANT","TABLE"},
{* TESTUSER", "TESTUSER1"},
"BY ACCESS", "ALWAYS");

-58-

CHAPTER 4, System Audit Management

Remove SQL Statement Audit

This method turns off auditing of particular SQL operation types. See Add SQL Statement Audit topic
for more information.

You can call this method multiple types removing auditing of different operation types with different
options and filters as required.

Using the console interface

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
"mode:removeOracleStatements;statements:<STATEMENTS>;users:<USERS>;optionBy:<BY
OPTION>;optionWhen:<WHEN OPTION>"

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<STATEMENTS> — required. Comma-separated list of SQL Statement Types supported by your
version of the Oracle database. Consult your Oracle documentation for details. See "Tables of
Auditing Options" topic in the Oracle SQL Reference.

<BY OPTION> — required. One of the following values: BY ACCESS, BY SESSION

BY ACCESS causes the audit system to insert one record into the audit trail for each
execution of an auditable operation — this is the default and most commonly used option.

BY SESSION causes the audit system to insert only one record in the audit trail, for each
user and schema object, during the session that includes an audited action, even though the
user executes the same operation for the same object multiple times.

<WHEN OPTION> — optional. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement. This is the default option.

<USERS> - optional. Comma-separated list of database user names. If not specified then
ALL_USERS option is assumed.

-50-

CHAPTER 4, System Audit Management

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
"mode:removeOracleStatements;statements:SYSTEM AUDIT, SYSTEM
GRANT, TABLE;users:TESTUSER,TESTUSER1;0ptionBY:

BY ACCESS;optionWhen:ALWAYS"

Using the API functions

void auditSetup.removeAuditStatements(String[] sqlStatements, String[] users, String optionBy, String
optionWhen);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

sqlStatements — String array of SQL Statement Types supported by your version of the Oracle
database. Consult your Oracle documentation for details. See "Tables of Auditing Options" topic
in the Oracle SQL Reference.

optionBy — One of the following values: BY ACCESS, BY SESSION

BY ACCESS causes the audit system to insert one record into the audit trail for each
execution of an auditable operation — this is the most commonly used option.

BY SESSION causes the audit system to insert only one record in the audit trail, for each
user and schema object, during the session that includes an audited action, even though the
user executes the same operation for the same object multiple times.

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

users — String array of database user names.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Remove Oracle statement audits for 3 types of statements and 2 users
auditSetup.addAuditStatements({"SYSTEM AUDIT", " SYSTEM GRANT","TABLE"},
{* TESTUSER", "TESTUSER1"},
"BY ACCESS", "ALWAYS");

Add Object Access Audit

This method turns on access auditing for a specific database object or group of objects. This is similar
to using SQL Statement Audit with an audit scope limited to specific objects. See Add SQL Statement
Audit topic for more information on supported operation types.

-60-

CHAPTER 4, System Audit Management

You can call this method multiple types adding different operation types with different options and
filters as required.

Using the console interface

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
"mode:addOracleObjects;objects:<OBJECTS>;operations:<OPERATIONS>;optionBy:<BY
OPTION>;optionWhen:<WHEN OPTION>"

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

< OBJECTS > - required. Comma-separated list of fully qualified object names such as table
names, view, etc., including schema names.

< OPERATIONS > — required. Comma-separated list of SQL Statement Types supported by your
version of the Oracle database. Consult your Oracle documentation for details.

<BY OPTION> — optional. One of the following values: BY ACCESS, BY SESSION

BY ACCESS causes the audit system to insert one record into the audit trail for each
execution of an auditable operation — this is the default and most commonly used option.

BY SESSION causes the audit system to insert only one record in the audit trail, for each
user and schema object, during the session that includes an audited action, even though the
user executes the same operation for the same object multiple times.

<WHEN OPTION> — optional. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement. This is the default option.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
"mode:addOracleObjects;objects:DEMO.EMPLOYEE,DEMO.DEPT;operations:DELETE,
UPDATE; optionBy:BY ACCESS;optionWhen:ALWAYS"

Using the API functions
void auditSetup.addAuditObjects(String[] objects, String[] operations, String optionBy, String

-61-

CHAPTER 4, System Audit Management

optionWhen);

Throws:

java.sgl.SQLException — if an error occurs.

Parameters:

objects — String array of fully qualified object names such as table names, view names, etc.
Specified names should be fully qualified and include schema name.

operations — String array of SQL Statement Types supported by your version of the Oracle
database. Consult your Oracle documentation for details.

optionBy — One of the following values: BY ACCESS, BY SESSION

BY ACCESS causes the audit system to insert one record into the audit trail for each
execution of an auditable operation — this is the most commonly used option.

BY SESSION causes the audit system to insert only one record in the audit trail, for each
user and schema object, during the session that includes an audited action, even though the
user executes the same operation for the same object multiple times.

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

Example:

1.

Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");

con.connect("user", "password");

Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

Add Object Access Audits for 2 objects and 2 operation types
auditSetup.addAuditObjects({"DEMO.EMPLOYEE", "DEMO.DEPT"},
{* DELETE", " UPDATE"},
"BY ACCESS", "ALWAYS");

Remove Object Access Audit

This method turns off access auditing for specific database objects. See Add Object Access Audit
topic for more information.

You can call this method multiple types removing auditing for different objects with different options
and filters as required.

Using the console interface

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F "mode:
removeOracleObjects;objects:<OBJECTS>;operations:<OPERATIONS>;optionWhen:<WHEN
OPTION>"

-62-

CHAPTER 4, System Audit Management

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

< OBJECTS > - required. Comma-separated list of fully qualified object names such as table
names, view names, etc. Specified names should be fully qualified and include schema name.

< OPERATIONS > — required. Comma-separated list of SQL Statement Types supported by your
version of the Oracle database. Consult your Oracle documentation for details.

<BY OPTION> — optional. One of the following values: BY ACCESS, BY SESSION

BY ACCESS causes the audit system to insert one record into the audit trail for each
execution of an auditable operation — this is the default and most commonly used option.

BY SESSION causes the audit system to insert only one record in the audit trail, for each
user and schema object, during the session that includes an audited action, even though the
user executes the same operation for the same object multiple times.

<WHEN OPTION> — optional. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement. This is the default option.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
"mode:removeOracleObjects;objects: DEMO.EMPLOYEE,DEMO.DEPT;operations:DELETE,
UPDATE; optionWhen:ALWAYS"

Using the API functions
void auditSetup.removeAuditObjects(String[] objects, String[] operations, String optionWhen);

Throws:
java.sql.SQLException — if an error occurs.
Parameters:

objects — String array of fully qualified object names such as table names, view, etc., including
schema names.

operations — String array of SQL Statement Types supported by your version of the Oracle

-63-

CHAPTER 4, System Audit Management

database. Consult your Oracle documentation for details.
optionBy — One of the following values: BY ACCESS, BY SESSION

BY ACCESS causes the audit system to insert one record into the audit trail for each
execution of an auditable operation — this is the most commonly used option.

BY SESSION causes the audit system to insert only one record in the audit trail, for each
user and schema object, during the session that includes an audited action, even though the
user executes the same operation for the same object multiple times.

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Remove Object Access Audits for 2 objects and 2 operation types
auditSetup.removeAuditStatements({"DEMO.EMPLOYEE", "DEMO.DEPT"},
{" DELETE", " UPDATE"}, ALWAYS");

Add Session Audit

This method turns on auditing of database logons and logoffs. The result is identical to result of adding
SQL Statement Audit using SESSION as the operation type for all database users.

Using the console interface

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
"mode:addOracleSession;optionWhen:<WHEN OPTION>"

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<WHEN OPTION> — optional. One of the following values: WHENEVER SUCCESSFUL,

-64-

CHAPTER 4, System Audit Management

WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement. This is the default option.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
"mode:addOracleSession;optionWhen:WHENEVER NOT SUCCESSFUL"

Using the API functions
void auditSetup.addAuditSession(String optionWhen);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Add Oracle sessions audit for failed connection attempts
auditSetup.addAuditSession ("WHENEVER NOT SUCCESSFUL");

Remove Session Audit

This method turns off auditing of database logons and logoffs. See Add Session Audit topic for more
information.

Using the console interface

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
"mode:removeOracleSession;optionWhen:<WHEN OPTION>"

-65-

CHAPTER 4, System Audit Management

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<WHEN OPTION> — optional. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement. This is the default option.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
"mode:removeOracleSession;optionWhen:WHENEVER NOT SUCCESSFUL"

Using the API functions

void auditSetup.removeAuditSession(String optionWhen);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile™);

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Remove Oracle sessions audit for failed connection attempts
auditSetup.removeAuditSession ("WHENEVER NOT SUCCESSFUL");

-66-

CHAPTER 4, System Audit Management

Configure Alternative Audit Trail

For information about available alternative audit trail tables and when and how to use them, read
CHAPTER 3 in DB Audit User's Guide. The process description and manual installation steps are
described in "Configuring Advanced Options for Oracle" topic, in section "Audit Method and Storage."

%Tips:

e Installation of the alternative audit trial tables does not automatically create audit trail data
transfer job. You should schedule this job after successfully installing audit trail tables. See
next topic for more information on how to schedule such job.

e Uninstallation of the alternative audit trial tables does not automatically remove the scheduled
audit trail data transfer job. You should remove that job before uninstalling the alternative
audit tables. See next topic for more information on how to remove that job.

Install/Uninstall Oracle Alternative Audit Trail
Using the console interface
To install the alternative audit trail:

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
mode:installAlternativeAudit;tablespaces:<TABLE TABLESPACE>,<INDEX TABLESPACE>

To uninstall the alternative audit trail and revert back to system default tables:

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F mode:uninstallAlternativeAudit

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<TABLE TABLESPACE> — required. Name of the tablespace to use for audit trail tables.

<INDEX TABLESPACE> - required. Name of the tablespace to use for audit trail indexes.

-67-

CHAPTER 4, System Audit Management

Example installation:

1. Install alternative audit trail tables, views and procedures (the following must be entered on a
single line):
java -jar dbaudit.jar /D oracleProfileName /A /F
mode:installAlternativeAudit;tablespaces:AUDIT_TABLES,AUDIT_INDEXES

2. Now schedule the audit trail data transfer job (the following must be entered on a single line):
java -jar dbaudit.jar /D oracleProfileName /A /F
mode:scheduleAlternativeDataTransferJob;interval:5;timeUnit:minutes

Example uninstallation:

1. Remove the data transfer job (the following must be entered on a single line):
java -jar dbaudit.jar /D oracleProfileName /A /F
mode:removeScheduledAlternativeDataTransferJob

2. Drop alternative audit trail tables, views and procedures (the following must be entered on a
single line):
java -jar dbaudit.jar /D oracleProfileName /A /F mode:uninstallAlternativeAudit

Using the API functions
To install the alternative audit trail use:

void auditSetup.installAlternativeAudit(String tableTableSpace, String indexTableSpace);

To uninstall the alternative audit trail and revert back to system default tables use:

void auditSetup.uninstallAlternativeAudit();

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:
tableTableSpace — name of the tablespace to use for audit trail tables.

indexTableSpace — name of the tablespace to use for audit trail indexes.

Example installation:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Install alternative audit trail tables, views and procedures
auditSetup.installAlternativeAudit("AUDIT_TABLES", "AUDIT_INDEXES");

4. Now schedule the audit trail data transfer job
auditSetup.scheduleAlternativeDataTransferJob(new Schedule(5, Schedule.MINUTE));

-68-

CHAPTER 4, System Audit Management

Example uninstallation:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Remove the data transfer job
auditSetup.removeAlternativeDataTransferJob();

4. Drop alternative audit trail tables, views and procedures
auditSetup.uninstallAlternativeAudit();

Schedule/Remove Oracle Alternative Data Transfer Job
Using the console interface

To schedule new the alternative audit trail data transfer job or update frequency of an already
scheduled job:

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
mode:scheduleAlternativeDataTransferJob;interval:<SCHEDULE
INTERVAL>;timeUnit:<SCHEDULE TIME UNIT>

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<SCHEDULE INTERVAL> — required. Schedule interval (job frequency expressed as an integer
number)

<SCHEDULE TIME UNIT> — required. Schedule frequency unit of measure. Must one of the
following values: minutes, hours, days.

To remove the alternative audit trail data transfer job:

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
mode:removeScheduledAlternativeDataTransferJob

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

-69-

CHAPTER 4, System Audit Management

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example job scheduling (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
mode:scheduleAlternativeDataTransferJob;interval:5;timeUnit:minutes

Example job removal (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
mode:removeScheduledAlternativeDataTransferJob

Using the API functions

To schedule new the alternative audit trail data transfer job or update frequency of an already
scheduled job:

Schedule schedule = new Schedule(long interval, int timeUnit);
void auditSetup.scheduleAlternativeDataTransferJob(Schedule schedule);

Throws:
java.sqgl.SQLException — if an error occurs.
Parameters:
interval — schedule job frequency expressed either in hours, minutes or in seconds.

timeUnit — schedule frequency unit of measure, use constants available in Schedule class:
Schedule.MINUTE, Schedule.HOUR, Schedule.DAY.

schedule — an instance of Schedule class.

To remove the alternative audit trail data transfer job:

void auditSetup.removeAlternativeDataTransferJob();
Throws:

java.sgl.SQLException — if an error occurs.
Parameters:

None

Example installation:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile™);

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

-70-

CHAPTER 4, System Audit Management

3. Install alternative audit trail tables, views and procedures
auditSetup.installAlternativeAudit("AUDIT_TABLES", "AUDIT_INDEXES");

4. Now schedule the audit trail data transfer job
auditSetup.scheduleAlternativeDataTransferJob(new Schedule(5, Schedule.MINUTE));

Example uninstallation:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile™);

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Remove the data transfer job
auditSetup.removeAlternativeDataTransferJob();

4. Drop alternative audit trail tables, views and procedures
auditSetup.uninstallAlternative Audit();

Set Advanced Audit Options

Install/Uninstall Oracle SYS Operations Audit

Methods described in this topic can be used to install tables and procedures for auditing privileged
users connected as SYSDBA or SYSOPER. For more information about auditing of privileged users in
Oracle read topic "Auditing Privileged Users connected as SYSDBA or SYSOPER" in CHAPTER 3 of
DB Audit User's Guide.

% Important Note: The described below methods only install/uninstall DB Audit's infrastructure for
auditing privileged users, they do not set or unset Oracle's parameter AUDIT_SYS_OPERATIONS =
TRUE in the initialization parameters file [INIT.ORA]. This is a static parameter. It cannot be set
dynamically using the ALTER SYSTEM command. The database must be bounced for the parameter
change to take effect.

Using the console interface
To install the SYS operations audit trail tables and procedures:

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
mode:installSYSOperationsAudit;dirName:<DIRECTORY NAME>

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

-71-

CHAPTER 4, System Audit Management

<DIRECTORY NAME> — required. Full name of the server directory into which the audit trail files
are written

To uninstall the SYS operations audit trail tables and procedures:

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
mode:uninstallSYSOperationsAudit

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example installation (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
"mode:installSYSOperationsAudit;dirName:/oracle/rdbms/audit"

Example uninstallation:

java -jar dbaudit.jar /D oracleProfileName /A /F "mode:uninstallSYSOperationsAudit"

Using the API functions
To install the SYS operations audit trail tables and procedures:

void auditSetup.installSYSOperationsAudit(String dirName);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

dirName — full name of the server directory into which the audit trail files are written

To uninstall the SYS operations audit trail tables and procedures:

void auditSetup.uninstallSY SOperationsAudit();

Throws:

java.sgl.SQLException — if an error occurs.

-72-

CHAPTER 4, System Audit Management

Parameters:

None

Example installation:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Install SYS audit trail tables, views and procedures
auditSetup.installSYSOperationsAudit("/oracle/rdbms/audit");

Example uninstallation:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile™);

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Drop SYS audit trail tables, views and procedures
auditSetup.uninstallSYSOperationsAudit();

Install/Uninstall Server Errors Auditing and Alerting
Methods described in this topic can be used to install and uninstall auditing of database errors with
optional real-time email alerts.

% Important Note: In order to use the real-time email alerting option with the Oracle server errors
audit you must have DB Audit mail sending SQL procedure installed as described in the previous
topic.

Using the console interface
To install the server errors audit:

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
mode:installServerErrorsAudit;recipient:<RECIPIENT_EMAIL>;cc:<CC>;errors:<ERRORS>;

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

-73-

CHAPTER 4, System Audit Management

<RECIPIENT_EMAIL> — optional. Email address of the recipient or email group where to email
real-time error alerts. If not specified, errors are only logged to the audit trail table, but the email
alert is not sent.

<CC> — optional. Email CC address of the recipient or email group where to email real-time error
alerts. Do not specify this parameter if CC is not required.

<ERRORS> — optional. Comma-separated list of error numbers used as a filter for the error
auditing. Error numbers here are the same that Oracle uses for system errors recorded in the alert
log and other places, typically in ORA-nnnnn format. If specified, only numeric values must be
used. If not specified, then all errors are captured.

To uninstall the server errors audit:

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
mode:uninstallServerErrorsAudit

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example installation (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
"mode:installServerErrorsAudit;recipient:dba_group@mycompany.org;
errors:1303,54,60,1000,1113"

Example uninstallation:

java -jar dbaudit.jar /D oracleProfileName /A /F "mode:uninstallServerErrorsAudit”

Using the API functions
To install the server errors audit objects:

void auditSetup.installTriggerForMonitoringErrors(String recipient, String cc, String errors);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

recipient — Email address of the recipient or email group where to email real-time error alerts.

-74-

CHAPTER 4, System Audit Management

If null is specified, errors are only logged to the audit trail table, but the email alert is not sent.

cc — Email CC address of the recipient or email group where to email real-time error alerts.
Use null value if CC is not required.

errors. Comma-separated list of error numbers used as a filter for the error auditing. Error
numbers here are the same that Oracle uses for system errors recorded in the alert log and
other places, typically in ORA-nnnnn format. To capture all errors specify null value for this
parameter.

To uninstall the server errors audit objects:

void auditSetup.uninstallTriggerForMonitoringErrors();

Throws:

java.sgl.SQLException — if an error occurs.

Parameters:

None

Example installation:

1.

Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

Install mail sending procedure
auditSetup.installDBAuditMailSendingSQLProcedure(null);

Install errors audit log table and trigger
auditSetup.installTriggerForMonitoringErrors("dba_group@mycompany.org", null,
"1303,54,60,1000,1113");

Example uninstallation:

1.

Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

Uninstall errors audit log table and trigger
auditSetup.uininstallTriggerForMonitoringErrors();

Move SYS.AUDS$ Table to Non-SYSTEM tablespace

This method can be used to move system audit trail table SYS.AUD$ from the SYSTEM tablespace to
a user-defined tablespace. This is needed to prevent situation with the SYSTEM tablespace being
filled up with potentially devastating effects on the database access and availability. For more details
read “Moving Oracle native system audit trail table out of the SYSTEM tablespace” topic in CHAPTER

-75-

CHAPTER 4, System Audit Management

3, System Auditing in the DB Audit User’s Guide.

Using the console interface

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A
mode:moveSysAudit;tablespace:<TABLESPACE>

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<TABLESPACE> - required. Name of the tablespace to which you want to move SYS.AUD$
table. Note that the same tablespace is used for both table data and table indexes.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D oracleProfileName /A /F
"mode:moveSysAudit;tablespace:AUDIT_TABLES"

Using the API functions
void auditSetup.moveSysAudOracle(String tableTableSpace, String indexTableSpace);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:
tableTableSpace — name of the tablespace to which you want to move SYS.AUDS$ table.

indexTableSpace — name of the tablespace to which you want to move SYS.AUDS$ table indexes.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Move AUDS$ table to AUDIT_DATA and AUDIT_INDEXES tablespaces
auditSetup.moveSysAudOracle("AUDIT_DATA", "AUDIT_INDEXES");

-76-

CHAPTER 4, System Audit Management

Informational Methods

Get System Audit Status

Using the console interface
java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F mode:isSysAuditRunning

This will print current audit enabled/disabled status to the console

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D oracleProfileName /A /F "mode:isSysAuditRunning"

Using the API functions
boolean auditSetup.isSysAuditRunning();

This returns 'true' if the audit is currently enabled and ‘false' otherwise.

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

None

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile™);

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOraclel)AuditSetupSystemCommon.getinstance(con);

3. Get system audit status
boolean auditRunning = auditSetup.isSysAuditRunning();
if (lfauditRunning)
/I run report ...
else
/I print error message ...

-77-

CHAPTER 4, System Audit Management

Install DB Audit Mail Sending SQL Procedure

DB Audit mail sending procedure is used in real-time email alerts that can be sent by both system
audit trail and data-change audit trail processes.

Using the console interface

java -jar dbaudit.jar /D oracleProfileName [/U user] [/P password] /A /F
mode:installDBAuditMailSendingSQLProcedure

Parameters:

oracleProfileName — required. Name of an existing database connection profile configured for an
Oracle database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D oracleProfileName /A /F mode:installDBAuditMailSendingSQLProcedure

Using the API functions
void auditSetup.installDBAuditMailSendingSQLProcedure(String tablespaceDB2);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

tablespaceDB2 — this parameter is not used with Oracle and must be passed as a null value.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Oracle Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemOracle class
AuditSetupSystemOracle auditSetup =
(AuditSetupSystemOracle)AuditSetupSystemCommon.getinstance(con);

3. Install mail sending procedure
auditSetup.installDBAuditMailSendingSQLProcedure(null);

-78-

CHAPTER 4, System Audit Management

Microsoft SQL Server System Audit Management Tasks

Set System Audit State

Install System Audit

ﬁ“ Important Notes: Before you run the DB Audit installation method for Microsoft SQL Server,
make sure you have xp_dbaudit.dll file copied to your [SQL Server home]\Binn directory manually
or programmed this step as part of your audit installation procedures. To copy this file you can use
available operation system commands or other appropriate methods. The direct location of the BINN
directory depends on your SQL Server version and installation path. The standard directory path for
default SQL Server 2000 instance is C:\Program Files\Microsoft SQL Server\MSSQL\Binn. The
standard directory path for default SQL Server 2005 instance is C:\Program Files\Microsoft SQL
Server 2005\MSSQL.1\Binn.

Three versions of the xp_dbaudit.dll are provided with the API:

e Aversion for SQL Server 32-bit running on 32-bit Windows system. This file can be found in
the DB Audit API [db_audit_api_home]\sqlserver directory.

e Aversion for SQL Server 64-bit running on 64-bit Windows system based on AMDG64 or Intel
EM64 and compatible processors with x86 instruction set. This file can be found in the DB Audit
API [db_audit_api_home]\sqlserver\64\x86 directory.

e Aversion for SQL Server 64-bit running on 64-bit Windows system based on Intel ltanuim
processors and IA64 instruction set. This file can be found in the DB Audit API
[db_audit_api_home]\sqlserver\64\IA64 directory.

Make sure to install the correct version of the DLL. Failure to do so will prevent the startup of the
auditing process.

The following table describes operation types, which can be audited in SQL Server.

Operation Type Comments

All This is a catch-all name that can be used to
enable or disable auditing of all operation types
listed in this table.

Login (failed) Indicates that a login attempt to SQL Server from
a client failed.

Login (successful) Occurs when a user successfully logs in to SQL
Server.

Logout Occurs when a user logs out of SQL Server.

Error Indicates that error events have been logged in
the SQL Server error log.

Exception Indicates that an exception has occurred in SQL
Server.

Privileged Operation (CREATE/DROP/etc...) Occurs when a statement permission (such as
CREATE TABLE) is used.

Schema Object Access Occurs when an object permission (such as

-79-

CHAPTER 4, System Audit Management

SELECT) is used, both successfully or
unsuccessfully.

Schema Object Derived Permission

Occurs when a CREATE, ALTER, and DROP
object commands are issued.

Backup/Restore Occurs when a BACKUP or RESTORE command
is issued.
DBCC Occurs when DBCC commands are issued.

Grant/Deny/Revoke Privilege

Occurs every time a GRANT, DENY, REVOKE
for a statement permission is issued by any user
in SQL Server.

Grant/Deny/Revoke Object Access

Occurs every time a GRANT, DENY, REVOKE
for an object permission is issued by any user in
SQL Server.

Grant/Deny/Revoke Login

Occurs when a Microsoft Windows login right is
added or removed; for sp_grantlogin,
sp_revokelogin, and sp_denylogin.

Login Properties Change

Occurs when a property of a login, except
passwords, is modified; for sp_defaultdb and
sp_defaultlanguage.

Login Password Change

Occurs when a SQL Server login password is
changed. Passwords are not recorded.

Role Password Change

Occurs when a password of an application role is
changed.

Add/Drop Login

Occurs when a SQL Server login is added or
removed; for sp_addlogin and sp_droplogin.

Add/Remove Login to Server Role

Occurs when a login is added or removed from a
fixed server role; for sp_addsrvrolemember, and
sp_dropsrvrolemember.

Add Database User

Occurs when a login is added or removed as a
database user (Windows or SQL Server) to a
database; for sp_grantdbaccess,
sp_revokedbaccess, sp_adduser, and
sp_dropuser.

Add/Drop Role Member

Occurs when a login is added or removed as a
database user (fixed or user-defined) to a
database; for sp_addrolemember,
sp_droprolemember, and sp_changegroup.

Add/Drop Role

Occurs when a login is added or removed as a
database user to a database; for sp_addrole and
sp_droprole.

Tracing Settings Change

Occurs when trace modifications are made using
SQL Profiler or stored procedures.

Using the console interface

-80-

CHAPTER 4, System Audit Management

java -jar dbaudit.jar /D mssqlProfileName [/U user] [/P password] /A /F
mode:installSysAudit;operations:<OPERATIONS>;optionWhen:<OPTION_WHEN>;databases:
<DATABASES>;logins:<LOGINS>;0sUsers:<OS_USERS>;dbusers:<DB_USERS>;osDomains:
<OS_DOMAINS>;hosts:<HOSTS>;applications:<APPLICATIONS>;objects:<OBJECTS>;query:
<QUERY>;auditSysObjects:<AUDIT_SYS_OBJECTS>;topLevel:
<AUDIT_TOP_LEVEL_QUERIES_ONLY>;ignoreSQLAgent:<IGNORE_SQL_AGENT>;
queueSize:<QUEUE_SIZE>

Parameters:

mssqlProfileName — required. Name of an existing database connection profile configured for a
SQL Server database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<OPERATIONS> - required. Comma-separated list of types of operations to audit. The names of
the supported operation types are listed in the Operations table in the beginning of this topic.

% Important Notes:

e "All" is an exclusive type that cannot be used along with other. This is a special
type that means auditing of all types of operations occurring in the database
server.

e Operation type names must be entered exactly as they appear in the table.

<WHEN OPTION> — required. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

<DATABASES> — optional. Comma-separated list of databases to audit. Used as an audit time
filter. If not specified, all databases are audited.

% Important Note: Certain operation types affecting the entire server are always audited
regardless of the database filter.

<LOGINS> — optional. Comma-separated list of login names to audit. Used as an audit time filter.
If not specified, all logins are audited.

<OS_USERS> - optional. Comma-separated list of network user names to audit. This parameter
is used as an audit time filter. If not specified, all users are audited.

<DB_USERS> — optional. Comma-separated list of database user hames to audit. This parameter
is used as an audit time filter. If not specified, all users are audited.

<0OS_DOMAINS> — optional. Comma-separated list of network domain names whose users to
audit. This parameter is used as an audit time filter. If not specified, all domain users are audited.

-81-

CHAPTER 4, System Audit Management

<HOSTS> — optional. Comma-separated list of connecting computer names to audit (as they
appear in the HostName column returned by sp_who2 system stored procedure). This parameter
is used as an audit time filter. If not specified, all connections from all workstations are audited.

<APPLICATIONS> — optional. Comma-separated list of application names to audit (as they
appear in the ProgramName column returned by sp_who2 system stored procedure). This
parameter is used as an audit time filter. If not specified, all applications are audited.

<OBJECTS> - optional. Comma-separated list of object names to audit. Specified names should
be fully qualified and include schema name. This parameter is used as an audit time filter. If not
specified, all objects are audited with an additional filtering controlled by
<AUDIT_SYS_OBJECTS> and <AUDIT_TOP_LEVEL_QUERIES_ONLY> parameters.

<QUERY> — optional. A substring that must be present in queries to audit. This parameter is used
as an audit time filter.

<AUDIT_SYS_OBJECTS> — optional. One of the following values: yes, no. The default value is
"yes" meaning that access to system catalog objects is also audited.

<AUDIT_TOP_LEVEL_QUERIES_ONLY> — optional. One of the following values: yes, no. The
default value is "no" meaning to all queries are subject to auditing including queries executed from
within stored procedures, triggers and other code objects.

<IGNORE_SQL_AGENT> — optional. One of the following values: yes, no. The default value is
"yes" meaning that special "keep alive" queries sent to the database every few seconds by the
SQL Agent service need not be audited.

<QUEUE_SIZE> — optional. Audit queue size. Default value is 2

Examples (the following must be entered on a single line):

java -jar dbaudit.jar /D mssglProfileName /A /F "mode:installSysAudit;operations:
Grant/Deny/Revoke Privilege,Grant/Deny/Revoke Object Access,Grant/Deny/Revoke Login,Login
Properties Change,Login Password Change,Role Password Change,Add/Drop
Login,Add/Remove Login to Server Role,Add Database User,Add/Drop Role Member,Add/Drop
Role;optionWhen:ALWAYS;"

Using the API functions

API: void auditSetup.installSysAudit(String[] operations, String globalOptions, String[] databases,
String logins[], String[] osUsers, String[] users, String[] osDomains, String[] hosts,
String[] applications, String[] objects, String query, boolean auditSysObjects,
boolean topLevel, boolean ignoreSQLAgent, int queueSize);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

operations — String array of types of operations to audit. The names of the supported operation
types are listed in the Operations table in the beginning of this topic.

* Important Notes:

e "All"is an exclusive type that cannot used with other. In this context. This is a
special item that means auditing of all types of operations occurring in the
database server.

e Operation type names must be entered exactly as they appear in the list above.

-82-

CHAPTER 4, System Audit Management

globalOptions — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

databases — String array of databases to audit. This parameter is used as an audit time filter. If
null used for the parameter value, all databases are audited.

% Important Note: Certain operation types affecting the entire server are always audited
regardless of the database filter.

logins — String array of login names to audit. This parameter is used as an audit time filter. If null
used for the parameter value, all logins are audited.

osUsers — String array of network user names to audit. This parameter is used as an audit time
filter. If null used for the parameter value, all users are audited.

users — String array of database user names to audit. This parameter is used as an audit time
filter. If null used for the parameter value, all users are audited.

osDomains — String array of network domain names whose users to audit. This parameter is used
as an audit time filter. If null used for the parameter value, all domain users are audited.

hosts — String array of connecting computer names to audit (as they appear in the HostName
column returned by sp_who2 system stored procedure). This parameter is used as an audit time
filter. If null used for the parameter value, all connections from all workstations are audited.

applications — String array of application names to audit (as they appear in the ProgramName
column returned by sp_who2 system stored procedure). This parameter is used as an audit time
filter. If null used for the parameter value, all applications are audited.

objects — String array of object names to audit for access. This parameter is used as an audit time
filter. If null used for the parameter value, all objects are audited with an additional filtering
controlled by <AUDIT_SYS_OBJECTS> and <AUDIT_TOP_LEVEL_QUERIES_ONLY>
parameters.

query — A substring that must be present in queries to audit. This parameter is used as an audit
time filter.

auditSysObjects — true or false. True value means that access to system catalog objects is also
audited.

topLevel — true or false. False value means that all queries are subject to auditing including
queries executed from within stored procedures, triggers and other code objects.

ignoreSQLAgent — true or false. True value means that special "keep alive" queries sent to the
database every few seconds by the SQL Agent service need not be audited.

queueSize — Audit queue size. Should be always set to 2.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My MSSQL Profile");

con.connect("user", "password");

-83-

CHAPTER 4, System Audit Management

2. Create an instance of the AuditSetupSystemMssql class
AuditSetupSystemMssql auditSetup =
(AuditSetupSystemMssql)AuditSetupSystemCommon.getinstance(con);

3. Install mail sending procedure
auditSetup.installSysAudit({ "Grant/Deny/Revoke Privilege",

"Grant/Deny/Revoke Object Access",
"Grant/Deny/Revoke Login",
"Login Properties Change",
"Login Password Change",
"Role Password Change",
"Add/Drop Login,Add/Remove Login to Server Role",
"Add Database User,Add/Drop Role Member",
"Add/Drop Role"}, "ALWAYS", null, null, null, null,
null, null, null, null, null, false, false, true, 2);

Uninstall System Audit

Use the methods described in Uninstall Audit Repository Objects topic to uninstall both the system
audit and data-change audit objects and other options and enhancements that you have previously
installed using DB Audit API or DB Audit GUI.

% Important Notes: The "uninstall" method completely removes DB Audit from the database, it
removes all previously installed audit settings, stored procedures and tables in the repository database
including data-change audit trail tables and triggers and also removes db_audit schema, user and
login. The "uninstall* method does not remove xp_dbaudit.dll file from the operation system. You
should delete this file using available operation system commands or advise users how to delete that
file manually.

Enable System Audit

The auditing is enabled immediately after the installation. No special actions are required to enable it.

In case if the audit has been disabled using methods described in the Disable System Audit topic you
can enable it again by re-executing system audit installation method but without installation of any
additional files. See the Install System Audit topic for more details.

Disable System Audit

ﬁ“ Important Note: This method removes previously installed audit stored procedures but does not
remove audit settings and audit trail tables. Therefore, it effectively stops the auditing but keeps all the
data and settings in place. In case if you want to enable the auditing later you can rerun the installation
method and it will pickup all retained settings.

Using the console interface

java -jar dbaudit.jar /D mssqlProfileName [/U user] [/P password] /A /F mode:disableSysAudit

-84-

CHAPTER 4, System Audit Management

Parameters:

mssqlProfileName — required. Name of an existing database connection profile configured for a
SQL Server database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D mssqlProfileName /A /F "mode:disableSysAudit"

Using the API functions
void auditSetup.disableSysAudit();

Throws:

java.sgl.SQLException — if an error occurs.
Parameters:

None
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My MSSQL Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemMssql class
AuditSetupSystemMssql auditSetup =
(AuditSetupSystemMssql)AuditSetupSystemCommon.getinstance(con);

3. Disable system audit
auditSetup.disableSysAudit();

Set Audit Operations and Filters

Update Audit Operations

This method updates current audit configuration, setting which database operations to audit. This
method is more efficient then reinstalling the entire audit configuration and related procedures using
Uninstall then Install methods. For more information on supported audited operation types, see Install

System Audit topic.

Using the console interface

java -jar dbaudit.jar /D mssqlProfileName [/U user] [/P password] /A /F
mode:updateAuditOperations;operations:<OPERATIONS>

-85-

CHAPTER 4, System Audit Management

Parameters:

mssqlProfileName — required. Name of an existing database connection profile configured for a
SQL Server database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<OPERATIONS> — required. List of database operation types to audit. See Install System Audit
topic for detalils.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D mssqlProfileName /A /F "mode:updateAuditOperations;operations:
Grant/Deny/Revoke Privilege,Grant/Deny/Revoke Object Access,Grant/Deny/Revoke Login,Login
Properties Change,Login Password Change,Role Password Change,Add/Drop
Login,Add/Remove Login to Server Role,Add Database User,Add/Drop Role Member,Add/Drop
Role;"

Using the API functions
void auditSetup.updateAuditOperations(String[] operations);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

operations — String array of database operation types to audit. See Install System Audit topic for
details.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My MSSQL Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemMssql class
AuditSetupSystemMssql auditSetup =
(AuditSetupSystemMssql)AuditSetupSystemCommon.getinstance(con);

3. Update audit settings
auditSetup.updateAuditOperations({ "Grant/Deny/Revoke Privilege",

"Grant/Deny/Revoke Object Access",
"Grant/Deny/Revoke Login",
"Login Properties Change",
"Login Password Change",
"Role Password Change",
"Add/Drop Login,Add/Remove Login to Server Role",
"Add Database User,Add/Drop Role Member",
"Add/Drop Role"});

-86-

CHAPTER 4, System Audit Management

Update Audit Filters

This method updates current audit configuration, setting audit filters. This method is more efficient then
reinstalling the entire audit configuration and related procedures using Uninstall/Install methods. For
more information on supported audit filters see Install System Audit topic.

Using the console interface

java -jar dbaudit.jar /D mssqlProfileName [/U user] [/P password] /A /F mode:updateAuditFilters;
optionWhen:<OPTION_WHEN>;databases:<DATABASES>;logins:<LOGINS>;osUsers:
<OS_USERS>;dbusers:<DB_USERS>;0sDomains:<OS_DOMAINS>;hosts:<HOSTS>;
applications:<APPLICATIONS>;objects:<OBJECTS>;query:<QUERY>;auditSysObijects:
<AUDIT_SYS_OBJECTS>;topLevel:<AUDIT_TOP_LEVEL_QUERIES_ONLY>;
ignoreSQLAgent:<IGNORE_SQL_AGENT>;

Parameters:

All parameters are the same as for Install System Audit. See Install System Audit topic for details.

The following parameters are optional. Not specified parameters are assumed as not used for
filtering: <OPTION_WHEN>, <DATABASES>, <LOGINS>, <OS_USERS>, <DB_USERS>,
<OS_DOMAINS>, <HOSTS>, <APPLICATIONS>, <OBJECTS>, <QUERY> .

The following parameters are required and must be provided on the command line:
<AUDIT_SYS OBJECTS>, <AUDIT_TOP_LEVEL QUERIES_ONLY>,
<IGNORE_SQL_AGENT>

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D mssqlProfileName /A /F "mode:
updateAuditFilters;logins:sa,john,peter;applications:SQL Query
Analyzer;auditSysObjects:yes;topLevel:no;ignoreSQLAgent:yes"

Using the API functions

void auditSetup.updateAuditFilters(String globalOptions, String[] databases, String logins[],
String[] osUsers, String[] users, String[] domains, String[] hosts,
String[] applications, String[] objects, String query, boolean auditSysObjects,
boolean topLevel, boolean ignoreSQLAgent);

Throws:
java.sqgl.SQLException — if an error occurs.
Parameters:

All parameters are the same as for Install System Audit. See Install System Audit topic for details.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My MSSQL Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemMssql class
AuditSetupSystemMssql auditSetup =
(AuditSetupSystemMssql)AuditSetupSystemCommon.getinstance(con);

-87-

CHAPTER 4, System Audit Management

3. Update audit settings
auditSetup.updateAuditFilters("ALWAYS", null, { "sa", "john", "peter"}, null, null,
null, null, {"SQL Query Analyzer"}, null, null, false, false, true);

Set Advanced Audit Options

Update Audit Queue Size

This method updates current audit configuration, setting audit queue size. This method is more
efficient then reinstalling the entire audit configuration and related procedures using Uninstall/Install
methods.

% Important Note: The default queue size is 2. This value should not be changed unless you are
running audit in a very busy database and the auditing processes heavily affect the database
performance.

Using the console interface

java -jar dbaudit.jar /D mssqlProfileName [/U user] [/P password] /A /F
mode:updateAuditQueueSize;queueSize:<QUEUE_SIZE>

Parameters:

mssqlProfileName — required. Name of an existing database connection profile configured for a
SQL Server database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<QUEUE_SIZE> - required. New audit event queue size. Normally this parameter should be
always set to 2.

Example:
java -jar dbaudit.jar /D mssqlProfileName /A /F "mode:updateAuditQueueSize;queueSize:2"

Using the API functions

void auditSetup.updateQueueSize(int queue_size);

Throws:
java.sqgl.SQLException — if an error occurs.
Parameters:

queue_size — New audit event queue size. Normally this parameter should be always set to 2.

-88-

CHAPTER 4, System Audit Management

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My MSSQL Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemMssql class
AuditSetupSystemMssql auditSetup =
(AuditSetupSystemMssqgl)AuditSetupSystemCommon.getinstance(con);

3. Update audit settings
auditSetup.updateQueueSize(2);

Informational Methods

Get Current Audit Settings

Methods described in this topic can be used to obtain audit settings stored in the repository database.
These methods provide an alternative to the use of "Get Global Audit Settings" report. They are
specific to the Microsoft SQL Server environment while the mentioned report is generic and can be
used with multiple database systems

Using the console interface

java -jar dbaudit.jar /D mssqlProfileName [/U user] [/P password] /A /F
mode:getAuditSettings;showFilters:<SHOW_FILTERS>

Parameters:

mssqlProfileName — required. Name of an existing database connection profile configured for a
SQL Server database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<SHOW_FILTER> — required. Supported values: yes, no. If 'yes', both audited operation types
and audit-time filters are printed to the console; if 'no' only audited operation types are printed to
the screen. . For a list of operation type names see description of <OPERATIONS> parameter in
Install System Audit topic in Microsoft SQL Server System Audit Management section of this
chapter. In the same topic you can also find descriptions of supported audit filters.

Return:

XML formatted string containing separate elements for each audited operation type, audit queue
size, and if filters are requested a separate element for each filter.

Example:

java -jar dbaudit.jar /D mssqlProfileName /A /F mode:getAuditSettings;showFilters:yes

-89-

CHAPTER 4, System Audit Management

Using the API functions
String auditSetup.getAuditSettings(boolean showFilters);

Returns:

Depending on the value of the showFilters parameter this method returns either both audited
operation types and audit-time filters or only audited operation types. The result is a XML
formatted string containing separate elements for each audited operation type, audit queue size,
and if filters are requested a separate element for each filter.

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

All parameters are the same as for Install System Audit. See Install System Audit topic for details.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My MSSQL Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemMssql class
AuditSetupSystemMssql auditSetup =
(AuditSetupSystemMssql)AuditSetupSystemCommon.getinstance(con);

3. Get audit settings and filters
String settings = auditSetup.getAuditSettings (true);

Get System Audit Status
Using the console interface
java -jar dbaudit.jar /D mssqlProfileName [/U user] [/P password] /A /F mode:isSysAuditRunning

This will print current audit enabled/disabled status to the console

Parameters:

mssqlProfileName — required. Name of an existing database connection profile configured for a
SQL Server database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D mssqlProfileName /A /F "mode:isSysAuditRunning"

-90-

CHAPTER 4, System Audit Management

Using the API functions
boolean auditSetup.isSysAuditRunning();

This returns 'true' if the audit is currently enabled and ‘false' otherwise.

Throws:

java.sgl.SQLException — if an error occurs.
Parameters:

None
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My MSSQL Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemMssql class
AuditSetupSystemMssql auditSetup =
(AuditSetupSystemMssqgl)AuditSetupSystemCommon.getinstance(con);

3. Get system audit status
boolean auditRunning = auditSetup.isSysAuditRunning();
if (lauditRunning)
/' run report ...
else
/I print error message ...

Install DB Audit Mail Sending SQL Procedure

DB Audit mail sending procedure is used in real-time email alerts that can be sent by both system
audit trail and data-change audit trail processes.

Using the console interface

java -jar dbaudit.jar /D mssqlProfileName [/U user] [/P password] /A /F
mode:installDBAuditMailSendingSQLProcedure

Parameters:

mssqlProfileName — required. Name of an existing database connection profile configured for a
SQL Server database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D mssqlProfileName /A /F mode:installDBAuditMailSendingSQLProcedure

-91-

CHAPTER 4, System Audit Management

Using the API functions
void auditSetup.installDBAuditMailSendingSQLProcedure(String tablespaceDB2);

Throws:

java.sqgl.SQLException — if an error occurs.
Parameters:

tablespaceDB2 — this parameter is not used with SQL Server and must be passed as a null value.
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My MSSQL Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemMssql class
AuditSetupSystemMssql auditSetup =
(AuditSetupSystemMssqgl)AuditSetupSystemCommon.getinstance(con);

3. Install mail sending procedure
auditSetup.installDBAuditMailSendingSQLProcedure(null);

Sybase SQL Server and ASE System Audit Management
Tasks

Set System Audit State

Install System Audit

Sybase SQL Server and ASE system audit is a native feature of Sybase databases that is installed
with the sybsecurity system database using SQL scripts provided with your version of the Sybase
database server in documented in the Database Administration manuals.

DB Audit provides several methods that can be used to enhance the default Sybase auditing and
ensure the default system auditing is manageable. For more information, see the following topics:

Add New System Audit Trail Table

Update Audit Queue Size

Attach Threshold Procedures

Set 'Suspend Audit When Device Full' Status

Uninstall System Audit

Sybase system audit repository and procedures are native features of Sybase databases that are
installed with the sybsecurity database.

-92-

CHAPTER 4, System Audit Management

Use the methods described in Uninstall Audit Repository Objects topic to uninstall the additional
options and enhancements that you have previously installed using DB Audit APl or DB Audit GUI.

% Important Notes: The "uninstall" method completely removes DB Audit from the database, it
removes all previously installed audit settings, DB Audit stored procedures and tables including data-
change audit trail tables and triggers and also removes db_audit schema and user. The "uninstall"
method does not remove Sybase native system audit trail tables.

Enable System Audit

This method turns on system auditing using previously configured audit settings and options. Note that
auditing settings and scope can be changed at any time, regardless of whether the auditing is enabled
or disabled.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F mode:enableSysAudit

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D sybaseProfileName /A /F "mode:enableAudit "

Using the API functions
void systemAudit.enableSystemAudit();

Throws:
java.sqgl.SQLException — if an error occurs.
Parameters:

None

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

-03-

CHAPTER 4, System Audit Management

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Enable system audit
auditSetup.enableAudit();

Disable System Audit

This method turns off system auditing but does not remove audit settings and audit trail tables.
Therefore, it effectively stops the auditing but keeps all the data and settings in place. In case if you
want to enable the auditing later you can use the method described in Enable System Audit topic and
that method will pickup all retained settings.

Using the console interface
java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F mode:disableSysAudit

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F "mode:disableSysAudit"

Using the API functions
void auditSetup.disableSysAudit();

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

None

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

-94-

CHAPTER 4, System Audit Management

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Disable system audit
auditSetup.disableSysAudit();

Set Audit Operations and Filters

Add Server-level Operations Audit

This method turns on auditing of particular SQL operation types affecting the entire server, such as
LOGINS, DISK operations (DISK INIT etc...), SERVER BOOTS, SECURITY and so on.

You can call this method multiple types adding different operation types with different options as
required.

The following tables describe server-wide operation types, which can be audited in different Sybase
versions.

Versions prior to 11.5

Operation Type Comments

ALL This is a catch-all name that can be used to enable or disable
auditing of all operation types listed in this table.

LOGINS (failed) Enables or disables auditing of failed login attempts by all
users.

LOGINS (successful) Enables or disables auditing of successful login attempts by all
users.

LOGOUTS Enables or disables auditing of all logouts from the server,

including unintentional logouts such as dropped connections.

SERVER BOOTS Enables or disables generation of an audit record when the
server is rebooted.

RPC CONNECTIONS Enables or disables auditing of failed RPC connection attempts

(failed) (whenever a user from another host connects to the local
server to run a procedure via a remote procedure call)

RPC CONNECTIONS Enables or disables auditing of successful RPC connection

(successful) attempts (whenever a user from another host connects to the
local server to run a procedure via a remote procedure call)

ROLES (failed) Enables or disables auditing of failed attempts to use of the set
role command to turn roles on and off.

ROLES (successful) Enables or disables auditing of successful attempts to use of
the set role command to turn roles on and off.

PRIVILEGED ROLES Enables or disables auditing of failed attempts to use of the set

(failed) role command to turn sa/sso/oper role on and off.

PRIVILEGED ROLES Enables or disables auditing of failed attempts to use of the set

(successful) role command to turn sa/sso/oper role on and off.

ERRORS Enables or disables auditing of user session errors.

-905-

CHAPTER 4, System Audit Management

FATAL ERRORS

Enables or disables auditing of user session fatal errors (errors
that break the user’s connection to the server and require the
client program to be restarted)

ADHOC RECORDS

Enables or disables usage of sp_addauditrecord command
(sp_addauditrecord allows users to send text to the audit trail)

Version 11.5 and 12.x

Operation Type

Comments

ALL This is a catch-all name that can be used to enable or disable
auditing of all operation types listed in this table.

LOGINS Enables or disables auditing of login attempts by all users.

LOGOUTS Enables or disables auditing of all logouts from the server,

including unintentional logouts such as dropped connections.

RPC CONNECTIONS

Enables or disables auditing of RPC connection attempts
(whenever a user from another host connects to the local
server to run a procedure via a remote procedure call)

ERRORS Enables or disables auditing of user session errors.

ADHOC Enables or disables usage of sp_addauditrecord command
(sp_addauditrecord allows users to send text to the audit trail)

SECURITY Enables or disables auditing of server-wide security-relevant
events, such as using kill command, online database, role
toggling, server boots and shutdowns, and so on...

DBCC Enables or disables auditing of all executions of the dbcc
command.

DISK Enables or disables auditing of all executions of the disk-

related commands (disk init, disk refit, disk reinit, disk mirror,
disk unmirror, disk remirror)

SERVER BOOTS

Enables or disables auditing of all server boots and shutdowns

Version 15.0 and up

Same as for Sybase version 12 (see table above) plus 3 additional operation types

Operation Type

Comments

QUIESQE Enables/disables auditing of quiesce database commands
MOUNT Enables/disables auditing of mount database commands
UNMOUNT Enables/disables auditing of unmount database commands

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F

mode:addAuditedGlobalOperations;operations:<OPERATIONS>;optionWhen:<OPTION_WHEN>

-96-

CHAPTER 4, System Audit Management

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<OPERATIONS> — required. Comma-separated list of types of server-level operations to audit.

Note: Not supported values are silently ignored. For a list of supported values, see tables
provided in the beginning of this topic.

<WHEN OPTION> — required. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
operation type.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited operation type.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
operation type. This is the default option.

qk Important Notes:
e Operation type names must be entered exactly as they appear in the tables above.

e In Sybase versions prior to 11.5, the operation completion status has a limited use in the
auditing filters. In some cases, the status is predefined in the operation type and
because of that the <WHEN OPTION> value is not used. To filter on particular statuses
use matching operation types. For example, to audit only failed logins use "LOGINS
(failed)" or to audit both failed and successful logins specify both "LOGINS (failed)" and "
LOGINS (successful)" values. It is recommended that when working with Sybase
versions prior to 11.5 you specify ALWAYS as the value for the <WHEN OPTION>
parameter.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F
mode:addAuditedGlobalOperations;operations:LOGINS,PRIVILEGED ROLES,RPC
CONNECTIONS,SECURITY;optionWhen:ALWAYS

Using the API functions
void addAuditedGlobalOperations(String[] operations, String optionWhen);

Throws:

java.sgl.SQLException — if an error occurs.

-97-

CHAPTER 4, System Audit Management

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

operations — String array of types of operations to audit. Note: Not supported values are silently
ignored. For a list of supported values, see tables provided in the beginning of this topic.

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
operation type.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited operation type.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
operation type.

ﬁ“ Important Notes:
e Operation type names must be entered exactly as they appear in the tables above.

e In Sybase versions prior to 11.5, the operation completion status has a limited use in the
auditing filters. In some cases, the status is predefined in the operation type and
because of that the optionWhen value is not used. To filter on particular statuses use
matching operation types. For example, to audit only failed logins use "LOGINS (failed)"
or to audit both failed and successful logins specify both "LOGINS (failed)" and "
LOGINS (successful)" values. It is recommended that when working with Sybase
versions prior to 11.5 you specify ALWAYS as the value for the optionWhen parameter.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Enable auditing of several security related operation types
auditSetup.addAuditedGlobalOperations ({ "LOGINS",
"PRIVILEGED ROLES",
"RPC CONNECTIONS,
"SECURITY" }, "ALWAYS");

-08-

CHAPTER 4, System Audit Management

Remove Server-level Operations Audit

This method turns off auditing of particular SQL operation types affecting the entire server database
objects whose auditing has been previously enabled. See Add Server-level Operations Audit topic for
more information.

You can call this method multiple types adding different operation types with different options as
required or call it once specifying complete list of all required operations.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:removeAuditedGlobalOperations;operations:<OPERATIONS>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<OPERATIONS> — same as in Add Server-level Operations Audit

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F
mode:removeAuditedGlobalOperations;operations:LOGINS,PRIVILEGED ROLES,RPC
CONNECTIONS,SECURITY

Using the API functions

void removeAuditedGlobalOperations(String[] operations);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

operations — same as in Add Server-level Operations Audit

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

-90-

CHAPTER 4, System Audit Management

3. Disable auditing of several security related operation types
auditSetup.removeAuditedGlobalOperations ({ "LOGINS",

"PRIVILEGED ROLES",
"RPC CONNECTIONS",
"SECURITY" });

Add Database-level Operations

This method turns on auditing of particular SQL operation types affecting the entire database or could
be applied to any object in the database.

You can call this method multiple types adding different operation types with different options as

required.

The following tables describe database-wide operation types, which can be audited in different Sybase

versions.

Versions prior to 11.5

Operation Type

Comments

ALL This is a catch-all name that can be used to enable or disable
auditing of all operation types listed in this table.

DB ACCESS Enables/disables auditing of any access to the database from
another database (execution of SQL commands from within
another database that refer to objects in the audited database).

DROP Enables/disables auditing of various object destructions: DROP
DATABASE, DROP TABLE, DROP PROCEDURE, DROP
TRIGGER, DROP VIEW.

GRANT Enables/disables auditing of the GRANT commands.

REVOKE Enables/disables auditing of the REVOKE commands.

TRUNCATE TABLE Enables/disables auditing of the TRUNCATE TABLE
commands.

USE Enables/disables auditing of the USE database commands."

Version 11.5 and 12.x

Operation Type

Comments

ALL This is a catch-all name that can be used to enable or disable
auditing of all operation types listed in this table.
CREATE Enables/disables auditing of various object creations: CREATE

DATABASE, CREATE TABLE, CREATE PROCEDURE,
CREATE TRIGGER, CREATE RULE, CREATE DEFAULT,
EXEC SP_ADDMESSAGE, CREATE VIEW.

DB ACCESS (direct)

Enables/disables auditing of any access to the database from
another database (execution of SQL commands from within
another database that refer to objects in the audited database).

DB ACCESS (indirect
using system-functions)

Enables/disables auditing of any access to the database via
Transact-SQL built-in functions (execution of system functions

-100-

CHAPTER 4, System Audit Management

using system-functions)

from within another database that refer to objects in the audited
database).

DROP Enables/disables auditing of various object destructions: DROP
DATABASE, DROP TABLE, DROP PROCEDURE, DROP
TRIGGER, DROP RULE, DROP DEFAULT, EXEC
SP_DROPMESSAGE, DROP VIEW.

DUMP Enables/disables auditing of the DUMP DATABSE and DUMP
TRANSACTION commands.

GRANT Enables/disables auditing of the GRANT commands.

REVOKE Enables/disables auditing of the REVOKE commands.

TRUNCATE TABLE Enables/disables auditing of the TRUNCATE TABLE
commands.

UNBIND Enables/disables auditing of the SP_UNBINDEFAULT,
SP_UNBINDRULE, SP_UNBINDMSG stored procedures.

BIND Enables/disables auditing of the SP_BINDEFAULT,
SP_BINDRULE, SP_BINDMSG stored procedures.

BCP Enables/disables auditing of the BCP IN processes.

LOAD Enables/disables auditing of the LOAD DATABASE, LOAD
TRANSACTION commands.

SET USER Enables/disables auditing of executions of the SETUSER
command.

ALTER Enables/disables auditing of various object changes: ALTER

DATABASE, ALTER TABLE, ALTER VIEW.

Version 15.0 and up

Same as for Sybase version 12 (see table above) plus 2 additional operation types

Operation Type

Comments

INSTALL Enables/disables auditing of installation of Java classes in
database.
REMOVE Enables/disables auditing of removal of Java classes in

database.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:addAuditedDatabaseOperations;database:<DATABASE>;operations:<OPERATIONS>;optionW

hen:<OPTION_WHEN>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a

Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon

-101-

CHAPTER 4, System Audit Management

name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<DATABASE> — required. Name of the database whose activities will be audited.

<OPERATIONS> — required. Comma-separated list of types of database-level operations to audit.

Note: Not supported values are silently ignored. For a list of supported values, see tables
provided in the beginning of this topic. Operation type names must be entered exactly as
they are documented.

<WHEN OPTION> — required. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
operation type.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited operation type.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
operation type. This is the default option.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F
mode:addAuditedDatabaseOperations;database:pubs;operations:ALTER,DROP,CREATE;option
When:ALWAYS

This command enables auditing of all DDL operation types in database PUBS.

Using the API functions
void addAuditedDatabaseOperations(String database, String[] operations, String optionWhen);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

database — Name of the database whose activities will be audited.

operations — String array of types of database-level operations to audit. Note: Not supported
values are silently ignored. For a list of supported values, see tables provided in the beginning of
this topic.

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
operation type.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited operation type.

-102-

CHAPTER 4, System Audit Management

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
operation type.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Enable auditing of all DDL operation types in database PUBS
auditSetup.addAuditedDatabaseOperations("pubs",
{"ALTER", "DROP", "CREATE" },
"ALWAYS");

Remove Database-level Operations Audit

This method turns off auditing of particular SQL operation types affecting the entire database whose
auditing has been previously enabled. See Add Database-level Operations topic for more information.

You can call this method multiple types removing different operation as required or call it once
specifying complete list of all required operations.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:removeAuditedDatabaseOperations;database:<DATABASE>;operations:<OPERATIONS>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<DATABASE> — required. Name of the database whose activities will not be audited.

<OPERATIONS> — required. Comma-separated list of types of database-level operations not to
be audited.

Note: Not supported values are silently ignored. For a list of supported values, see tables
provided in the beginning of this topic. Operation type hames must be entered exactly as they are
documented.

-103-

CHAPTER 4, System Audit Management

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F
mode:removeAuditedDatabaseOperations;database:pubs;operations:ALTER,DROP,CREATE

This command disables auditing of all DDL operation types in database PUBS.

Using the API functions

void removeAuditedDatabaseOperations(String database, String[] operations);

Throws:

java.sgl.SQLException — if an error occurs.

Parameters:

database — Name of the database whose activities will not be audited.

operations — String array of types of database-level operations not to audit. Note: Not supported
values are silently ignored. For a list of supported values, see tables provided in the beginning of

this topic.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Disable auditing of all DDL operation types in database PUBS
auditSetup.removeAuditedDatabaseOperations("pubs”, { "ALTER", "DROP", "CREATE" });

Add Schema Object-level Audit

This method turns on auditing of particular SQL operation types affecting schema objects.

You can call this method multiple types adding different operation types with different options as

required.

The following tables describe operation types, which can be audited in different Sybase versions.

Versions prior to 11.5

Operation Type

Comments

ALL This is a catch-all name that can be used to enable or disable
auditing of all operation types listed in this table.

SELECT Enables/disables auditing of SELECT operations for tables and
views.

INSERT Enables/disables auditing of INSERT operations for tables and

-104-

CHAPTER 4, System Audit Management

views.

DELETE Enables/disables auditing of DELETE operations for tables and
views.

UPDATE Enables/disables auditing of UPDATE operations for tables and
views.

EXECUTE Enables/disables auditing of EXECUTE operations for
procedures and triggers.

Versions 11.5 and later

Operation Type Comments

ALL This is a catch-all name that can be used to enable or disable
auditing of all operation types listed in this table.

SELECT Enables/disables auditing of SELECT operations for tables and
views.

INSERT Enables/disables auditing of INSERT operations for tables and
views.

DELETE Enables/disables auditing of DELETE operations for tables and
views.

UPDATE Enables/disables auditing of UPDATE operations for tables and
views.

EXECUTE PROCEDURE Enables/disables auditing of EXECUTE procedure operations.

EXECUTE TRIGGER Enables/disables auditing of trigger operations.

ACCESS Enables/disables auditing of any access to the object via
Transact-SQL built-in functions (execution of system functions
that refer to the chosen objects).

REFERENCE Enables/disables auditing of creating of a reference between
tables involving the chosen object.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:addAuditedSchemaObiject;database:<DATABASE>;0bject:<OBJECT>;objectType:<OBJECT_T
YPE>;operations:<OPERATIONS>;optionWhen:<OPTION_WHEN>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

-105-

CHAPTER 4, System Audit Management

<DATABASE> — required. Name of the database containing the object.

<OBJECT> — required. Full object name in dot notation such as
SCHEMA_NAME.OBJECT_NAME.

<OBJECT_TYPE> - required. Type of the object such as TABLE, PROCEDURE, etc...

<OPERATIONS> — required. Comma-separated list of types of object-level operations to audit.

Note: Not supported values are silently ignored. For a list of supported values, see tables
provided in the beginning of this topic. Operation type hames must be entered exactly as
they are documented.

<WHEN OPTION> — required. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
operation type.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited operation type.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
operation type. This is the default option.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F
mode:addAuditedSchemaObject;database:pubs;object:dbo.MyTable;objectType: TABLE;operation
s:SELECT,DELETE;optionWhen:WHENEVER NOT SUCCESSFUL

This command enables auditing of SELECT and DELETE operations on table dbo.MyTable in
database PUBS whenever these operations fail.

Using the API functions

void auditSetup.addAuditedSchemaObject(String database, String object, String objectType, String[]
operations, String optionWhen);

Throws:
java.sgl.SQLException — if an error occurs.

Parameters:
database — Name of the database containing the object whose activities will be audited.
object — Full object name in dot notation such as SCHEMA_NAME.OBJECT_NAME

objectType — Type of the object such as TABLE, PROCEDURE, etc...

operations — String array of types of database-level operations to audit. Note: Not supported
values are silently ignored. For a list of supported values, see tables provided in the beginning of

-106-

CHAPTER 4, System Audit Management

this topic.

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
operation type.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited operation type.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
operation type.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Enable auditing of all failed SELECT and DELETE operations for table dbo.MyTable in
database PUBS
auditSetup.addAuditedSchemaObject("pubs", "dbo.MyTable", "TABLE",
{"SELECT", "DELETE" },
"WHENEVER NOT SUCCESSFUL");

Remove Schema Object-level Audit

This method turns off auditing of particular SQL operation types affecting schema objects whose
auditing has been previously enabled. See Add Schema Object-level Audit topic for more information.

You can call this method multiple types removing different operation types for different objects as
required.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:removeAuditedSchemaObject;database:<DATABASE>;object:<OBJECT>;operations:<OPERA
TIONS>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

-107-

CHAPTER 4, System Audit Management

<DATABASE> — required. Name of the database containing the object.

<OBJECT> — required. Full object name in dot notation such as
SCHEMA_NAME.OBJECT_NAME.

<OPERATIONS> — required. Comma-separated list of types of database-level operations that
should not be audited.

Note: Not supported values are silently ignored. For a list of supported values, see tables
provided in the beginning of this topic. Operation type names must be entered exactly as
they are documented.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F
mode:removeAuditedSchemaObject;database:pubs;object:dbo.MyTable;objectType: TABLE;opera
tions:SELECT,DELETE;optionWhen:ALWAYS

This command disables auditing of all SELECT and DELETE operations for table dbo.MyTable in
database PUBS.

Using the API functions

void auditSetup.removeAuditedSchemaObject(String database, String object, String[] operations,
String optionWhen);

Throws:

java.sgl.SQLException — if an error occurs.

Parameters:

database — Name of the database containing the object whose activities will not be audited.

object — Full object name in dot notation such as SCHEMA_NAME.OBJECT_NAME

operations — String array of types of object-level operations to audit. Note: Not supported values
are silently ignored. For a list of supported values, see tables provided in the beginning of this
topic.

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
operation type.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited operation type.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
operation type.

-108-

CHAPTER 4, System Audit Management

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Disable auditing of all SELECT and DELETE operations for table dbo.MyTable in database

PUBS

auditSetup.removeAuditedSchemaObject("pubs”, "dbo.MyTable",

Add Login-level Audit

{"SELECT", "DELETE" },
"ALWAYS");

This method turns on auditing of particular SQL operation types for a logon.

You can call this method multiple types adding different operation for different logons and options as

required.

The following tables describe types of operations that can be audited for a logon.

Operation Type Comments

ALL This is a catch-all name that can be used to enable or disable
auditing of all operation types listed in this table.

TABLE ACCESS Enables/disables auditing of tables accessible by the selected
login (SELECT, DELETE, UPDATE, or INSERT access in a
table).

VIEW ACCESS Enables/disables auditing of view accessible by the selected
login (SELECT, DELETE, UPDATE, or INSERT access in a
view).

SQL TEXT Enables/disables auditing the text of commands that a user
sends to the database.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:addAuditedLogin;login:<LOGIN>;operations:<OPERATIONS>;optionWhen:<OPTION_WHEN>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a

Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon

-109-

CHAPTER 4, System Audit Management

name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<LOGIN> — required. Database login whose activities need to be audited.

<OPERATIONS> — required. Comma-separated list of login-level types of operations to audit.

Note: Not supported values are silently ignored. For a list of supported values, see tables
provided in the beginning of this topic. Operation type names must be entered exactly as
they are documented.

<WHEN OPTION> — required. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
operation type.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited operation type.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
operation type. This is the default option.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F
mode:addAuditedLogin;login:scott;operations: TABLE ACCESS,VIEW
ACCESS;optionWhen:WHENEVER NOT SUCCESSFUL

This command enables auditing of table and view access for login SCOTT whenever these
operations fail.

Using the API functions
void auditSetup.addAuditedLogin(String login, String[] operations, String optionWhen);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

login — Database login whose activities need to be audited

operations — String array of types of login-level operations to audit. Note: Not supported values
are silently ignored. For a list of supported values, see tables provided in the beginning of this
topic.

optionWhen — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
operation type.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the

-110-

CHAPTER 4, System Audit Management

audited operation type.
ALWAYS can be used to audit both successful and unsuccessful executions of the audited
operation type.

Example:

1.

Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");

con.connect("user"”, "password");

Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

Enable auditing of all failed table and view accesses for login SCOTT
auditSetup.addAuditedLogin("scott",
{"TABLE ACCESS", "VIEW ACCESS" },
"WHENEVER NOT SUCCESSFUL");

Remove Login-level Audit

This method turns off auditing of particular SQL operation types executed by specific logins whose
auditing has been previously enabled. See Add Login-level Audit topic for more information.

You can call this method multiple types removing different operation types for different logins as

required.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:removeAuditedLogin;login:<LOGIN>;operations:<OPERATIONS>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<LOGIN> — required. Database login whose activities do need to be audited anymore.

<OPERATIONS> - required. Comma-separated list of login-level types of operations to audit.

Note: Not supported values are silently ignored. For a list of supported values, see tables
provided in the beginning of this topic. Operation type hames must be entered exactly as
they are documented.

-111-

CHAPTER 4, System Audit Management

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F
mode:removeAuditedLogin;login:scott;operations: TABLE ACCESS,VIEW ACCESS

This command disables auditing of table and view access for login SCOTT.

Using the API functions
void auditSetup.removeAuditedLogin(String login, String[] operations);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

login — Database login whose activities do not need to be audited anymore

operations — String array of types of login-level operations to audit. Note: Not supported values
are silently ignored. For a list of supported values, see tables provided in the beginning of this
topic.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Disable auditing of all table and view accesses for login SCOTT
auditSetup.removeAuditedLogin("scott", { "TABLE ACCESS", "VIEW ACCESS" });

Set Advanced Audit Options

Update Audit Queue Size

Audit queue size parameter establishes the size of the audit queue. Because this parameter affects
audit event processing, changing this parameter does not take effect until ASE is restarted. The
default size of the audit queue is 100 event records. The value can be in the 1 to 65,335 range. The
large size you set for the audit queue, the more memory is required for the audit cache and longer it
may take for the audit record to be flushed to the disk. Also note that the memory is taken from the
total memory allocated to the data cache. On the other hand, larger queue size improve the overall
process performance because the caching of audit records and flushing them to disk is performed by 2
independent asynchronous processes.

-112-

CHAPTER 4, System Audit Management

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:updateQueueSize;queueSize:<QUEUE_SIZE>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<QUEUE_SIZE> - required. Maximum number of queued events before they are flushed to disk.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F mode:updateQueueSize;queueSize:500

Using the API functions

void auditSetup.updateQueueSize(int queue_size);

Throws:

java.sgl.SQLException — if an error occurs.
Parameters:

gqueueSize — Maximum number of queued events before they are flushed to disk.
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Set new queue size
auditSetup.updateQueueSize(500);

Set 'Suspend Audit When Device Full' Status

This method controls what ASE does when an audit device becomes completely full. If "suspend” is
enabled and the device is full, all auditing processes stop until a user with SSO permissions logs on to
the system and clears the audit trail tables. If disabled, ASE truncates the next audit table and starts

-113-

CHAPTER 4, System Audit Management

using it. If that table hasn't been archived, old audit trail records become lost.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:setSuspendAuditWhenDeviceFull;option:<OPTION>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<OPTION> — required. Controls whether to suspend or not to suspend the audit when the device
storing audit tables becomes full. Supported values: yes, no.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D sybaseProfileName /A /F
mode:setSuspendAuditWhenDeviceFull;option:no

Using the API functions

void auditSetup.setSuspendAuditWhenDeviceFull(boolean value);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

value — Controls whether to suspend or not to suspend the audit when the device storing audit
tables becomes full.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Turn off the 'suspend’ option
auditSetup.setSuspendAuditWhenDeviceFull(false);

-114-

CHAPTER 4, System Audit Management

Add New System Audit Trail Table

This method adds new audit trail table to existing audit trail configuration, expanding the total size of
the audit trail.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:addSysAuditTrailTable;device:<DEVICE>

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<DEVICE> - required. Name of the device where the table will be created.

Example:

java -jar dbaudit.jar /D sybaseProfileName /A /F mode:addSysAuditTrailTable;device:aud_space

Using the API functions
void auditSetup.addSysAuditTrailTable(String device);

Throws:

java.sqgl.SQLException — if an error occurs.
Parameters:

device — Name of the device where the table will be created.
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Add new table
auditSetup.addSysAuditTrailTable('aud_space');

-115-

CHAPTER 4, System Audit Management

Attach Threshold Procedures

This method installs DB Audit's so called "threshold" stored procedures and associates them with
audit trail tables in the sybsecurity database. This "threshold" procedures get automatically executed
when the audit trail tables become nearly full. When executed the threshold procedures automatically
switch current audit trail table to the next available then archive the full table and truncate it freeing the
space.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:attachThresholdProcedures

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D sybaseProfileName /A /F mode:attachThresholdProcedures

Using the API functions

void auditSetup.attachThresholdProcedures();

Throws:

java.sql.SQLException — if an error occurs.
Parameters:

None.
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Install threshold procedures and attach them to the audit trail tables
auditSetup.attachThresholdProcedures();

-116-

CHAPTER 4, System Audit Management

Uninstall Threshold Procedures

This method detaches and uninstalls previously installed DB Audit's "threshold" stored procedures

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:uninstallThresholdProcedures

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D sybaseProfileName /A /F mode:uninstallThresholdProcedures

Using the API functions

void auditSetup.uninstallThresholdProcedures();

Throws:

java.sgl.SQLException — if an error occurs.
Parameters:

None.
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Uninstall threshold procedures
auditSetup.uninstallThresholdProcedures();

-117-

CHAPTER 4, System Audit Management

Informational Methods

Get System Audit Status

This method reports current status of the system audit process. It can be used to determine whether
the auditing is currently enabled or not.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F mode:isSysAuditEnabled

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Return:

Current system audit status is printed to the screen, yes/no

Example:

java -jar dbaudit.jar /D sybaseProfileName /A /F mode:isSysAuditEnabled

Using the API functions
boolean auditSetup.isSysAuditEnabled();

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:
None.
Return:
Current system audit status
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

-118-

CHAPTER 4, System Audit Management

3. Determine if sys audit is enabled
System.out.println(auditSetup.isSysAuditEnabled());

Get System Audit Trail Tables Count

This method returns number of audit trail tables used by the system audit processes in sysbsecurity
database.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:getSysAuditTrailTablesCount

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Return:

Number of audit trail tabled used by the system auditing is printed to the screen

Example:

java -jar dbaudit.jar /D sybaseProfileName /A /F mode:getSysAuditTrailTablesCount

Using the API functions
int auditSetup.getSysAuditTrailTablesCount();

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:
None.
Return:
Number of audit trail tabled used by the system auditing
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

-119-

CHAPTER 4, System Audit Management

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Get table count
System.out.printin(auditSetup.getSysAuditTrailTablesCount());

Get Audit Queue Size

This method returns current ASE audit queue size.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F mode:getQueueSize

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Return:

Audit queue size — maximum number of audit events that can be queued before they are flushed
to the disk. This number is printed to the screen.

Example:

java -jar dbaudit.jar /D sybaseProfileName /A /F mode:getQueueSize

Using the API functions
int auditSetup.getQueuesSize ();

Throws:

java.sgl.SQLException — if an error occurs.
Parameters:

None.
Return:

Audit queue size — maximum number of audit events that can be queued before they are flushed
to the disk.

-120-

CHAPTER 4, System Audit Management

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Get queue size
System.out.printin(auditSetup.getQueueSize());

Get 'Suspend Audit When Device Full' Status

This method returns current state of "suspend audit when device full" option. The "suspend" option
controls what ASE does when an audit device becomes completely full. If "suspend” is enabled and
the device is full, all auditing processes stop until a user with SSO permissions logs on to the system
and clears the audit trail tables. If disabled, ASE truncates the next audit table and starts using it. If
that table hasn't been archived, old audit trail records become lost.

Using the console interface

java -jar dbaudit.jar /D sybaseProfileName [/U user] [/P password] /A /F
mode:getSuspendAuditWhenDeviceFull

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Return:

State of "suspend audit when device full" option value is printed to the screen: yes/no
Example:

java -jar dbaudit.jar /D sybaseProfileName /A /F mode:getSuspendAuditWhenDeviceFull
Using the API functions

boolean auditSetup.getSuspendAuditWhenDeviceFull();

Throws:

java.sgl.SQLException — if an error occurs.

-121-

CHAPTER 4, System Audit Management

Parameters:

None.
Return:

Current value of "suspend audit when device full" option
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

3. Get "suspend" option value
System.out.printin(auditSetup.getSuspendAuditWhenDeviceFull());

Install DB Audit Mail Sending SQL Procedure

DB Audit mail sending procedure is used in real-time email alerts that can be sent by both system
audit trail and data-change audit trail processes.

Using the console interface

java -jar dbaudit.jar /D SybaseProfileName [/U user] [/P password] /A /F
mode:installDBAuditMailSendingSQLProcedure

Parameters:

sybaseProfileName — required. Name of an existing database connection profile configured for a
Sybase database.

user — optional. Logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D sybaseProfileName /A /F mode:installDBAuditMailSendingSQLProcedure

Using the API functions
void auditSetup.installDBAuditMailSendingSQLProcedure(string tablespaceDB?2);

-122-

CHAPTER 4, System Audit Management

Throws:

java.sgl.SQLException — if an error occurs.

Parameters:

tablespaceDB2 — this parameter is not used with ASE and must be passed as a null value.

Example:

1.

Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My Sybase Profile");

con.connect("user", "password");

Create an instance of the AuditSetupSystemSybase class
AuditSetupSystemSybase auditSetup =
(AuditSetupSystemSybase)AuditSetupSystemCommon.getinstance(con);

Install mail sending procedure
auditSetup.installDBAuditMailSendingSQLProcedure(null);

DB2 System Audit Management Tasks

ﬁ“ Important Notes: Before you run the DB Audit installation method for DB2, make sure you have
done the following steps by running appropriate operation system commands manually or
programming them as part of your audit installation procedures:

1.

Copy dbauditRunner .jar file to your [db2 home]/sqllib/function directory. This file can be
found in the [db_audit_api_home]\DB2 directory.

Add dbauditRunner jar file to the Java CLASSPATH environment variable for the DB2
instance owner and bounce your DB2 instance in order for the new CLASSPATH to take
effect.

After that start DB Audit interface service on your DB2 server running the following command
in [db2 home]/sqllib/function directory:

java —jar dbauditRunner.jar

On Unix systems: add this command to the profile of the DB2 instance owner so that it can
start automatically when your DB2 computer starts.

On Windows systems: use dbauditRunnerSrv.exe program to install the audit process
runner service which will start the audit processes automatically when the system starts. This
file can be found in the [db_audit_api_home]\DB2 directory. To install the service copy
dbauditRunnerSrv.exe to [db2 home\SQLLIB\function directory and from there run once
the following command:

dbauditRunnerSrv.exe /install

Schedule periodic run of the audit trail loading procedures. These procedures will periodically
flush audit trail records to the disk and then load the flushed data into the system audit trail
tables stored in the database. Methods described in the Flush Audit Data topic can be used
to flush and load the audit trail data. They can be scheduled and run using any appropriate
scheduling tool of your choice. For example, you can use DB2 Script Center for this purpose.
A step-by-step example for using DB2 Script Center is provided in DB Audit User's Guide.
See "Scheduling System Audit Record Flushing and Loading Procedures" topic in CHAPTER
3, System Auditing in DB Audit User's Guide.

-123-

CHAPTER 4, System Audit Management

Set System Audit State

Install System Audit

This method turns on auditing of database operations. Operations are grouped into functional groups
also called operation types. If auditing has been configured already, this method overwrites previous

settings.

The following table describes available operation types (groups), which can be audited in DB2.

Operation Type

Comments

ALL

This is a catch-all name that can be used to enable or disable
auditing of all operation types listed in this table.

Audit Settings Changes
and Access

This option generates records when audit settings are changed
or when the audit log is accessed.

Authorization Checking

This option generates records during authorization checking of
attempts to access or manipulate DB2 UDB objects or
functions.

Object Drop and Create

This option generates records when creating or dropping data
objects.

Security Changes

This option generates records when granting or revoking:
object or database privileges, or DBADM authority. Records
are also generated when the database manager security
configuration parameters SYSADM_GROUP,
SYSCTRL_GROUP, or SYSMAINT_GROUP are modified.

System Administration
Activities

This option generates records when operations requiring
SYSADM, SYSMAINT, or SYSCTRL authority are performed.

User Authentication

This option generates records when authenticating users or
retrieving system security information.

Operation Context

This option generates additional records showing the context
data of performed database operations, for example, an SQL
statement for dynamic SQL, a package identifier for static SQL,
or an extended indicator of the type of operation being
performed, such as CONNECT. This contextual information
might very valuable analyzing audit results. Note that the
context records contain the same value in the event correlator
column in the audit trail as the primary event record, so that a
group of records can be associated with a single database
operation.

Warning: Use of this option typically creates visible impact on
the DB2 performance. It should not be used in heave loaded
production systems.

-124-

CHAPTER 4, System Audit Management

Using the console interface

java -jar dbaudit.jar /D db2ProfileName [/U user] [/P password] /A /F
mode:installSysAudit;operations:<OPERATIONS>;optionWhen:<OPTION_WHEN>;tablespace:<TABL
ESPACE>

Parameters:

db2ProfileName — required. Name of an existing database connection profile configured for a DB2
database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<OPERATIONS> — required. Comma-separated list of types of operations to audit. The names of
the supported operation types are listed in the Operations table in the beginning of this topic.

* Important Notes:

e "All"is an exclusive type that cannot be used along with other. This is a special type
that means auditing of all types of operations occurring in the database server.

e Operation type names must be entered exactly as they appear in the table.

<WHEN OPTION> — required. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

<TABLESPACE> — optional. Name of the tablespace where to install system audit trail tables.
This is only used if the audit trail tables do not exit yet.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D db2ProfileName /A /F "mode:installSysAudit;operations:Object Drop and
Create,Security Changes;optionWhen:ALWAY S;tablespace:AUDIT_TSPACE"

This installs and enables auditing for DDL and security changes in the database

Using the API functions
void auditSetup.installSysAudit(String globalOption, String[] operations, String tableSpace);

Throws:

java.sgl.SQLException — if an error occurs.

-125-

CHAPTER 4, System Audit Management

Parameters:

globalOption — One of the following values: WHENEVER SUCCESSFUL, WHENEVER NOT
SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

operations — String array of types of operations to audit. The names of the supported operation
types are listed in the Operations table in the beginning of this topic.

% Important Notes:
e "All"is an exclusive type that cannot used with other. In this context. This is a
special item that means auditing of all types of operations occurring in the
database server.

e Operation type names must be entered exactly as they appear in the list above.

tableSpace — Name of the tablespace where to install system audit trail tables. This is only used if
the audit trail tables do not exit yet. Pass null value to use the default tablespace associated with
DB_AUDIT user.

Example:

1.

Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My DB2 Profile");

con.connect("user", "password");

Create an instance of the AuditSetupSystemDB2 class
AuditSetupSystemDB2 auditSetup =
(AuditSetupSystemDB2)AuditSetupSystemCommon.getinstance(con);

Install and enable auditing for DDL and security changes in the database
auditSetup.installSysAudit("ALWAYS",
{"Object Drop and Create", "Security Changes" },
"AUDIT_TSPACE");

Uninstall System Audit

Use the methods described in Uninstall Audit Repository Objects topic to uninstall both the system
audit and data-change audit objects and other options and enhancements that you have previously
installed using DB Audit API or DB Audit GUI.

% Important Notes: The "uninstall" method completely removes DB Audit from the database, it
removes all previously installed audit settings, stored procedures and tables in the repository database
including data-change audit trail tables and triggers and also removes db_audit schema and user.
The "uninstall" method does not remove dbAuditRunner.jar file from the operation system. You should
delete this file using available operation system commands or advise users how to delete that file
manually.

-126-

CHAPTER 4, System Audit Management

Enable System Audit
The auditing is enabled immediately after the installation. No special actions are required to enable it.

In case if the audit has been disabled using methods described in the Disable System Audit topic you
can enable it again by re-executing system audit installation method but without installation of any
additional files. See the Install System Audit topic for more details.

Disable System Audit

This method turns off system auditing but does not remove audit settings and audit trail tables.
Therefore, it effectively stops the auditing but keeps all the data and settings in place. In case if you
want to enable the auditing later you can use the "install* method described in Install System Audit
topic and that method will pickup all retained settings.

Using the console interface

java -jar dbaudit.jar /D db2ProfileName [/U user] [/P password] /A /F mode:disableSysAudit

Parameters:

db2ProfileName — required. Name of an existing database connection profile configured for a DB2
database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:
java -jar dbaudit.jar /D db2ProfileName /A /F "mode:disableSysAudit"

Using the API functions
void auditSetup.disableSysAudit();

Throws:

java.sqgl.SQLException — if an error occurs.
Parameters:

None
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My DB2 Profile");
con.connect("user", "password");

-127-

CHAPTER 4, System Audit Management

2. Create an instance of the AuditSetupSystemDB2 class
AuditSetupSystemDB2 auditSetup =
(AuditSetupSystemDB2)AuditSetupSystemCommon.getinstance(con);

3. Disable auditing
auditSetup.disableSysAudit();

Set Audit Operations

This method can be used to update audit settings without reinstalling the audit system.

Using the console interface

java -jar dbaudit.jar /D db2ProfileName [/U user] [/P password] /A /F
mode:updateAuditOperations;operations:<OPERATIONS>;optionWhen:<OPTION_WHEN>

Parameters:

db2ProfileName — required. Name of an existing database connection profile configured for a DB2
database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<OPERATIONS> — required. List of database operation types to audit. See Install System Audit
topic for details.

<WHEN OPTION> — required. One of the following values: WHENEVER SUCCESSFUL,
WHENEVER NOT SUCCESSFUL or ALWAYS

WHENEVER SUCCESSFUL can be used to audit only successful executions of the audited
statement.

WHENEVER NOT SUCCESSFUL can be used to audit only unsuccessful executions of the
audited statement.

ALWAYS can be used to audit both successful and unsuccessful executions of the audited
statement.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D db2ProfileName /A /F "mode:updateAuditOperations;operations:
Object Drop and Create,Security Changes;optionWen:ALWAYS"

Using the API functions
void auditSetup.updateAuditOperations(String globalOption, String[] operations);

-128-

CHAPTER 4, System Audit Management

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

operations — String array of database operation types to audit. See Install System Audit topic for
details.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My DB2 Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemDB2 class
AuditSetupSystemDB2 auditSetup =
(AuditSetupSystemDB2)AuditSetupSystemCommon.getinstance(con);

3. Update audit settings
auditSetup.updateAuditOperations("ALWAYS",
{"Object Drop and Create", "Security Changes" });

Flush Audit Data

This method can be used to flush audit events to the audit trail tables. The flushed data becomes
immediately available for reporting and for alert monitoring. This method should be called periodically,
preferably every few minutes.

% Important Notes: The "flush" method parses audit data accumulated in binary audit log files
stored in DB2/security directory and loads this data in a structured format into audit trail tables. If the
method is not called for a long time, the processing of large audit log files may require significant time.
The frequency of flushing depends on the audit requirements and database usage. The more events
are audited, the more often this method should be executed.

Using the console interface

java -jar dbaudit.jar /D db2ProfileName [/U user] [/P password] /A /F mode:flushAuditData

Parameters:

db2ProfileName — required. Name of an existing database connection profile configured for a DB2
database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:
java -jar dbaudit.jar /D db2ProfileName /A /F mode:flushAuditData

-129-

CHAPTER 4, System Audit Management

Using the API functions
void auditSetup.flushAuditData();

Throws:

java.sqgl.SQLException — if an error occurs.
Parameters:

None
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My DB2 Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemDB2 class
AuditSetupSystemDB2 auditSetup =
(AuditSetupSystemDB2)AuditSetupSystemCommon.getinstance(con);

3. Update audit settings
auditSetup.updateAuditOperations("ALWAYS",
{ "Object Drop and Create", "Security Changes" });

Informational Methods

Get System Audit Status

This method reports current status of the system audit process. It can be used to determine whether
the auditing is currently enabled or not.

Using the console interface

java -jar dbaudit.jar /D db2ProfileName [/U user] [/P password] /A /F mode:isSysAuditRunning

Parameters:

db2ProfileName — required. Name of an existing database connection profile configured for a DB2
database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Return:

Current system audit status is printed to the screen, yes/no

-130-

CHAPTER 4, System Audit Management

Example:
java -jar dbaudit.jar /D db2ProfileName /A /F mode:isSysAuditEnabled

Using the API functions
boolean auditSetup.isSysAuditEnabled();

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:
None.
Return:
Current system audit status
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My DB2 Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemDB2 class
AuditSetupSystemDB2 auditSetup =
(AuditSetupSystemDB2)AuditSetupSystemCommon.getinstance(con);

3. Determine if sys audit is enabled
System.out.printin(auditSetup.isSysAuditEnabled());

Install DB Audit Mail Sending SQL Procedure

Using the console interface

DB Audit mail sending procedure is used in real-time email alerts that can be sent by both system
audit trail and data-change audit trail processes.

Using the console interface

java -jar dbaudit.jar /D db2ProfileName [/U user] [/P password] /A /F
mode:installDBAuditMailSendingSQLProcedure;tablespace:<TABLESPACE>

Parameters:

db2ProfileName — required. Name of an existing database connection profile configured for a DB2
database.

user — optional. Name of the user to be used with the database connection. If not specified, user
name saved in the profile settings is used.

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

-131-

CHAPTER 4, System Audit Management

<TABLESPACE> — optinal. Name of DB2 tablespace where to install email sending procedure
and auxiliary objects.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D db2ProfileName /A /F
mode:installDBAuditMailSendingSQLProcedure;tablespace: TOOLS

Using the API functions
void auditSetup.installDBAuditMailSendingSQLProcedure(String tablespaceDB?2);

Throws:
java.sqgl.SQLException — if an error occurs.
Parameters:

tablespaceDB2 — Name of DB2 tablespace where to install email sending procedure and auxiliary
objects. Pass null value to use the default tablespace associated with DB_AUDIT user.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("My DB2 Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemDB2 class
AuditSetupSystemDB2 auditSetup =
(AuditSetupSystemDB2)AuditSetupSystemCommon.getinstance(con);

3. Install mail sending procedure
auditSetup.installDBAuditMailSendingSQLProcedure("TOOLS");

Common System Audit Management Tasks (All
Database Systems)

The methods described in the following topics work identically for all supported database systems and
feature same parameters and return values. They can be accessed via the common
AuditSetupSystemCommon interface class as well as DBMS specific interfaces.

For simplicity, in the following topics we will refer to the common AuditSetupSystemCommon
interface class only, which is sufficient for all described tasks.

Truncate System Audit Trail Table

This method erases the audit data stored in system audit trail tables. Some database systems also
automatically shrink the truncated tables and their indexed and deallocate the freed disk space,
making it available for other objects. The exact behavior is DBMS specific.

-132-

CHAPTER 4, System Audit Management

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F mode:truncateSystemAuditTrailTable

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D someProfileName /A /F mode:truncateSystemAuditTrailTable

Using the API functions
void auditSetup.truncateSystemAuditTrailTable();

Throws:

java.sqgl.SQLException — if an error occurs.
Parameters:

None
Example:

4. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");
con.connect("user", "password");

5. Create an instance of the AuditSetupSystemCommon class
AuditSetupSystemCommon auditSetup = AuditSetupSystemCommon.getinstance(con);

6. Update audit settings
auditSetup.truncateSystemAuditTrailTable();

Archive System Audit Trail Data to a Table

This method can be used to copy audit trail data from the system audit trail table to another table
located on the same server. In SQL Server and Sybase the target table can be located in the same or
different database on the same server.

-133-

CHAPTER 4, System Audit Management

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:archiveSystemAuditTrailTable;destDatabase:<DESTINATION_DATABASE>;destSchema:<DES
TINATION_SCHEMA>;destTable:<DESTINATION_TABLE>

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<DESTINATION_DATABASE> — required in SQL Server and Sybase, not used in Oracle and
DB2. Name of the database in which you want to store the archived data. The database must
exist at the time of the call.

<DESTINATION_SCHEMA> — required. Name of the schema containing the table in which to
store the archived data. See description of <DESTINATION_TABLE> parameter for more details.

<DESTINATION_TABLE> - required. Name of the table in which to store the archived data.

* Important Notes:

e If the specified table already exists, the audit trail data is appended to that table. The
structure of the destination table must much exactly the structure of the system audit
trail table.

e If the specified table does not exist, it is automatically created. In this case the
destination schema owner must have permissions to create tables. In Oracle and in
DB2 the schema owner must also have permissions to allocate space in the
destination tablespace.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
mode:archiveSystemAuditTrailTable;destSchema:HIST _SCHEMA;destTable:SYS_AUDIT_TRAIL

Using the API functions

void auditSetup.archiveSystemAuditTrailTable(String destDatabase, String destTable, String
destSchema);

Throws:

java.sqgl.SQLException — if an error occurs.

-134-

CHAPTER 4, System Audit Management

Parameters:

destDatabase — Name of the database in which you want to store the archived data. The
database must exist at the time of the call. This parameter is not applicable for Oracle and DB2
systems and must be passed as null value.

destSchema — required. Name of the schema containing the table in which to store the archived
data. See description of destTable parameter for more details.

destTable — required. Name of the table in which to store the archived data.

* Important Notes:

e If the specified table already exists, the audit trail data is appended to that table. The
structure of the destination table must much exactly the structure of the system audit
trail table.

e If the specified table does not exist, it is automatically created. In this case the
destination schema owner must have permissions to create tables. In Oracle and in
DB2 the schema owner must also have permissions to allocate space in the
destination tablespace.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupSystemCommon class
AuditSetupSystemCommon auditSetup = AuditSetupSystemCommon.getinstance(con);

3. Archive audit trail to hist_schema.sys_audit_trail table
auditSetup.archiveSystemAuditTrailTable(null, "sys_audit_trail", "hist_schema");

Archive System Audit Trail Data to a File

This method can be used to copy audit trail data from the system audit trail table to an operation
system file in a tab-separated format. The target file must be writeable and accessible from the system
where you are running DB Audit API.

Tip: In case if you need to get archived data in some other format, for example as XML, use the
available DB Audit reports. See CHAPTER 6 for more information.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:exportSystemAuditTrail;filePath:<FILE_PATH>

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database

-135-

CHAPTER 4, System Audit Management

connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<FILE_PATH> — required, Name of the target file.

% Important Notes: If the specified file already exists, the system will attempt to overwrite it.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
"mode:exportSystemAuditTrail;filePath:C:\audit\archive_as_of 10_10 2006.txt"

Using the API functions
void exportSystemAuditTrail(String filePath);

Throws:
java.sqgl.SQLException — if an error occurs.
Parameters:

filePath — Name of the target file.

% Important Notes: If the specified file already exists, the system will attempt to overwrite it.
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemCommon class
AuditSetupSystemCommon auditSetup = AuditSetupSystemCommon.getinstance(con);

3. Archive audit trail to hist_schema.sys_audit_trail table
auditSetup.exportSystemAuditTrailTable("C:\audit\archive_as of 10 10 2006.txt");

Uninstall Audit Repository Objects

ﬁ“ Important Notes: This method completely removes DB Audit from the database, it removes all
previously installed audit settings, stored procedures and tables including data-change audit trail
tables and triggers and also removes db_audit schema and user. The "uninstall* method does not
remove native system audit trail tables such as these provided in Oracle and Sybase database
systems.

Using the console interface

java -jar dbaudit.jar /D profileName [/U user] [/P password] /A /F mode:uninstallAudit

-136-

CHAPTER 4, System Audit Management

Parameters:

None

Example uninstallation:

java -jar dbaudit.jar /D myProfileName /A /F "mode:uninstallAudit "

Using the API functions
void auditSetup.uninstallAudit();

Throws:

java.sgl.SQLException — if an error occurs.
Parameters:

None
Example:

1. Connect to the database:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupSystemCommon class
AuditSetupSystemCommon auditSetup = AuditSetupSystemCommon.getinstance(con);

3. Uninstall DB Audit tables, procedures, schema and user
auditSetup.uninstallAudit();

-137-

CHAPTER 5, Data-change Audit Management

CHAPTER 5, Data-change Audit
Management

Class Hierarchy

The following diagram demonstrates internal hierarchy of DB Audit classes used for data-change audit
management tasks. All described classes are part of com.softtreetech.dbaudit.auditsetup.data
package. As you can see on the diagram, the data-change audit setup is based on a single common
interface while specific implementations are provided to perform DBMS specific data-change audit
management tasks. Note that the DB Audit command line interface hides all internal class complexity
and provides flat keyword based interface.

AuditSetupDataCommon interface class

pm—— -

[AuditSetupDataOracle] AuditSetupDataDB2

Oracle interface class DB2 interface class

v v

[AuditSetupDataOraclelmpl] AuditSetupDataDB2Impl
\ 4 \ 4
AuditSetupDataSybase AuditSetupDataMssql
Sybase interface class MS SQL Server interface class

v v

AuditSetupDataSybaselmpI] [AuditSetupDataMssqlimpl]

Data-change audit classes and their hierarchy

The following topics describe methods for performing DBMS specific data-change audit management
tasks. For reader's convenience, methods are organized in task-oriented groups. Each topic covers
method specification, parameters and return values, and also includes code samples demonstrating
how to call these methods.

For simplicity, in the following topics we will refer to the common AuditSetupDataCommon interface
class only, which is sufficient for all described tasks.

-138-

CHAPTER 5, Data-change Audit Management

Parameter Names and Values

ﬁ“ Important notes for using DB Audit command line interface :

e The same rules that we have described in CHAPTER 4 also apply to command line
parameter names and values used in the data-change auditing. Please see Parameter
Names and Values topic in CHAPTER 4 for more information.

Data-change Audit Management Tasks

Install Data-change Audit for a Table

Use this method to install data-change auditing trigger and audit trail table for a business table whose
data changes you need to audit and record in the audit trail

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:setDataAudit;auditDb:<AUDIT_DB>;tableOwner:<TABLE_OWNER>;tableName:<TABLE_NAM
E>;userMapProc:<USER_MAP_PROCEDURE>;tablespaceDB2:<TABLESPACE_DB2>;usersExclude
d:<USERS_EXCLUDED>;appsExcluded:<APPS_EXCLUDED>;auditinserts:<AUDIT_INSERTS>;audit
Deletes:<AUDIT_DELETES>;auditUpdates:<AUDIT_UPDATES>;auditNotify:<AUDIT_NOTIFY>;mailK
eyColumns:<MAIL_KEY_COLUMNS>;mailRecipient:<MAIL_RECIPIENT>;mailCC:<MAIL_CC>filterC
olumns:<FILTER_COLUMNS>;columns:<COLUMNS>;users:<USERS>;apps:<APPLICATIONS>

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> - required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes will be audited.

<TABLE_OWNER> — required. Schema name of the table whose changes will be audited.
<TABLE_NAME> - required. Name of the table whose changes will be audited.

<USER_MAP_PROCEDURE> — optional. Name of a user-defined stored procedure that can be

-139-

CHAPTER 5, Data-change Audit Management

used to map database user name to an application user name. The procedure is invoked from the
auditing trigger when changes are recorded to the audit trail. For more information see "Setting
User Name Mapping" topic in CHAPTER 4, Data Change Auditing of DB Audit User's Guide.

<TABLESPACE_DB> - required for DB2. Name of the tablespace in which to create the audit trail
table. Please note that in Oracle this parameter is ignored and the table is always created in the
default tablespace for DB_AUDIT user; in SQL Server and ASE the table is always created in the
audit repository database.

<USERS_EXCLUDED> — required only if <USERS> parameters is specified. This parameter can
have the following values: yes, no. Yes value makes the auditing trigger ignore changes made by
users whose names are specified in the <USERS> parameter. No value makes the auditing
trigger only record changes made by users whose names are specified in the <USERS>
parameter. If KTUSERS> parameter is not specified then <USERS_EXCLUDED> parameter is
ignored.

<APPS_EXCLUDED> — required only if <APPLICATIONS> parameter is specified. This
parameter can have the following values: yes, no. Yes value makes the auditing trigger ignore
changes made by applications whose names are specified in the <APPLICATIONS> parameter.
No value makes the auditing trigger only record changes made by applications whose names are
specified in the <APPLICATIONS> parameter. If <APPLICATIONS> parameter is not specified
then <APPLICATIONS_EXCLUDED> parameter is ignored.

<AUDIT_INSERTS> — required. This parameter can have the following values: yes, no. Yes value
makes the auditing trigger capture records inserted into the audited table, no — ignore inserts.

<AUDIT_DELETES> - required. This parameter can have the following values: yes, no. Yes
value makes the auditing trigger capture records deleted from the audited table, no — ignore
deletes.

<AUDIT_UPDATES> — required. This parameter can have the following values: yes, no. Yes
value makes the auditing trigger capture records updated in the audited table, no — ignore
updates.

<AUDIT_NOTIFY> —required. This parameter can have the following values: yes, no. Yes value
makes the auditing trigger generate real-time email alters when changes are made in the audited
table. What is considered as a change is driven by values of <AUDIT_INSERTS>,
<AUDIT_DELETES>, <AUDIT_UPDATES> parameters. On top of that, additional filters might be
created created by <USERS>, <APPLICATIONS>, and <FILTER_COLUMNS> parameters. If this
parameter is set to yes, you must also provide a value for <MAIL_RECIPIENT> parameter.

<MAIL_KEY_COLUMNS> — optional. Comma-delimited list or column names whose values you
want to include into the email notification message. If not specified, only primary key columns are
included.

<MAIL_RECIPIENT> — required if <AUDIT_NOTIFY> value is yes. This is the email address of
the person or email group who will receive email notifications when changes occur in the audited
table.

<MAIL_CC> — optional. This is the email address of the person or email group who will receive
carbon copies of email notifications when changes occur in the audited table.

-140-

CHAPTER 5, Data-change Audit Management

<FILTER_COLUMNS> — optional. Comma-delimited list of column names that define column-
level filter for auditing of UPDATE operations. The auditing trigger only processes a change when
a value of at least of the listed columns gets changed. If this parameter is not specified or empty,
column-level filter is not used and every UPDATE is considered as a change.

<COLUMNS> — optional. Comma-delimited list of column names that you want to have in the
audit trail table. If not specified all columns from the audited table are recorded in the audit trail
table. Some exceptions apply for large binary columns. See DB Audit User's Guide for more
information.

<USERS> - optional. In Oracle and in DB2 this is a comma-delimited list of user names for use in
user-level audit filters. In SQL Server and ASE this is a comma-delimited list of login names for
use in audit filters Note that <USERS_EXCLUDED> parameter controls type of user-level audit
filters.

<APPLICATIONS> — optional. Comma-delimited list of application names for use in application-
level audit filters. Note that <APPLICATIONS_EXCLUDED> parameter controls type of
application-level audit filters.

i Tip: Use your database native tools to lookup correct application names and they are seen
from the database side. For example, in SQL Server you can use the sp_who2 procedure while
the application is running, to find out its database connection and the name. See the name
appearing in the ProgramName column. Similarly in Oracle, you can run a SELECT from
v$session system view and check the value of the Program column. The name entered into
application filters must be entered exactly as it appears in your database.

Example 1 (the following must be entered on a single line):
This will install a simple auditing trigger capturing all changes in the audited table

java -jar dbaudit.jar /D someProfileName /A /F
"mode:setDataAudit;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TABLE;usersExcl
uded:no;appsExcluded:no;auditinserts:yes;auditDeletes:yes;auditUpdates:yes;auditNotify:no"

Example 2 (the following must be entered on a single line):

This will install a sophisticated auditing trigger capturing all changes in the audited table when
value of the PRICE column is affected, except changes made by application "Batch Data Loader."
It will also generate email alerts when changes occur and send them to me@mycompany.com
recipient.

java -jar dbaudit.jar /D someProfileName /A /F
"mode:setDataAudit;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TABLE;usersExcl
uded:no;appsExcluded:no;auditinserts:yes;auditDeletes:yes;auditUpdates:yes;auditNotify:no;audit
Notify:yes;mailKeyColumns:PRODUCT_ID,PRODUCT_NAME,COLOR,PRICE;mailRecipient: ME
@MYCOMPANY.COM;filterColumns:PRICE;apps:Batch Data Loader;appsExcluded:yes"

Using the API functions

int auditSetup.setDataAudit(DataAuditOption auditOptions, String tablespaceDB2, String auditDb,
String userMapProc);

-141-

mailto:me@mycompany.com

CHAPTER 5, Data-change Audit Management

Throws:
java.sgl.SQLException — if an error occurs.
Return:

Return 1 if the auditing has been installed successfully and the new trigger and audit trail table
have been built; Return 0 if it has found an existing trigger and audit trail table and successfully
updated. Raises an exception in all other cases.

Parameters:

For easy of coding all data-change audit options are wrapped into a separate class
DataAuditOption. An instance of this class is used for auditOptions parameter in the installation
method.

DataAuditOption dataAuditOption = new DataAuditOption(String owner, String table,
boolean usersExcluded, boolean applicationsExcluded,
boolean auditinserts, boolean auditDeletes, boolean auditUpdates,
boolean auditNotify, String[] mailKeyColumns, String mailRecipient, String mailCC,
String[] filterColumns, String[] columns, String[] users, String[] applications);

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes you want to audit. For Oracle and DB2 specify
null value.

userMapProc — Name of a user-defined stored procedure that can be used to map database user
name to an application user name. The procedure is invoked from the auditing trigger when
changes are recorded to the audit trail. For more information see "Setting User Name Mapping"
topic in CHAPTER 4, Data Change Auditing of DB Audit User's Guide. If user name mapping is
not required specify null value for this parameter

owner — Schema name of the table whose changes will be audited.

table — Name of the table whose changes will be audited.

tablespaceDB2 — required for DB2 only, in all other DBMS the value of this parameter is ignored.
Name of the tablespace in which to create the audit trail table. Please note that in Oracle this
parameter is ignored and the table is always created in the default tablespace for DB_AUDIT
user; in SQL Server and ASE the table is always created in the audit repository database.

usersExcluded — TRUE value makes the auditing trigger ignore changes made by users whose
names are specified in the "users" parameter. FALSE value makes the auditing trigger only record
changes made by users whose names are specified in the "users" parameter. If the "users"
parameter is null or empty then usersExcluded parameter is ignored.

applicationsExcluded — TRUE value makes the auditing trigger ignore changes made by
applications whose names are specified in the "applications” parameter. FALSE value makes the
auditing trigger only record changes made by applications whose names are specified in the
"applications" parameter. If the "applications" parameter is not specified then
applicationsExcluded parameter is ignored.

auditinserts — TRUE value makes the auditing trigger capture records inserted into the audited
table, FALSE — ignore inserts.

-142-

CHAPTER 5, Data-change Audit Management

auditDeletes — TRUE value makes the auditing trigger capture records deleted from the audited
table, FALSE — ignore deletes.

auditUpdates — TRUE value makes the auditing trigger capture records updated in the audited
table, FALSE — ignore updates.

auditNotify — TRUE value makes the auditing trigger generate real-time email alters when
changes are made in the audited table. What is considered as a change is driven by values of
auditinserts , auditDeletes, auditUpdates parameters. On top of that, additional filters might be
created by users, applications, and filterColumns parameters. If this parameter is set to FALSE,
you must also provide a value for mailRecipient parameter.

mailKeyColumns — String array of column names whose values you want to include into the email
notification message. If this is null value or empty, then only primary key columns are included.

mailRecipient — Email address of the person or email group who will receive email notifications
when changes occur in the audited table. If not required, specify null. If auditNotify is set to
FALSE, the value of mailRecipient parameter is ignored.

mailCC — The email address of the person or email group who will receive carbon copies of email
notifications when changes occur in the audited table. If auditNotify is set to FALSE, the value of
mailCC parameter is ignored.

filterColumns — String array of column names that define column-level filter for change event for
UPDATE operations. The auditing trigger only processes a change when a value of at least of the
listed columns gets changed. If this parameter is not specified or empty, column-level filter is not
used and every UPDATE is considered as a change.

columns — String array of column names that you want to have in the audit trail table. If not
specified all columns from the audited table are recorded in the audit trail table. Some exceptions
apply for large binary columns. See DB Audit User's Guide for more information.

users — In Oracle and in DB2 this is a string array of user names for use in user-level audit filters.
In SQL Server and ASE this is a string array of login names for use in audit filters Note that
usersExcluded parameter controls type of user-level audit filters.

applications — String array of application names for use in application-level audit filters. Note that
applicationsExcluded parameter controls type of application-level audit filters.

% Tip: Use your database native tools to lookup correct application names and they are seen
from the database side. For example, in SQL Server you can use the sp_who2 procedure while
the application is running, to find out its database connection and the name. See the name
appearing in the ProgramName column. Similarly in Oracle, you can run a SELECT from
v$session system view and check the value of the Program column. The name entered into
application filters must be entered exactly as it appears in your database.

Example 1 (simple auditing for all changes):

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");

con.connect("user", "password");

-143-

CHAPTER 5, Data-change Audit Management

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

3. Install data-change auditing for table TEST_TABLE
DataAuditOption options = new DataAuditOption("DBO", "TEST_TABLE",
false, false, true, true, true, false, null, null, null, null, null, null, null);
auditSetup.setDataAudit(options, null, "NORTHWIND", null);

Example 2 (sophisticated auditing capturing all changes in the audited table when value of the PRICE
column is affected, except changes made by application "Batch Data Loader." It will also generate
email alerts when changes occur and send them to me@mycompany.com recipient.):

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

3. Install data-change auditing for table TEST_TABLE
DataAuditOption options = new DataAuditOption("DBO", "TEST_TABLE",
false, true, true, true, true, true,
{"PRODUCT_ID", "PRODUCT_NAME", "COLOR", "PRICE" },
"ME@MYCOMPANY.COM", null, { "PRICE " }, null, null,
{"Batch Data Loader" });
auditSetup.setDataAudit(options, null, "/REPOSITORY", null);

Additionally the following method is provided for greater control over existing auditing objects.

int auditSetup.setDataAudit(DataAuditOption auditOptions, String tablespaceDB2, String auditDDb,
String userMapProc, boolean modifyTriggerlfExists);

This method provides an additional parameter modifyTriggerlfExists which controls what to do if the
specified business table already has an auditing trigger built. If TRUE, the existing trigger and the
associated audit trail table will be updated, if not they will be rebuilt.

% Important Notes: In case of existing trigger modifications, DB Audit will analyze the existing audit
trail table and compare its structure against the required structure. If the structures are compatible it
will reuse the existing table with the new trigger and preserve the existing audit trail data, otherwise it
will drop the existing audit trail table and build a new one.

Uninstall Data-change Audit for a Table

This method can be used to remove the data-change auditing trigger and the associated audit trail
table for the specified business table. Warning all audit data for that table will be permanently
destroyed. Use the "disable" method described in Disable Data-change Audit Trigger topic if you
simply want to stop the auditing temporarily and retails the audit data.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:unsetDataAudit;auditDb:<AUDIT_DB>;tableOwner:<TABLE_OWNER>;tableName:<TABLE_NA
ME>

-144-

mailto:me@mycompany.com

CHAPTER 5, Data-change Audit Management

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> — required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes are being audited.

<TABLE_OWNER> - required. Schema name of the table whose changes are being audited.

<TABLE_NAME> — required. Name of the table whose changes are being audited.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
mode:unsetDataAudit;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TABLE

Using the API functions
void auditSetup.unsetDataAudit(String auditDb, String owner, String table);

Throws:
java.sqgl.SQLException — if an error occurs.
Parameters:

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes are being audited. For Oracle and DB2 specify
null value.

owner — Schema name of the table whose changes are being audited.

table — Name of the table whose changes are being audited.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

-145-

CHAPTER 5, Data-change Audit Management

3. Uninstall data-change auditing for table TEST_TABLE
auditSetup.setDataAudit("NORTHWIND", "DBO", "TEST_TABLE");

Enable Data-change Audit Trigger

This method can be used to re-enable the auditing previously stopped using the "disable” method
described in Disable Data-change Audit Trigger topic.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:enableDataAuditTrigger;auditDb:<AUDIT_DB>;tableOwner:<TABLE_OWNER>;tableName:<TA
BLE_NAME>

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> — required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes are being audited.

<TABLE_OWNER> - required. Schema name of the table whose changes are being audited.

<TABLE_NAME> — required. Name of the table whose changes are being audited.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
mode:enableDataAuditTrigger;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TABLE

Using the API functions

void auditSetup.enableDataAuditTrigger(String auditDb, String owner, String table);

Throws:

java.sgl.SQLException — if an error occurs.

-146-

CHAPTER 5, Data-change Audit Management

Parameters:

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes are being audited. For Oracle and DB2 specify
null value.

owner — Schema name of the table whose changes are being audited.
table — Name of the table whose changes are being audited.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

3. Enabled data-change auditing for table TEST_TABLE
auditSetup.enableDataAuditTrigger("NORTHWIND", "DBO", "TEST_TABLE");

Disable Data-change Audit Trigger

This method can be used to temporarily stop auditing of the specified business table.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:disableDataAuditTrigger;auditDb:<AUDIT_DB>;tableOwner:<TABLE_OWNER>;tableName:<TA
BLE_NAME>

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> — required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes are being audited.

<TABLE_OWNER> - required. Schema name of the table whose changes are being audited.

-147-

CHAPTER 5, Data-change Audit Management

<TABLE_NAME> — required. Name of the table whose changes are being audited.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
mode:disableDataAuditTrigger;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TABLE

Using the API functions
void auditSetup.disableDataAuditTrigger(String auditDb, String owner, String table);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes are being audited. For Oracle and DB2 specify
null value.

owner — Schema name of the table whose changes are being audited.
table — Name of the table whose changes are being audited.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

3. Disable data-change auditing for table TEST_TABLE
auditSetup.disableDataAuditTrigger("NORTHWIND", "DBO", "TEST_TABLE");

Truncate Data-change Audit Trail Table

This method erases the audit data stored in audit trail table associated with the specified business
table. Some database systems also automatically shrink the truncated tables and their indexed and
deallocate the freed disk space, making it available for other objects. The exact behavior is DBMS
specific.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:truncateDataAuditTrailTable;auditDb:<AUDIT_DB>;tableOwner:<TABLE_OWNER>;tableName:
<TABLE_NAME>

-148-

CHAPTER 5, Data-change Audit Management

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> — required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes are being audited.

<TABLE_OWNER> - required. Schema name of the table whose changes are being audited.

<TABLE_NAME> — required. Name of the table whose changes are being audited.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
mode:truncateDataAuditTrailTable;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TA
BLE

Using the API functions
void auditSetup.truncateDataAuditTrailTable(String auditDb, String owner, String table);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes are being audited. For Oracle and DB2 specify
null value.

owner — Schema name of the table whose changes are being audited.

table — Name of the table whose changes are being audited.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

-149-

CHAPTER 5, Data-change Audit Management

3. Truncate data-change audit trail for table TEST_TABLE
auditSetup.truncateDataAuditTrailTable("NORTHWIND", "DBO", "TEST_TABLE");

Archive Data-change Audit Trail to a Table

This method can be used to copy audit trail data from the audit trail table associated with the specified
business table to another table located on the same server.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:archiveDataAuditTrailTable;auditDb:<AUDIT_DB>;tableOwner:<TABLE_OWNER>;tableName:<
TABLE_NAME>;destSchema:<DESTINATION_SCHEMA>;destTable:<DESTINATION_TABLE>

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> — required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes are being audited.

<TABLE_OWNER> - required. Schema name of the table whose changes are being audited.
<TABLE_NAME> — required. Name of the table whose changes are being audited.

<DESTINATION_SCHEMA> — required. Name of the schema containing the table in which to
store the archived data. See description of <DESTINATION_TABLE> parameter for more details.

<DESTINATION_TABLE> — required. Name of the table in which to store the archived data.

% Important Notes:

e If the specified table already exists, the audit trail data is appended to that table. The
structure of the destination table must much exactly the structure of the data audit
trail table.

e If the specified table does not exist, it is automatically created. In this case the destination
schema owner must have permissions to create tables. In Oracle and in DB2 the schema
owner must also have permissions to allocate space in the destination tablespace.

-150-

CHAPTER 5, Data-change Audit Management

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
mode:archiveDataAuditTrailTable;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TAB
LE;destSchema:HISTORY;destTable:TEST_TABLE_CHANGES

Using the API functions

void auditSetup.archiveDataAuditTrailTable(String auditDb, String owner, String sourceTable, String
destTable, String destSchema);

Throws:

java.sgl.SQLException — if an error occurs.

Parameters:

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes are being audited. For Oracle and DB2 specify
null value.

owner — Schema name of the table whose changes are being audited.

table — Name of the table whose changes are being audited.

destSchema — required. Name of the schema containing the table in which to store the archived
data. See description of destTable parameter for more details.

destTable — required. Name of the table in which to store the archived data.

* Important Notes:

e If the specified table already exists, the audit trail data is appended to that table. The
structure of the destination table must much exactly the structure of the data audit
trail table.

If the specified table does not exist, it is automatically created. In this case the destination
schema owner must have permissions to create tables. In Oracle and in DB2 the schema
owner must also have permissions to allocate space in the destination tablespace.

Example:

1.

Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");

con.connect("user", "password");

Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

Archive data audit trail for table TEST_TABLE into table TEST_TABLE_CHANGES in

schema HISTORY.

auditSetup.archiveDataAuditTrailTable("NORTHWIND", "DBO", "TEST_TABLE",
"TEST_TABLE_CHANGES", "HISTORY");

-151-

CHAPTER 5, Data-change Audit Management

Archive Data-change Audit Trail to a File

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:exportDataAuditTrail;auditDb:<AUDIT_DB>;tableOwner:<TABLE_OWNER>;tableName:<TABL
E_NAME>;filePath:<FILE_PATH>

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> — required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes are being audited.

<TABLE_OWNER> - required. Schema name of the table whose changes are being audited.
<TABLE_NAME> — required. Name of the table whose changes are being audited.

<FILE_PATH> — required, Name of the target file.

% Important Notes: If the specified file already exists, the system will attempt to overwrite it.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
"mode:exportDataAuditTrail;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TABLE:;fil
ePath:C:\audit\archive_as_of 10 10 2006.txt"

Using the API functions

void auditSetup.exportDataAuditTrail(String auditDb,String sourceOwner,String sourceTable,String
filePath);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes are being audited. For Oracle and DB2 specify
null value.

-152-

CHAPTER 5, Data-change Audit Management

owner — Schema name of the table whose changes are being audited.
table — Name of the table whose changes are being audited.

filePath — Name of the target file.
. % Important Notes: If the specified file already exists, the system will attempt to overwrite
it.
Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");
con.connect("user", "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

3. Archive data-change audit trail for table TEST_TABLE
auditSetup.archiveDataAuditTrailTable("NORTHWIND", "DBO", "TEST_TABLE",
"C:\\audit\\archive_as_of_10_10_2006.txt");

Configure Settings for Data-change Audit Reports

DB Audit allows setting table and column aliases that you can use in data-change audit reports
instead of the real non-descriptive table and column names commonly used in business tables. Using
this feature, you can provide your users with flexible user-friendly reports that do not require them to
know the physical database design.

The following methods can be used to set table and column aliases for use in data-change audit
reports.

Get Table Aliases

This method returns all table aliases previously set for all business tables in the database.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F mode:getTableAliases

Return:
Prints to the screen all available table alises.
Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

-153-

CHAPTER 5, Data-change Audit Management

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

Example:

java -jar dbaudit.jar /D someProfileName /A /F mode:getTableAliases

Using the API functions

String auditSetup.getTableAliases();

Throws:

java.sgl.SQLException — if an error occurs.

Return:
XML table containing records with the following elements:

Database
Owner
Table_Name
Table_Alias

Parameters:
None

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

3. Fetch table aliases and print result to the standard output
System.out.printin(auditSetup.getTableAliases());

Set Table Alias

This method sets new alias for the specified business table.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:setTableAlias;auditDb:<AUDIT_DB>;tableOwner:<TABLE_OWNER>;tableName:<TABLE_NAM
E>;tableAlias:<TABLE_ALIAS>

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database

-154-

CHAPTER 5, Data-change Audit Management

connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> — required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes are being audited.

<TABLE_OWNER> - required. Schema name of the table whose changes are being audited.

<TABLE_NAME> — required. Name of the table whose changes are being audited.

<TABLE_ALIAS> — required. New alias value.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
"mode:setTableAlias;auditDb:NORTHWIND;tableOwner:DBO;tableName: TABLE1538;tableAlias:
Production Line ltems"

Using the API functions
void auditSetup.setTableAlias(String auditDb, String owner, String tableName, String tableAlias);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes are being audited. For Oracle and DB2 specify
null value.

owner — Schema name of the table whose changes are being audited.

tableName — Name of the table whose changes are being audited.

tableAlias — New alias value.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

-155-

CHAPTER 5, Data-change Audit Management

3. Set table alias for table TABLE1538 as "Production Line Items"
auditSetup.setTableAlias("NORTHWIND", "DBO", "TABLE1538", "Production Line Items");

Get Column Aliases

This method returns all column aliases previously set for the specified business table.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:getColumnAliases;auditDb:<AUDIT_DB>;tableOwner:<TABLE_OWNER>;tableName:<TABLE_
NAME>

Return:
Prints to the screen all available table aliases.
Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> — required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes are being audited.

<TABLE_OWNER> - required. Schema name of the table whose changes are being audited.

<TABLE_NAME> — required. Name of the table whose changes are being audited.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
mode:getColumnAliases;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TABLE

Using the API functions

String auditSetup.getColumnAliases(String auditDb, String owner, String table);

Throws:

java.sgl.SQLException — if an error occurs.

-156-

CHAPTER 5, Data-change Audit Management

Return:

XML table containing records with the following elements:
Column_Name
Table_Alias

Parameters:

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes are being audited. For Oracle and DB2 specify
null value.

owner — Schema name of the table whose changes are being audited.

table — Name of the table whose changes are being audited.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");

con.connect("user", "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

3. Fetch column aliases for table TEST_TABLE and print result to the standard output
System.out.printin(auditSetup.getTableAliases("NORTHWIND", "DBO", "TEST_TABLE"));

Set Column Alias

This method sets new alias for the specified column in the specified business table.

Using the console interface

java -jar dbaudit.jar /D ProfileName [/U user] [/P password] /A /F
mode:setColumnAlias;auditDb:<AUDIT_DB>;tableOwner.<TABLE_OWNER>;tableName:<TABLE_NA
ME>;columnName:<COLUMN_NAME>;columnAlias:<COLUMN_ALIAS>

Parameters:

ProfileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

<AUDIT_DB> — required for SQL Server and ASE, not required for Oracle and DB2. This is the
name of the database containing the table whose changes are being audited.

-157-

CHAPTER 5, Data-change Audit Management

<TABLE_OWNER> — required. Schema name of the table whose changes are being audited.

<TABLE_NAME> — required. Name of the table whose changes are being audited.

<COLUMN_NAME> — required. Name of the column whose alias to set or update.

<COLUMN_ALIAS> — required. New alias value.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfileName /A /F
"mode:setColumnAlias;auditDb:NORTHWIND;tableOwner:DBO;tableName: TABLE1538;columnN
ame:COLLINENO;columnAlias:Line Item No"

Using the API functions

void auditSetup.setColumnAlias(String dbName, String owner, String tableName, String columnName,
String columnAlias);

Throws:
java.sgl.SQLException — if an error occurs.
Parameters:

auditDb — required for SQL Server and ASE, not required for Oracle and DB2. This is the name of
the database containing the table whose changes are being audited. For Oracle and DB2 specify
null value.

owner — Schema name of the table whose changes are being audited.

tableName — Name of the table whose changes are being audited.

tableAlias — New alias value.

columnName — Name of the column whose alias to set or update.

columnAlias — New alias value.

Example:

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");

con.connect("user"”, "password");

2. Create an instance of the AuditSetupDataCommon class
AuditSetupDataCommon auditSetup = AuditSetupDataCommon.getinstance(con);

-158-

CHAPTER 5, Data-change Audit Management

3. Set column alias for column COLLINENO in table TABLE1538 as "Line Items No"
auditSetup.setColumnAlias("NORTHWIND", "DBQO", "TABLE1538",
"COLLINENO", "Line Items No");

-159-

CHAPTER 6, Generating Audit Reports

CHAPTER 6, Generating Audit Reports

Class Hierarchy

The following diagram demonstrates internal hierarchy of DB Audit classes used for audit reporting. All
described classes are part of com.softtreetech.dbaudit.reports package. As you can see on the
diagram, all reports are based on a single common interface while specific implementations are
provided for each DBMS. Note that the DB Audit command line interface hides all internal class
complexity and provides flat keyword based interface.

Reports
interface class

L :

[ReportsOracle] [ReportsDB2]

[ReportsSybase] [ReportsMssq|l]

Audit report classes and their hierarchy

The following topics describe methods for generating audit reports. For simplicity, in the following
topics we will refer to the common Reports interface class only, which is sufficient for all described
tasks. The ReportsFactory class can be used to instantiate the correct implementation of the Reports
class compatible with the type of the connected DBMS.

Reports reports = ReportsFactory.getReportsinstance(DbConnect connection, PrintWriter out, String
reportXSL);

Here, the 'connection’ is an instance of DBConnect,class providing database connectivity, 'out' - is an
instance of the PrintWriter class where the report is to be written, and 'reportXSL' - a report XSL file
path. Note that all reports as generated in XML format. If 'reportXSL' parameter is null, the default XLS
formatting is applied to the XML output file. If the 'out’ class is null, the output is written to reports.xmi
file generated in the current directory.

Below is a practical example demonstrating how to connect to the database and then run a report.

1. Connect to the database, for example:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");
con.connect("user", "password");

2. Create an instance of the Reports class compatible with the type of DBMS we are connected
to. Use default reports.xml file for the output with default XLS formatting:
Reports reports = ReportsFactory.getReportsinstance(con, (PrintWriter)null, (String)null);

-160-

CHAPTER 6, Generating Audit Reports

3. Run report and write results to the file:
reports.doUsersWithExpiredPasswordsReport();

Parameter Names and Values

% Important notes for using DB Audit command line interface :

e The same rules that we have described in CHAPTER 4 also apply to command line
parameter names and values used in the data-change auditing. Please see Parameter
Names and Values topic in CHAPTER 4 for more information.

Generating Reports

Using the console interface

java -jar dbaudit.jar /D profileName [/U user] [/P password] /R <reportName> [/S start_date] [/E
end_date] [/N user_name] [/M terminal_name] [/l session_id] [/Y event_type] [/W owner_name] [/B
object_name] [/C source_db] [/G application_name] [/L xsl|_file] [/O output_file]

Parameters:

Except profileName and reportName, all other parameters are optional. The parameters can be
used for report filtering.

profileName — required. Name of an existing database connection profile.

user — optional. For Oracle and DB2 connections, name of the user to be used with the database
connection. If not specified, user name saved in the profile settings is used. For SQL Server and
ASE connections, logon name to be used with the database connection. If not specified, logon
name saved in the profile settings is used

password — optional. Password to be used with the database connection. If specified, user
parameter must be also specified and visa versa.

All other parameters are described in Common Report Filters and Parameters topic.

Example (the following must be entered on a single line):

java -jar dbaudit.jar /D someProfile /R InactiveUsersWithActiveAccounts /O
inactive_users.xml

This will execute 'Inactive Users with Active Accounts' report and write the output to
inactive_users.xml file.

-161-

CHAPTER 6, Generating Audit Reports

Using the API functions
void doApplicationLevelAuditFiltersReport();

void doAuditTrailByApplicationReport(java.lang.String application, java.lang.String auditUser,
java.util.Date startDate, java.util. Date endDate);

void doAuditTrailBySchemaReport(java.lang.String schema, java.lang.String auditUser, java.util.Date
startDate, java.util.Date endDate);

void doAuditTrailByTableReport(java.lang.String sourceDDb, java.lang.String owner, java.lang.String
table, java.lang.String auditUser, java.util.Date startDate, java.util.Date endDate);

void doAuditTrailSummaryAllReport(java.lang.String auditUser, java.util.Date startDate, java.util.Date
endDate);

void doAuditTrailSummaryByTableReport(java.lang.String sourceDb, java.lang.String owner,
java.lang.String table, java.lang.String auditUser, java.util.Date startDate, java.util.Date endDate);

void doDatabaseErrorsReport(java.lang.String userName, java.lang.String terminal, java.lang.String
dbName, java.lang.String ownerName, java.lang.String objectName, java.util.Date startDate,
java.util.Date endDate);

void doDatabaseOperationsReport(java.lang.String userName, java.lang.String sessionld,
java.lang.String terminalList, java.util.Date startDate, java.util. Date endDate);

void doDefaultSystemAuditOptionsReport();

void doEnabledDataChangeAuditsReport();

void doEnabledGlobalAuditOptionsReport();

void doEnabledLogonAuditOptionsReport();

void doEnabledSchemaObjectAuditOptionsReport();

void doEnabledSQLStatementAndOperationsAuditOptionsReport();

void doEnabledSystemPrivilegeAuditOptionsReport();

void dolnactiveUsersWithActiveAccountsReport(java.util. Date startDate, java.util. Date endDate);

-162-

CHAPTER 6, Generating Audit Reports

void doLogonLogoffAndResourceUsageAuditReport(java.lang.String userName, java.lang.String
terminal, java.util.Date startDate, java.util.Date endDate);

void doObjectAccessAndStatementAuditReport(java.lang.String userName, java.lang.String terminal,
java.lang.String dbName, java.lang.String ownerName, java.lang.String objectName, java.util.Date
startDate, java.util.Date endDate);

void doObjectAccessAuditSummaryReport(java.lang.String userName, java.lang.String dbName,
java.lang.String ownerName, java.lang.String objectName, java.util.Date startDate, java.util.Date
endDate);

void doRecentAdministratorLoginsReport(java.lang.String terminal, java.util.Date startDate,
java.util.Date endDate);

void doRecentlyCreatedDeletedAndModifiedUsersAndLoginsReport(java.lang.String terminal,
java.util.Date startDate, java.util. Date endDate);

void doRecentlyGrantedAndRevokedPrivilegesReport(java.lang.String terminal, java.util.Date
startDate, java.util.Date endDate);

void doRecentPrivilegedOperationsCreateDropAlterReport(java.lang.String terminal, java.util.Date
startDate, java.util.Date endDate);

void doSessionsReport(java.lang.String userName, java.lang.String eventType, java.lang.String
terminalList, java.util.Date startDate, java.util.Date endDate);

void doStatementAuditDetailReport(java.lang.String userName, java.lang.String terminal,
java.lang.String dbName, java.lang.String ownerName, java.lang.String objectName, java.util.Date
startDate, java.util.Date endDate);

void doStatementAuditSummaryReport(java.lang.String userName, java.lang.String dbName,
java.lang.String ownerName, java.lang.String objectName, java.util.Date startDate, java.util.Date
endDate);

void doTextOfSQLQueriesReport(java.lang.String userName, java.lang.String terminal, java.util.Date
startDate, java.util.Date endDate);

void doUserActivityDeniedAccessToObjectsReport(java.lang.String terminal);

void doUserActivityFailedLogonsReport(java.lang.String terminal);

void doUserActivityLastLogonTimeReport();

void doUserActivitySysAdminsReport(java.lang.String param, java.util.Date startDate, java.util.Date
endDate);

-163-

CHAPTER 6, Generating Audit Reports

void doUserLevelAuditFiltersReport();

void doUsersHavingAdministrativePrivilegesReport();
void doUsersWithExpiredPasswordsReport();

void doUsersWithNonExpiringPasswordsReport();

void getRawAuditTrailData(java.lang.String terminalList, java.util. Date startDate, java.util.Date
endDate);

All report methods throw:
java.sqgl.SQLException — if an error occurs.
Parameters:

See the following topic for description of reports parameters

Common Report Filters and Parameters

1. start date, end_date, user_name, owner_name, object_name, terminal_name — report filtering
parameters, all optional.

Dates must be entered in the following format: mm/dd/yyyy

Note that terminal_name parameter can be either a single value or can be a comma-delimited list
containing multiple values. For terminal name value equal SQL NULL value use '?' symbol.

Examples:

Let's say we only want reports for these terminals that appear in the audit trail table as :
"MY_BIG_SERVER", "192.168.12.34", ", "[LOCAL]", NULL. For the terminal_mname parameter
value we should then specify the following

/M MY_BIG_SERVER,192.168.12.34, [LOCAL],?
or
/M MY_BIG_SERVER,192.168.12.34,[LOCAL],?
or
/M \MY_BIG_SERVER,192.168.12.34,[LOCAL],?

In case if we only need audit records with terminal names whose value are empty string returned:
M

2. xsl_file — xsl stylesheet file name. If not specified, the default transformation will be applied

-164-

CHAPTER 6, Generating Audit Reports

3. output_file — report output file name. If not specified — report will be saved to the default
"report.xml" file. Specifying keyword "console" will result in printing the report to the console.

The following 2 topics describe report aliases used with command line options names and how they

are mapped to actual reports:

System Audit Reports

Report Alias Used in Command Line Parameters
and APl Methods Names

DB Audit Report Name

DefaultSystemAuditOptions

Default System Audit Options Report

EnabledGlobalAuditOptions

Enabled Global Audit Options Report

EnabledSQLstatementAndOperationsAuditOptions

Enabled SQL statement and Operations Audit
Options Report

EnabledSchemaObjectAuditOptions

Enabled Schema Object Audit Options Report

EnabledSystemPrivilegeAuditOptions

Enabled System Privilege Audit Options Report

EnabledLogonAuditOptions

Enabled Logon Audit Options Report

LogonLogoffAndResourceUsageAudit

Logon/Logoff and Resource Usage Audit
Report

ObjectAccessAndStatementAudit

Object Access and Statement Audit Report

ObjectAccessAuditSummary

Object Access Audit Summary Report

StatementAuditDetail

Statement Audit Detail Report

StatementAuditSummary

Statement Audit Summary Report

UserActivityFailedLogons

User Activity (Failed Logons) Report

UserActivityLastLogonTime

User Activity (Last Logon Time) Report

UserActivityDeniedAccessToObjects

User Activity (Denied Access to Objects)
Report

UserActivitySysAdmins

User Activity (Sys Admins) Report

DatabaseErrors

Database Errors Report

TextOfSQLQueries

Text of SQL Queries Report

RecentlyCreatedDeletedAndModifiedUsersAndLogins

Recently Created, Deleted and Modified Users
and Logins Report

-165-

CHAPTER 6, Generating Audit Reports

RecentlyGrantedAndRevokedPrivileges Recently Granted and Revoked Privileges
Report

InactiveUsersWithActiveAccounts Inactive Users with Active Accounts Report

UsersWithExpiredPasswords Users with Expired Passwords Report

UsersWithNonExpiringPasswordsReport Users with Non-Expired Passwords Report

UsersHavingAdministrativePrivileges Users Having Administrative Privileges Report

RecentAdministratorLogins Recent Administrator Logins Report

RecentPrivilegedOperationsCreateDropAlter Recent Privileged Operations (Create, Drop,
Alter) Report

getRawAuditTrailData Get Raw Audit Trail Data

DatabaseOperations Database Operations Report

Sessions Sessions Report

See DB Audit User's Guide for detailed description of each of these reports including supported filters
and output columns.

Data-change Audit Reports

Report Alias Used in Command Line Parameters DB Audit Report Name

and APl Methods Names

EnabledDataChangeAudits Enabled Data Change Audits Report
UserLevelAuditFilters User Level Audit Filters Report
ApplicationLevelauditFilters Application Level Audit Filters Report
AuditTrailByTable Audit Trail By Table Report
AuditTrailBySchema Audit Trail By Schema Report
AuditTrailByApplication Audit Trail By Application Report
AuditTrailSummaryByTable Audit Trail Summary By Table
AuditTrailSummaryAll Audit Trail Summary For All Tables

See DB Audit User's Guide for detailed description of each of these reports including supported filters
and output columns.

-166-

CHAPTER 6, Generating Audit Reports

-167-

CHAPTER 7, API Invocation Methods

CHAPTER 7, API Invocation Methods

Direct Invocation from Java Programs

DB Audit API can be directly invoked from Java programs. Java programs simply need to add
dbaudit.jar file and optionally alercenter .jar file to their CLASSPATH. The invocation methods for DB
Audit classes are no different then invocation methods for standard Java classes.

You can find lots of examples available throughout this guide that demonstrate how to load different
classes and invoke their methods. in addition, below is a complete example of small Java program that
makes a connection to the database and runs UsersWithExpiredPasswordsReport reports.

import com.softtreetech.dbaudit.*;
import com.softtreetech.dbaudit.reports.*;
import java.io.PrintWriter;

public class docs {

public void main() {
try {
/I Connect to the database:
DbConnect con = ProfileManagerimpl.getinstance().createDbConnect("Some Profile");
con.connect("user", "password");

/I Create an instance of the Reports class compatible with the type of DBMS we are
/I connected to. Use default reports.xml file for the output with default XLS formatting:
Reports reports = ReportsFactory.getReportsinstance(con, (PrintWriter)null, (String)null);

/I Run report and write results to the file:
reports.doUsersWithExpiredPasswordsReport();

}

catch (Exception ex) {
/I Print error message
System.out.printin(ex.getMessage());

}

}
}

Direct Invocation from Non-Java Programs

We are working on a COM wrapper that will allow .NET and other programs invoke DB Audit API
methods directly. Estimated release time for the COM wrapper is 2Q 2007.

For now please use the available command line interface. Using this mesthod you can run the
available APl commands just like you run any other program.

-168-

CHAPTER 7, API Invocation Methods

Indirect Invocation Using Batch Files

To invoke DB Audit API methods from command line and from batch and shell files, use methods
described in CHAPTER 4, 5 and 6. Below you will find several ready to use examples:

Example 1 (the following must be entered on a single line):

This will execute 'Inactive Users with Active Accounts' report and write the output to
inactive_users.xml file

java -jar dbaudit.jar /D someProfile /R InactiveUsersWithActiveAccounts /O
inactive_users.xml

Example 2 (the following must be entered on a single line):

This will install and enable system auditing for schema DDL and security changes in a
DB2 database

java -jar dbaudit.jar /D db2ProfileName /A /F "mode:installSysAudit;operations:Object
Drop and Create,Security Changes;optionWhen:ALWAY S;tablespace:AUDIT_TSPACE"

Example 3 (the following must be entered on a single line):
This will install a simple auditing trigger capturing all changes in the audited table

java -jar dbaudit.jar /D someProfileName /A /F
"mode:setDataAudit;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TABLE;users
Excluded:no;appsExcluded:no;auditinserts:yes;auditDeletes:yes;auditUpdates:yes;auditNotif
y:no"

Example 4 (the following must be entered on a single line):

This will install a sophisticated auditing trigger capturing all changes in the audited table when
value of the PRICE column is affected, except changes made by application "Batch Data
Loader." It will also generate email alerts when changes occur and send them to
me@mycompany.com recipient.

java -jar dbaudit.jar /D someProfileName /A /F
"mode:setDataAudit;auditDb:NORTHWIND;tableOwner:DBO;tableName: TEST_TABLE;users
Excluded:no;appsExcluded:no;auditinserts:yes;auditDeletes:yes;auditUpdates:yes;auditNotif
y:no;auditNotify:yes;mailKeyColumns:PRODUCT_ID,PRODUCT_NAME,COLOR,PRICE;mail
Recipient: ME@MYCOMPANY.COM;filterColumns:PRICE;apps:Batch Data
Loader;appsExcluded:yes"

Remote Invocation Using RMI functionality

The RMI server part of the application is included in the same dbaudit.jar file. To start the server,
sipmly run the start_RMIServer.bat file provided.

RMI client application comes in the form of the DBAuditRMIClient.jar file. To start the RMI client
application run the following command:

java -jar DBAuditRMIClient.jar <server_address><console_commands>

-169-

mailto:me@mycompany.com

CHAPTER 7, API Invocation Methods

Parameters:
<server_address> — server name or |P address.

<console_commands> — set of switches, options, commands and parameters as they are used
with the command console interface.

Example:
java -jar DBAuditRMIClient.jar 207.46.130.108 /D OracleProfile /U dbadmin /P dbadminpass /T
or

java -jar DBAuditRMIClient.jar MY_BIG_SERVER /D OracleProfile /U dbadmin /P dbadminpass /T

-170-

APPENDIX A, Hardware and Software Requirements

APPENDIX A, Hardware and Software
Requirements

Minimum Requirements

Client (DB Audit Management Console)

1

oo oA WN

Intel or AMD-based workstation or server running one of the following operating system:
Windows Vista

Windows 2003

Windows XP

Windows 2000

Windows NT 4.0

Windows 98

Windows Me

At least 128 MB RAM
17 MB disk space for full installation

VGA monitor

Required database client software (consult your database system documentation for details)

If ODBC database interface is used, ODBC and ODBC database connectivity driver

Alert Center (server)

1

N o o b WN

Workstation or server running one of the following operating system:
Windows 2003/Windows XP/Windows 2000/Windows NT 4.0

Linux — Debian and compatible distributions, such as RedHat Linux, SuSe and other
Sun Solaris

HP -UX

Digital Unix

IBM AIX

Free BSD

Mac OS X

z/0S

0S/390

At least 256 MB RAM

14 MB disk space for full installation

VGA or other monitor
JRE or JDK 1.4 or better
Required database client software (consult your database system documentation for details)

If ODBC database interface is used, ODBC and ODBC database connectivity driver

Database Server

Any of the supported database servers:

e Oracle 7.3, 8.0, 8i, 9i, 10g

-171-

APPENDIX A, Hardware and Software Requirements

Microsoft SQL Server 6.5, 7, 2000, 2005

Sybase SQL Server and Sybase Adaptive Server Enterprise 10.x, 11.x, 12.x
Sybase Adaptive Server Anywhere 6, 7, 8, 9

IBM DB2 5.x, 6.%, 7.X, 8.x for Linux, Unix, and Windows

IBM DB2 6.x, 7.X, 8.x for z/OS and OS/390

IBM DB2 5.x for 0S/400, MVS

-172-

APPENDIX B, Licensing

APPENDIX B, Licensing

The terms and conditions of licensing depend on the distribution method of your application, extent of
the usage and the type of your application.

Contact SoftTree Technologies sales@softtreetech.com to negotiate license terms and obtain a copy
of the license agreement.

SoftTree Technologies, Inc.
Staten Island NY, 10306
USA

Copyright 2006-2007 (C) SoftTree Technologies, Inc. All Rights Reserved

-173-

mailto:sales@softtreetech.com

	About This Guide
	Intended Audience
	Conventions used in this document
	Abbreviations and Product Reference Terms
	Trademarks

	CHAPTER 1, DB Audit API Architecture, Classes and Methods
	Architecture Overview
	Database Profiles and Connections Setup
	Manually Configuring Database Connections
	Programmatically Configuring Database Connections
	Testing Database Connections

	Audit Setup API
	Overview of System Audit Classes
	Overview of Data-Change Audit Classes

	Audit Reporting API
	RMI Interface API

	CHAPTER 2, Installation
	Client-Side API Installation
	Database Server-Side Installation
	DB2 for Linux, Unix and Windows
	DB2 for zSeries and iSeries Platforms
	Oracle for Windows
	Oracle for non-Windows Platforms
	Microsoft SQL Server
	Sybase ASE and ASA

	CHAPTER 3, Database Connectivity
	Profile Manager Class and Related Classes
	Overview
	Instantiating Profile Manager Class
	getInstance
	initInstance

	Database Driver Class
	Constructor
	getName
	setName
	getJdbcDriverPath
	setJdbcDriverPath
	getJdbcDriverClass
	setJdbcDriverClass
	getJdbcDriverType
	setJdbcDriverType

	Managing Database Drivers
	getDbDriverList
	getDbDriverNames
	getDbDriver
	addDbDriver
	deleteDbDriver

	Database Connection Profile Class
	Constructor
	getName
	setName
	getDriverName
	setDriverName
	getJdbcURL
	setJdbcURL
	getUsername
	setUsername
	getPassword
	setPassword
	getRepositoryDatabase
	setRepositoryDatabase
	getConnectionParameter
	setConnectionParameter
	isLoggedOnAsSYSDBA
	getDbPath
	setDbPath
	getMailSender
	setMailSender
	getMailServer
	setMailServer
	getMailPassword
	setMailPassword

	Managing and Using Database Profiles
	getDbProfileList
	getDbProfileNames
	getDbProfile
	addDbProfile
	deleteDbProfile
	createDbConnect

	Default Configuration Generator Class
	Overview

	Database Connectivity Class
	Overview
	Connecting/Disconnecting to/from Database
	connect
	disconnect
	Testing Connection
	Using Connection

	Getting Connection Information
	isConnected
	checkConnected
	getDbVersion
	getDbProfile
	getDbDriver
	getConnection
	repositoryUsed

	CHAPTER 4, System Audit Management
	Class Hierarchy
	Parameter Names and Values
	Oracle System Audit Management Tasks
	Set System Audit State
	Install System Audit
	Uninstall System Audit
	Enable System Audit
	Disable System Audit

	Set Audit Operations and Filters
	Add SQL Statement Audit
	Remove SQL Statement Audit
	Add Object Access Audit
	Remove Object Access Audit
	Add Session Audit
	Remove Session Audit

	Configure Alternative Audit Trail
	Install/Uninstall Oracle Alternative Audit Trail
	Schedule/Remove Oracle Alternative Data Transfer Job

	Set Advanced Audit Options
	Install/Uninstall Oracle SYS Operations Audit
	Install/Uninstall Server Errors Auditing and Alerting
	Move SYS.AUD$ Table to Non-SYSTEM tablespace

	Informational Methods
	Get System Audit Status

	Install DB Audit Mail Sending SQL Procedure

	Microsoft SQL Server System Audit Management Tasks
	Set System Audit State
	Install System Audit
	Uninstall System Audit
	Enable System Audit
	Disable System Audit

	Set Audit Operations and Filters
	Update Audit Operations
	Update Audit Filters

	Set Advanced Audit Options
	Update Audit Queue Size

	Informational Methods
	Get Current Audit Settings
	Get System Audit Status

	Install DB Audit Mail Sending SQL Procedure

	Sybase SQL Server and ASE System Audit Management Tasks
	Set System Audit State
	Install System Audit
	Uninstall System Audit
	Enable System Audit
	Disable System Audit

	Set Audit Operations and Filters
	Add Server-level Operations Audit
	Remove Server-level Operations Audit
	Add Database-level Operations
	Remove Database-level Operations Audit
	Add Schema Object-level Audit
	Remove Schema Object-level Audit
	Add Login-level Audit
	Remove Login-level Audit

	Set Advanced Audit Options
	Update Audit Queue Size
	Set 'Suspend Audit When Device Full' Status
	Add New System Audit Trail Table
	Attach Threshold Procedures
	Uninstall Threshold Procedures

	Informational Methods
	Get System Audit Status
	Get System Audit Trail Tables Count
	Get Audit Queue Size
	Get 'Suspend Audit When Device Full' Status

	Install DB Audit Mail Sending SQL Procedure

	DB2 System Audit Management Tasks
	Set System Audit State
	Install System Audit
	Uninstall System Audit
	Enable System Audit
	Disable System Audit

	Set Audit Operations
	Flush Audit Data
	Informational Methods
	Get System Audit Status

	Install DB Audit Mail Sending SQL Procedure

	Common System Audit Management Tasks (All Database Systems)
	Truncate System Audit Trail Table
	Archive System Audit Trail Data to a Table
	Archive System Audit Trail Data to a File
	Uninstall Audit Repository Objects

	CHAPTER 5, Data-change Audit Management
	Class Hierarchy
	Parameter Names and Values
	Data-change Audit Management Tasks
	Install Data-change Audit for a Table
	Uninstall Data-change Audit for a Table
	Enable Data-change Audit Trigger
	Disable Data-change Audit Trigger
	Truncate Data-change Audit Trail Table
	Archive Data-change Audit Trail to a Table
	Archive Data-change Audit Trail to a File
	Configure Settings for Data-change Audit Reports
	Get Table Aliases
	Set Table Alias
	Get Column Aliases
	Set Column Alias

	CHAPTER 6, Generating Audit Reports
	Class Hierarchy
	Parameter Names and Values
	Generating Reports
	Common Report Filters and Parameters
	System Audit Reports
	Data-change Audit Reports

	CHAPTER 7, API Invocation Methods
	Direct Invocation from Java Programs
	Direct Invocation from Non-Java Programs
	Indirect Invocation Using Batch Files
	Remote Invocation Using RMI functionality

	APPENDIX A, Hardware and Software Requirements
	APPENDIX B, Licensing

